
European Journal of Operational Research 159 (2004) 430–448

www.elsevier.com/locate/dsw
Discrete Optimization

A simulated annealing approach
for the circular cutting problem

Mhand Hifi a, Vangelis Th. Paschos b,*, Vassilis Zissimopoulos c

a LaRIA, Universit�e d’Amiens, CERMSEM, Universit�e Paris 1, France
b LAMSADE, Universit�e Paris-Dauphine, Place du Mar�echal de Lattre de Tassigny, 75775 Paris Cedex 16, France

c Department of Informatics, University of Athens, Athens, Greece

Received 22 November 1999; accepted 5 May 2003

Available online 28 September 2003

Abstract

We propose a heuristic for the constrained and the unconstrained circular cutting problem based upon simulated

annealing. We define an energy function, the small values of which provide a good concentration of the circular pieces

on the left bottom corner of the initial rectangle. Such values of the energy correspond to configurations where pieces

are placed in the rectangle without overlapping. Appropriate software has been devised and computational results and

comparisons with some other algorithms are also provided and discussed.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Cutting; Heuristics; Optimization; Simulated annealing
1. Introduction

The cutting problem consists of cutting large plates into smaller pieces in such a way as to optimize a

given objective. Different approaches and constraints for the problem have been considered in the literature
over the last 30 years (see [7,8,17]). In this work we treat the problem of cutting a rectangular plate R
of dimensions ðL;HÞ into as many circular pieces of n different types of values v‘ and radii r‘,
r‘ 6 minfL=2;H=2g, ‘ ¼ 1; . . . ; n.

We say that the n-dimensional vector ðw1; . . . ;wnÞ of integer and nonnegative numbers corresponds to a

feasible cutting pattern, if it is possible to produce w‘ pieces of type ‘, ‘ ¼ 1; . . . ; n, in the initial rectangular

plate without overlapping. The circular cutting problem (shortly CC) consists of determining the cutting

pattern with the maximum value, i.e.,
* Corresponding author. Tel.: +33 -1-44-05-45-82; fax: +33-1-44-05-40-91.

E-mail addresses: hifi@univ-paris1.fr (M. Hifi), paschos@lamsade.dauphine.fr (V.Th. Paschos), vassilis@di.uoa.gr (V. Zissimo-

poulos).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0377-2217(03)00417-X

mail to: hifi@univ-paris1.fr

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 431
CC ¼ max
Pn

‘¼1 v‘w‘

subject to ðw1; . . . ;w‘Þ corresponds to a feasible cutting pattern:

�
ð1Þ
In our study, the quantity v‘ appearing in expression (1) represents the surface of a piece of type ‘. So,
maximization of the objective function becomes maximization of the rectangular plate�s surface covered by

the
Pn

‘¼1 w‘ pieces, or equivalently, minimization of the plate�s surface not covered by them.

The formulation of expression (1) introduces what in the sequel is called unconstrained CC. When a

restriction on the maximum number of pieces to be produced has to be satisfied, we then have another

version of CC, the constrained one. Let b ¼ ðb1; . . . ; bnÞ be a vector where b‘, ‘ ¼ 1; . . . ; n, represents the
maximum number of times that piece of type ‘ can appear in a feasible cutting pattern. Then, constrained

CC is expressed as above with the additional constraint ðw1; . . . ;wnÞ6 ðb1; . . . ; bnÞ. In our study, we con-
sider that value v‘ represents the surface of the ‘th type of pieces. Note that the unconstrained version can

be seen as a particular case of the constrained one considering b‘ ¼ bðL=ð2r‘ÞÞðH=ð2r‘ÞÞc.
The (un)constrained CC problem is NP-complete since it is a generalization of the rectangular cutting

stock problem, which in turn is a generalization of the famous one-dimensional knapsack problem. To our

knowledge, very few works deal with CC problems. Most of them deal with packing circles of the same size

into rectangles and the proposed algorithms strongly depend on the ‘‘single-size’’ constraint [6,9]. We also

quote the work of [5] (subsequent to the first version of our paper [14]), pointed out very recently by one of

the anonymous referees, where a simulated annealing (SA) method is developed for cylinder packing. The
resolution of this problem in [5] consists in determining a circular cutting pattern involving circular pieces

of the same size, in such a way that the number of pieces used is maximized. As far as we know, the only

work dealing with the problem of packing circular pieces of different sizes is the one developed in [10],

where the heuristics proposed are based upon several solution building rules simulating the packing op-

eration; the best ones are a quasi-random algorithm and a genetic algorithm. A very interesting work has

been presented by Stoyan and Yaskov [16] for a kind of ‘‘dual’’ of CC problem, the strip-packing problem,

where we are given a set of different circular pieces and we try to put them in a rectangle, without over-

lapping, in such a way that some criterion, either its dimension L on axis~0x, or its dimension H on axis~0y ,
or both of them, are minimized. In [16], H is fixed and L is minimized by constructing a mathematical model

and an exact method of searching a local extremum. Finally, another version of circular strip-packing

problem has been theoretically studied by Graham and Lubachevsky [12]. They consider a fixed number of

disks of the same diameter and search for the side length of the smallest square that contains the disk centers.

As we show in Section 3, very interesting heuristics, developed for solving other types of cutting

problems (for example, rectangular or irregular cutting/packing, [2,3,13]), can be satisfactorily adapted to

deal with CC. In general, these approaches construct rectangular blocks of pieces with respect to b‘,
‘ ¼ 1; . . . ; n; next, they select some blocks that do not exceed a fixed threshold of waste; finally, a further
selection of the already pre-selected blocks is performed by dynamic programming or artificial intelligence

procedures.

In this paper we propose a SA algorithm for CC and compare it with several approaches of the liter-

ature. The rest of the paper is organized as follows. We first present the problem by means of an energy

function E to be minimized. Next, by applying the SA scheme, we reach low values of E corresponding, in

general, to solutions of good quality. Finally, after having specified the overall CC algorithm, we perform

some experimental and comparative studies. These studies concern both the feasibility of the method and

its ability in computing satisfactory solutions.
As we have already mentioned, we consider that the contributed profit of each piece is its surface.

Therefore, the quality of a solution is measured by the surface covered by it (in other words, the greater the

rectangle�s surface covered, the better the solution). Our method can be outlined as follows. We start from

introducing a large number of pieces into the rectangle (this is our initial solution). This number is suffi-

ciently large to cover rectangle�s surface but the solution so obtained is infeasible in the sense that some of

432 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
the pieces introduced either intersect mutually, or intersect rectangle�s edges. Then, we try to eliminate
overlapping by dropping some of the pieces out of the solution. Let us note that the method could generate

a small percentage of infeasible cutting patterns in the sense that the corresponding pieces of the pattern

intersect mutually. In this case, we apply a post-processing (discussed in Section 2.5) of the infeasible CC-

solutions in order that the solutions finally computed are all feasible.
2. A simulated annealing algorithm for the circular cutting

The main principle of the SA algorithm was first described in [15] and has been successfully used for

solving optimization problems. An extensive bibliography about this use can be found in [1,4]. The SA

algorithm can be outlined as follows:

1. fix initial temperature (T0) and the number of neighboring solutions M0 generated at constant tempera-

ture (usually called length of the Markovian chain);

2. set k ¼ 0 and determine the first initial solution (p ¼ pstart) and its energy function value (Epstart);

3. repeat Mk times:
q¼ neighborðpÞ;
if Dqp ¼ Eq � Ep 6 0 then set p ¼ q; else if expð�Dqp=TkÞ> random ½0; 1� then set p ¼ q;

4. increment(k), compute Mk and Tk (reduced temperature);

5. repeat steps 3–5, until exit criterion.

In this algorithm several decisions have to be taken. Some of them are specific to the problem one deals

with: how to generate an initial configuration; how to generate the neighbor to a configuration; how to

calculate the difference Dqp? Other decisions are internal to the annealing process: how to fix the initial
temperature; how to determine the length Mk and the new temperature Tk; what is the exit criterion? These
decisions are usually empirically taken.

In what follows, we shall see how one can use the principle of the SA algorithm to approximately solve

CC.

2.1. Some definitions and notations

We can consider that the initial rectangle lies in the plane and its four vertices can be represented by the
coordinates: ð0; 0Þ, ðL; 0Þ, ð0;HÞ and ðL;HÞ (L is on the axis~0x and H on the axis~0y), respectively. Note that

we consider LPH (by performing a rotation if necessary). Finally, recall that for each ‘ 2 f1; . . . ; ng one

can consider more than one (at most b‘) pieces of type ‘.
Each piece i is represented by the coordinates ðxi; yiÞ of its center; moreover we use the following defi-

nitions:

• a piece i feasibly lies to the interior of R if it lies in the interior of R, or if it feasibly touches its borders,

i.e., if ðri; riÞ6 ðxi; yiÞ6 ðL� ri;H � riÞ;
• a piece i lies to the exterior of R if one of the following eight conditions holds:

(i) 06 xi 6L and yi < �ri,
(ii) 06 xi 6 L and yi > H þ ri,
(iii) xi < �ri and 06 yi 6H ,

(iv) xi > Lþ ri and 06 yi 6H ,

(v) xi > L and yi 6 0 and ðxi � LÞ2 þ y2i > r2i ,
(vi) xi P L and yi PH and ðxi � LÞ2 þ ðyi � HÞ2 > r2i ,

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 433
(vii) xi 6 0 and yi PH and x2i þ ðyi � HÞ2 > r2i ,
(viii) xi 6 0 and yi 6 0 and x2i þ y2i > r2i ;

• a piece i intersects R if one of the following eight conditions holds:

(i) 06 xi 6 L and jyij6 ri,
(ii) 06 xi 6 L and H � ri 6 yi 6H þ ri,
(iii) 06 xi 6 ri and ri 6 yi 6H � ri,
(iv) L� ri 6 xi 6 L and ri 6 yi 6H � ri,
(v) xi 6 0 and yi 6 0 and x2i þ y2i 6 r2i ,
(vi) xi P L and yi 6 0 and ðxi � LÞ2 þ y2i 6 r2i ,
(vii) xi 6 0 and yi PH and x2i þ ðyi � HÞ2 6 r2i ,
(viii) xi P L and yi PH and ðxi � LÞ2 þ ðyi � HÞ2 6 r2i .

Moreover, we denote by S0 the surface of R, by Sr the set fðx; yÞ : xP L and 06 y6Hg, and by �S the set

R2 n ðS0 [SrÞ; finally, Si ¼ vi represents the surface of piece i.

2.2. An energy function associated with the circular cutting

A common way for solving optimization problems is to devise methods (exact or heuristics) improving a

feasible initial solution. As we have already mentioned in the outline of our method, our approach is

somewhat different. We first produce a configuration generally corresponding to an infeasible solution, the

objective value of which is ‘‘better’’ (greater) than the optimal value for CC. We then try to render the

configuration produced feasible. In other words, we first favor, as we have already mentioned, the intro-

duction of a maximum number of pieces into R (even allowing some mutual intersections of the pieces), and

next we rearrange the pieces introduced (even eliminating some of them) to omit mutual intersections. The
feasible configuration so obtained is our final solution. The energy function we will propose in the sequel

reflects the thought process just described, and informally, is based upon the following requirements:

i(i) situations where:

(a) two pieces intersect mutually, or

(b) a piece intersects R, or
(c) a piece lies in the exterior of R (intersects R2 n S0), have to be avoided in a feasible pattern;

(ii) the greater the number of pieces feasibly placed in R, the higher the usage (covering) of the the surface
of R.

Our objective is to build an energy function E, the optima (global or local) of which correspond to

satisfactory CC-solutions. In what follows, let m ¼
Pn

‘¼1 b‘ be an upper bound on the number of pieces that

can be cut. We consider that i 2 f1; . . . ;mg represents the index of the ith piece and i ¼ 0 represents the

index associated with �S or Sr. We also denote by AðSÞ the area of S.
In order to introduce a maximum number of pieces in the rectangle, we ‘‘strain’’ them to be concentrated

to the bottom-left corner of R. A measure of how close to the bottom-left corner of R a piece i lies is the
value of the expression Ci ¼ ðriðjyi � rij þ jxi � rijÞÞ, where if ðxi; yiÞ ¼ ðri; riÞ, then Ci ¼ 0, while if

ðxi; yiÞ 6¼ ðri; riÞ, the non-zero value of ðjyi � rij þ jxi � rijÞ is amplified by its multiplication by ri. In other

words, informally, the fact that a piece i is far from the bottom-left corner of R induces a large value for Ci,

and consequently, for the energy function.

Introduction of a large number of pieces in R fulfills requirement (ii), but is contradictory with re-

quirement (i) since it may produce intersections between pieces in R. Here, for any such illegal intersection,

the measure of ‘‘how much requirement (i) is violated’’ is the area of the intersection. The areas induced by

the problematic configurations described in requirements (ia), (ib) and (ic) are the following:

434 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
1. if a piece j, j ¼ 1; . . . ;m, intersects i and if: both i and j lie in the interior of R (case 1.1), or both i and j
intersect R (case 1.2), or only j intersects R (case 1.3), then the corresponding areas are

AðSi \ SjÞ i 6¼ 0; j > i for cases ð1:1Þ and ð1:2Þ;

Að�S \ SjÞ and AðSr \ SjÞ i ¼ 0; j 6¼ 0 for case ð1:3Þ;

(

2. if a piece j, j ¼ 1; . . . ;m, lies in the exterior of R (Sj \ S0 ¼ ;), then we have i ¼ 0 and the corresponding

areas are

AðSjÞ Sj \ Sr ¼ Sj;

AðSjÞ Sj \ �S ¼ Sj;

Að�S \ SjÞ and AðSr \ SjÞ Sj \ ð�S [SrÞ ¼ Sj:

8>><
>>:

Since requirements (i) and (ii) are contradictory, a trade-off between them is performed by using penalty

parameters. We use four such parameters: p1 penalizing non-empty intersections between pieces, p2 pe-

nalizing intersections of the pieces with �S, p3 penalizing intersections of the pieces with Sr, and p4 penalizing
the distance from the axes~0x and~0y (bottom-left corner of R). Let us now show how we use them in order

to produce the mathematical expression of the energy function proposed.

We first consider requirement (i) and the different areas described in items 1 and 2 just above. Let Eð1Þ
ij be

the basic component of the term of E dealing with requirement (i). Then:

• dealing with 2, we set

Eð1Þ
ij ¼ p1AðSi \ SjÞ i 6¼ 0; j > i for cases ð1:1Þ and ð1:2Þ;

p2Að�S \ SjÞ þ p3AðSr \ SjÞ i ¼ 0; j 6¼ 0 for case ð1:3Þ;

�
ð2Þ

• while, dealing with 2, we set

Eð1Þ
0j ¼

p3AðSjÞ Sj \ Sr ¼ Sj;

p2AðSjÞ Sj \ �S ¼ Sj;

p2Að�S \ SjÞ þ p3AðSr \ SjÞ Sj \ ð�S [SrÞ ¼ Sj:

8><
>: ð3Þ

In summary, the term of E dealing with requirement (i) is Eð1Þ ¼
Pm�1

i¼0

P
j>i E

ð1Þ
ij . Let now Eð2Þ

i be the

basic component of the term of E dealing with requirement (ii). Then,
Eð2Þ
i ¼ p4ðriðjyi � rij þ jxi � rijÞÞ ð4Þ
and the term of E dealing with this requirement is Eð2Þ ¼
Pm

i¼1 E
ð2Þ
i . Finally,
E ¼ Eð1Þ þ Eð2Þ ¼
Xm�1

i¼0

X
j>i

Eð1Þ
ij þ

Xm
i¼1

Eð2Þ
i : ð5Þ
We now show how to adjust the parameters involved in expressions (2)–(4) in order to obtain config-

urations of the form ‘‘a maximum number of pieces in the strip defined by S0 [Sr without overlapping’’
characterized by low values of E. We concentrate a maximum of pieces in the strip S0 [Sr (in view of their

introduction in R) by allowing some overlapping. For this, we have to strain the pieces to avoid placing
them in �S. We therefore consider a large value for p2. In this way, since E (expression (5)) is to be minimized,

the terms with factor p2 must be the least possible in number or/and to have values close to 0. Since we have

decided to allow some overlapping, we consider p1 < p2.

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 435
In order to avoid overlapping inside R, we enable a certain shifting to the right (even if this shifting will
produce the introduction of some pieces from S0 to Sr); p3 < p1 is a possibility for this. Thus, finally,

p3 < p1 < p2, and the term
Pm�1

i¼0

P
j>i E

ð1Þ
ij encourages the introduction of pieces in R, avoiding both

overlapping between pieces and overflow of pieces with respect to the edges of R.
We now complete the adjustment by trying to further strain the pieces to be placed in the strip S0 [Sr in

order to ensure that a maximum number of pieces will finally be introduced in the strip without over-

lapping. This can be obtained using parameter p4. At the initial step of the algorithm, we consider a value

for p4 as large as the one for p2 (by allowing high initial-energy values). In other words, we attribute the

same importance to both the overlapping elimination and the concentration of the pieces to the bottom-left
corner of R. Progressively, the value of p4 will be reduced. This means that we accept the shifting of some

pieces from S0 to Sr in order to avoid overlapping into S0. So, if p4 becomes close to 0 and if no overlapping

is produced, then the value of the energy becomes small.

2.3. Initial solution

We have already mentioned that, initially, all the m ¼
Pn

‘¼1 b‘ pieces are randomly placed on the plane.

In order to be more efficient in time, we try to reduce the ‘‘randomness’’ of the initial placement by solving
the following subset sum problem:
KP ¼
max

Pn
‘¼1 AðS‘Þz‘Pn
‘¼1 AðS‘Þz‘ 6 LH ;

z‘ 6 b‘; ‘ ¼ 1; . . . ; n;
z‘ 2 Nþ;

8><
>:
the solution of which gives an upper bound for the value of the optimal solution of CC. We recall that the

unconstrained case can be reduced to the constrained one by considering bounds b‘ ¼ bðL=ð2r‘ÞÞðH=ð2r‘ÞÞc.
Let z�‘ , ‘ ¼ 1; . . . ; n, be the solution of KP. We start from the hypothesis that at most z�‘ pieces of type ‘,

‘ ¼ 1; . . . ; n, will be placed in R without overlapping. For each ‘, we consider a partition of the set of pieces
of type ‘ into two subsets B‘ and B‘, of cardinalities z�‘ and b‘ � z�‘ , respectively.

We place randomly the b‘ � z�‘ , pieces of B‘, ‘ ¼ 1; . . . ; n, in Sr by allowing overlapping. We can observe

that since we allow overlapping and AðSrÞ is infinite, we can place all these pieces here. Procedure 1 just

below places the pieces of [n
‘¼1B‘ in Sr (allowing overlapping).

Procedure 1

Step 1. set L1 ¼ L, H1 ¼ H , path ¼ 0 and set S ¼
Sn

‘¼1 B‘;

Step 2. let k 2 S be the piece of radius rk and set fk ¼ k; set ðxk; ykÞ ¼ ðL1 þ rk;H1 � rkÞ;
Step 3.

repeat

1. let (a randomly taken) k0 2 S of radius rk0 ; set ðxk0 ; yk0 Þ ¼ ðL1 þ rk0 ; yk � rk0 Þ;
2. set S ¼ S n fk0g, k ¼ k0;
until (S ¼ ;) or (yk0 6 0);

Step 4. if S 6¼ ; then set path ¼ fk, L1 ¼ L1 þ 2xfk and goto Step 2.

Next, we place (always randomly and in a greedy way) some pieces belonging to the different B‘�s into
S0 without allowing overlapping for them. The rest of the non-placed pieces of B‘ are randomly placed in

S. Procedure 2 places the pieces of
Sn

‘¼1 B‘ in S0 and S.

Procedure 2

Step 1. set L1 ¼ 0, H1 ¼ 0 and S ¼
Sn

‘¼1 B‘;

Step 2. let k 2 S be the piece of radius rk; set ðxk; ykÞ ¼ ðL1 þ rk;H1 þ rkÞ and Hlimit ¼ 2rk;

436 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
Step 3. do

1. let (a randomly taken) k0 2 S of radius rk0 be such that ðxk þ rk þ 2rk0 ;H1 þ 2rk0 Þ6 ðL;HÞ;
if k0 exists then set ðxk0 ; yk0 Þ ¼ ðxk þ rk þ rk0 ;H1 þ rk0 Þ and goto 3.2; else goto Step 4;

2. set Hlimit ¼ maxfHlimit;H1 þ 2rk0 g; S ¼ S n fk0g and k ¼ k0;
if S ¼ ; then goto Step 5; else goto 3.1;

Step 4.

if S 6¼ ; then set L1 ¼ 0; H1 ¼ Hlimit and Hlimit ¼ 0;

if 9k 2 S such that H1 þ 2rk 6H then

set ðxk; ykÞ ¼ ðL1 þ rk;H1 þ rkÞ and goto Step 3; else goto Step 5;

Step 5. if S 6¼ ; then place all pieces of S on S around the three edges of the initial plate, i.e.,

ð0; 0Þ6 ðx; yÞ6 ð0;HÞ, ð0; 0Þ6 ðx; yÞ6 ðL; 0Þ and ð0;HÞ6 ðx; yÞ6 ðL;HÞ.

Procedures 1 and 2 give an initial placement of all the pieces. Later, if a local solution with good

characteristics is obtained, then we try to use an intensification on its neighborhood in order to improve the

quality of this solution. On the other hand, if the solution obtained cannot be improved after a certain

number of iterations, then we try to use a diversified solution in order to ‘‘globally’’ perturbate the system.
The intensification and diversification strategies are performed by considering the transformations (T1) to

(T5) discussed in the following section.

2.4. Generation of a neighboring solution

Consecutive configurations of system�s states are obtained by means of a number of transformations on

positions of the pieces. In what follows, we describe these transformations.

For a piece i, we define its neighborhood as the set of pieces, the center of which lies into a fictive cycle
of center ðxi; yiÞ and radius 2ri.

2.4.1. Transformation (T1)

This transformation is performed either horizontally or vertically (in both cases parallel either to axis~0x,
or to axis~0y). We randomly choose a piece i; for a piece j neighbor of i, we define dxj ¼ jxi � xjj � ðri þ rjÞ,
its horizontal distance from i, and dyj ¼ jyi � yjj � ðri þ rjÞ, its vertical distance from i (Fig. 1(a) and (b)).

Transformation (T1) consists of bringing piece k 2 argmin16 j6mfdxj ; d
y
jg, k being a neighbor of i closer to i.

2.4.2. Transformation (T2)

This transformation is performed diagonally with respect to axes~0x and~0y (Fig. 2(a) and (b)). Given two

pieces i and j, we define their diagonal distance d ¼ ½ðxi � xjÞ2 þ ðyi � yjÞ2�1=2. As previously, we try to move
Fig. 1. (a) Eliminating overlapping, and (b) bringing j closer to i via transformation (T1).

Fig. 2. (a) Eliminating overlapping, and (b) bringing j closer to i via transformation (T2).

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 437
piece j, lying on the neighborhood of i, in such a way that the two pieces touch each other and, moreover,

the center of j always lies on the straight line defined by the points ðxi; yiÞ and ðxj; yjÞ. This movement can be
seen as two simultaneous movements, one parallel to axis~0x by a distance dx, and the other parallel to axis
~0y by a distance dy. These two distances are defined by
ðdx; dyÞ ¼
Dx 1� riþrj

d

� �
;Dy 1� riþrj

d

� �� �
; dP ri þ rj;

Dx riþrj
d � 1

� �
;Dy riþrj

d � 1
� �� �

; otherwise;

(

where Dx ¼ jxi � xjj and Dy ¼ jyi � yjj.

2.4.3. Transformation (T3)

Let us consider two circular pieces i and j touching each other, and suppose that i lies on the left of j. Let
us denote by ðxt; ytÞ the coordinates of the point where a tangent of j, vertical to the axis ~0x, touches j.
Transformation (T3) consists of performing a symmetric displacement of j with respect to the axis rep-

resented by the straight line vertical to~0x containing point ðxi; yiÞ, and then a right shifting of the two pieces
by an horizontal distance jxt � xi � rij (Fig. 3). The meaning of this transformation is that if i has important

overlapping surfaces on its left, and moreover, rj < ri, by (T3) we can reduce overlapping. On the other

hand, if rj > ri, and there exist some ‘‘holes’’ (waste) on the left of i, then (T3) will reduce their surface.

2.4.4. Transformation (T4)

Let us consider a piece j into S0 and tangent (i) either to straight line y ¼ H , (ii) or to straight line x ¼ L.
Let us also consider a piece i tangent to j and lying out of S0. Then, transformation (T4) consists of a

symmetric displacement of i and j with respect to the straight line y ¼ H in case (i) (Fig. 4), or x ¼ L in case
(ii). This transformation allows new pieces to be introduced into S0.

2.4.5. Transformation (T5)

Consider a piece i lying on S0 and a piece j out of S0, the radii of which verify 0 < jri � rjj=maxfri; rjg6 b
for a positive constant b. Then transformation (T5) consists of an interchanging between i and j. The
Fig. 3. Transformation (T3).

Fig. 4. Transformation (T4).

Fig. 5. Transformation (T5).

438 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
meaning of (T5) is that if ri > rj, then the performed interchanging will reduce the overlapping into S0,
while, in the opposite case, the waste will be reduced. Fig. 5 gives an idea of such a transformation for b ¼ 2

and for the case ri > rj; for the case ri < rj, it suffices to read the figure from the right to the left.

Transformations (T1) to (T3) represent a kind of ‘‘local re-arrangement’’ in the interior of S0 in order to
obtain feasible solutions corresponding to local minima of E. These transformations are applied on the

pieces lying to the neighborhood associated to a fixed piece on S0. On the other hand, transformations (T4)

and (T5) cause a kind of ‘‘perturbation’’ leading, eventually, smaller local minima, corresponding to better

quality solutions. Finally, let us note that at least one among transformations (T1), (T2), or (T3) is always

applicable; for example, if (T1) does not work, then there exists a piece j tangent to i, and consequently,

transformation (T3) can be applied.

2.5. Outline of the simulated annealing algorithm

The SA heuristic developed for CC is outlined by Algorithm 1. The default settings for it are:

Mi: the neighborhood of a fixed piece i, represented by the pieces lying to the fictive cycle of center ðxi; yiÞ
and radius 2ri;
dm: the length of the Markovian chain at a certain temperature;

global_counter: the counter (limited by dm) associated with the length of the Markovian chain for a

given temperature;
local_counter: the counter computing, for a fixed piece i, the number of configurations considered in the

neighborhood Mi;

local_find: limited by the number mmeans that the Markovian chain is cut if the energy function does not

change after m consecutive configurations;

best_sol: the configuration corresponding to the best current solution.

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 439
Algorithm 1. The SA heuristic for CC.

1. fix the initial temperature T0, set counter k ¼ 0 and let Cp ¼ Cpstart be the initial solution obtained by solv-

ing KP and using Procedures 1 and 2; evaluate energy EðpÞ (corresponding to Cp); set global counter ¼ 0

and local find ¼ 0;

2. execute the following steps:

(a) let i be the index of a piece lying in R or intersecting R, and set local counter ¼ 0;

while local counter6 jMij do

iii. let Cq ¼neighbor(Cp)
/* Cq is obtained by applying arbitrarily one of (T1), (T2) and (T3) */;
iii. if Dqp 6 0 or minf1; expð�Dqp=TkÞg > random ½0; 1� then

set Cp ¼ Cq; update the best configuration best sol (if necessary); set local find ¼ 0;

else increment(local_find);
iii. increment(local_counter);
if local findP m or global counter þ local counterP dm then goto 3;

(b) let Cq ¼neighbor(Cp)
/* Cq is obtained by applying randomly one of (T4) and (T5) */

(c) if Dqp 6 0 or minf1; expð�Dqp=TkÞg > random ½0; 1� then
set Cp ¼ Cq; update the best configuration best_sol (if necessary); set local_find¼ 0;

else increment(local_find);

3. set global_counter¼ global_counter + local_counter;

if global counter < dm and local find < m then goto 2;

4. increment(k); reduce the temperature Tk; set global_counter¼ 0 and local_find¼ 0;

5. repeat steps 3–5 until one of the exit criteria i or ii (below) is satisfied.

We denote by EðpÞ the energy associated with configuration Cp and by Dqp ¼ EðqÞ � EðpÞ the difference
between the energies of the two consecutive configurations Cq and Cp. We now describe how we compute

this quantity. Revisit expression (5) (the energy function E) and denote, for a configuration Cp, by Eð1ÞðpÞ
the term

Pm�1

i¼0

P
j>i E

ð1Þ
ij and by Eð2ÞðpÞ the term

Pm
i¼1 E

ð2Þ
i . We decompose Dqp into two terms, the former

accounting for Eð1Þ and the latter for Eð2Þ. So, Dqp ¼ Dð1Þ
qp þ Dð2Þ

qp , with Dð1Þ
qp ¼ Eð1ÞðqÞ � Eð1ÞðpÞ, and

Dð2Þ
qp ¼ Eð2ÞðqÞ � Eð2ÞðpÞ.
If the transformation considered uses two different pieces s and t (s 6¼ t, s > t), then Dð1Þ

qp yields:
Dð1Þ
qp ¼

2
664
Xm
i¼0
i6¼s
i6¼t

t Eð1Þ
is ðqÞ � Eð1Þ

is ðpÞ
� �

þ Eð1Þ
it ðqÞ � Eð1Þ

it ðpÞ
� �3775þ Eð1Þ

st ðqÞ
�

� Eð1Þ
st ðpÞ

�

¼ Dð1Þ
qpðstÞ þ

Xm
i¼0
i6¼s
i6¼t

Dð1Þ
qpðisÞ

�
þ Dð1Þ

qpðitÞ

�

where the last equality is obtained by setting Dð1Þ
qpðijÞ ¼ Eð1Þ

ij ðqÞ � Eð1Þ
ij ðpÞ.

The second term is computed in a similar way resulting: Dð2Þ
qp ¼ Dð2Þ

qpðsÞ þ Dð2Þ
qpðtÞ, where Dð2Þ

qpðiÞ ¼ Eð2Þ
i ðqÞ�

Eð2Þ
i ðpÞ, and finally,

Table

The va

aa

0.95

a Th
bTh
c Ex
dEx
e Th

440 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
Dqp ¼ Dð1Þ
qpðstÞ þ

2
664
Xm
i¼0
i6¼s
i6¼t

ðDð1Þ
qpðisÞ:þ Dð1Þ

qpðitÞÞ

3
775þ Dð2Þ

qpðsÞ þ Dð2Þ
qpðtÞ:
The law of temperature�s decrement is geometric and is defined by Tk ¼ aTk�1, kP 1 and a < 1. The two

exit criteria used in Algorithm 1 are:

i(i) a threshold for the temperature;

(ii) a threshold for the quantity jEðaÞ � ð
Pa

r¼1 EðrÞ=aÞj, where EðaÞ is the energy of the configuration best_

sol and EðrÞ is the energy of the last configuration produced for a temperature value Tr.

If jEðaÞ � ð
Pa

r¼1 EðrÞ=aÞj < � for a positive constant �, or if the threshold temperature is attained, then

the algorithm stops and the solution corresponding to best_sol represents the final solution for the CC

problem. The interpretation of criterion (i) is taken from the (original) conception of SA in physics. It

means that if temperature attains some low limit, then no significant change can be expected for ma-
terial�s state. In other words, the material has attained a stable state. This means that no significant

improvement of the configuration best_sol is to be expected. Consequently, the execution of Algorithm 1

can stop. Analogous is the interpretation of exit criterion (ii). It implies that, if for a number of new

configurations, no significant improvement is obtained with respect to the solution corresponding to

best_sol, then one can consider that this solution is quite satisfactory and, consequently, one can stop the

algorithm.

In Table 1 the values chosen for the parameters used in Algorithm 1 are given. As we have already

mentioned in Section 2.2, the coefficient p4 was progressively reduced. For each temperature value Tk,
k ¼ 0; 1; 2; . . . ; p4 ¼ 10�1Tk.

Solutions considered by Algorithm 1 are represented by a simple exploration of the domain corre-

sponding to some feasible and infeasible solutions. Our computational results show that generally the final

solutions obtained are feasible, but sometimes, Algorithm 1 may produce an unfeasible solution. In order

that our method becomes completely operational, we have applied a simple and polynomial post-processing

transforming an unfeasible configuration into a feasible one. We construct a graph whose vertices represent

all of pieces lying on R (and not intersecting the edges of R); two such vertices are linked by an edge only if

the corresponding pieces overlap each other; then, a feasible solution of CC corresponds to a maximal
independent set of the so-constructed (conflict) graph. On this graph (let us denote it by G ¼ ðV ;EÞ), we
apply the following greedy procedure.
1

lues for the parameters used in Algorithm 1

T0b Temperature�s thresholdc �d dme m

10 10�3 10�3 3m 3m=2

e parameter in the law of the cooling schedule.

e initial temperature.

it criterion (ii).

it criterion (ii).

e parameter representing the length of the Markovian chains for each temperature.

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 441
Procedure 3

1. set V 0 ¼ ;;
2. repeat

(a) sort the vertices of V in increasing degree order;

(b) let v0 be the minimum degree vertex of V ; put v0 in V 0; set V ¼ V n ðfv0g [fx : v0x 2 EgÞ and

E ¼ E n fv0x : v0x 2 Eg;
until V ¼ ;;

3. output V 0.

We are now well-prepared to give an overall specification of the algorithm proposed for CC, denoted by

FSA in what follows.
Algorithm 2. Algorithm FSA.

1. call Algorithm 1 on the CC instance;
let S be the solution obtained;

2. if S infeasible for CC then construct the conflict graph G;
else set S ¼ F and goto step 4;

3. call Procedure 3 on G;
let F be the solution obtained;

4. output F .

Procedure 3 is simple and very easy to implement. There exist other post-processing leading to
better final solutions than Procedure 3. For example, one can consider any piece together with its

surface. Then, she/he constructs a weighted conflict graph G, where any vertex is weighted by the

surface of the corresponding circular piece. In this case, one can use an approximation algorithm for

weighted independent set instead of Procedure 3. Another way, always under the modeling of the

solution obtained by Algorithm 1 as a conflict graph, would be to solve the corresponding indepen-

dent set problem by exact methods, weightening so the execution time of the overall method (Algorithm

2).

Here our purpose is to study the capacity of a proper SA algorithm to solve CC. For this reason, no
particular care has been taken in using more elaborated post-processing. As we shall see in Section 3, the

solutions produced are fairly satisfactory.
3. Computational studies

We have conducted two series of experiments. The former compares the SA-method developed with the

algorithms of [2,3,13]. Experiments here deal with both the feasibility of Algorithm 1 and with comparisons
with other efficient cutting-algorithms originally devised for other than circular shapes. These algorithms

have been implemented by us; we have properly adapted them in order to run for circular shapes. Both our

method and the implemented algorithms run on randomly generated CC-instances. The latter series of

experiments compares our method with the one of [16] and with the (theoretical) packings presented in [12].

Data have been sent us by professor Y.G. Stoyan, for the comparisons with [16], or had been extracted by

us, as described in Section 3.2.2, for the comparisons with [12]. All the experiments have been performed on

a Data General 486.

442 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
3.1. First series of experiments

As already mentioned, CC algorithms have been presented in [6,9,10]; the ones of [6,9] deal with cycles of

the same size. Unfortunately, we have not been able to be provided with numerical data for them, and what

we have alluded in [6,9,10] does not allow us to implement the heuristics proposed without altering their

basic spirit.

We so have adapted and implemented three of the best known cutting algorithms originally devised to

place other than circular shapes (irregular or rectangular ones), and compared the results obtained with the
ones provided by Algorithm 2 (algorithm FSA). For the constrained CC-case, we have considered the

algorithms of Beasley [3], and of Albano and Sapuppo [2], while for the unconstrained case the algorithm of

Haims and Freeman [13].

Beasley�s algorithm [3] is originally an exact algorithm for non-guillotinable rectangular cutting prob-

lems. Following the same process, we have modified it in order to solve CC approximately. Here is an

outline of this modified version that we have devised and implemented:

1. apply the first step of the algorithm of [13] in order to solve a rectangular cutting problem (to construct
rectangular blocs) without violating the upper bounds b‘, ‘ ¼ 1; . . . ; n;

2. for each of the obtained rectangles R0, solve CC in R0 by applying Lagrangian relaxation as a heuristic

for obtaining an initial feasible CC-solution (used as a lower bound) and a global upper bound for CC

(obtained by considering specified Lagrangian multipliers);

3. improve the best current feasible solution by running a depth-first branch-and-bound procedure (stop if

106 nodes are created).

The modified version of Albano–Sapuppo�s algorithm (originally devised in [2]) is as the previous one,
except for step 2, where Lagrangian relaxation is matched with a best-first-search heuristic introducing

displacements and rotations of the circular pieces.

Haims and Freeman�s algorithm [13] performs a grouping of pieces (irregular shapes) into small rect-

angles. Next, it uses dynamic programming techniques (that can be seen as a modified version of Gilmore

and Gomory�s algorithm [11]) to place the small rectangles into bigger ones. We shortly outline its mod-

ification:

1. circular pieces are embedded (singly or by two or three) into minimum area rectangles (in order to min-
imize waste) called modules;

2. using dynamic programming, these modules are then further packed and enclosed into new (minimum

area) rectangles to yield new modules and so on; the so-produced new modules are retained if they im-

prove the solution;

3. the procedure just described ends when a module coincides with R.

We use this last algorithm for the unconstrained case, because it seems better adapted than the ones of

[2,3] when the bounds bi are quite large.

3.1.1. Problem generation

Our computational results were conducted on three groups of instances G1, G2 and G3. Each group

contains 80 random instances generated as follows. The number of types of pieces for each group is ran-

domly taken in the integer intervals ½5; 30�, ½10; 70� and ½30; 100�, respectively. The dimensions L and H of

the initial rectangle are uniformly taken from ½50; 100� for the instances of G1, ½100; 150� for the ones of G2,

and ½150; 250� for the ones of G3. The radius of each type ‘ of pieces is defined by r‘ ¼ ð1=2Þd4p‘=pe, where
p‘ ¼ c‘ minfL;Hg with c‘ randomly taken in the interval �0; 1=3�, ‘ ¼ 1; . . . ; n, and the value of p was setting

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 443
equal to 3.14. Finally, the number of each type of piece to be cut b‘ is randomly taken from
½1;minf10; bðL=ð2r‘ÞÞðH=ð2r‘ÞÞcg�, ‘ ¼ 1; . . . ; n.

We have considered both constrained and unconstrained cases of the CC problem. The groups G1, G2

and G3 represent the instances with the bounds b‘, ‘ ¼ 1; . . . ; n. For the unconstrained case, bounds b‘ are
represented by the corresponding quantities bðL=ð2r‘ÞÞðH=ð2r‘ÞÞc. Unconstrained and constrained versions

of CC were tested separately.

3.1.2. The experimental results

When using meta-heuristics to solve optimization problems, it is well-known that different parameter
settings for the method (e.g., slower cooling schedule, increasing of the neighborhood, etc.) lead to results of

variable quality. Here also, a different adjustment of method�s parameters would lead to a higher per-

centage of feasible solutions. But this ‘‘better’’ adjustment would lead to heavier execution time require-

ments. The set of values chosen in our experiment represents a satisfactory trade-off between solution

quality and execution time.

3.1.2.1. On the feasibility of Algorithm 1. The percentage of feasible solutions produced by the SA algorithm

(Algorithm 1) is shown in Table 2. As one can see, the larger the size of the instances, the greater the
percentage of infeasible solutions. This is expected since, for the instances of large size, there is a big

number of types of pieces that implies a great total number m of pieces. The energy of the system has more

local minima that means that the SA method can generate a large number of infeasible solutions. This

remark applies also to the unconstrained case where, in addition, each type contains more pieces than in the

constrained one since the bound associated with each type of pieces is represented by the natural bound

bðL=2r‘ÞðH=2r‘Þc. This last fact draws an explanation for the slight superiority of the constrained case to the

unconstrained one.

3.1.2.2. Comparisons with the methods of Beasley, Albano–Sapuppo, and Haims–Freeman. We have already

mentioned that we treat a problem that consists of maximizing the surface covered by a cutting pattern. The

pattern is represented by a vector ðx1; . . . ; xnÞ, where x‘ is the number of times that type ‘ appears in this

solution. Table 3 shows the percentages of the surface covered by the different methods (i.e., the surface

covered, supposing that the surface of R is of 100 units); the symbol * means that the corresponding
Table 2

Percentage of the feasible solutions (output of Algorithm 1)

The CC problem G1 G2 G3 Average over groups

Constrained version 83.75 76.25 75 79.33

Unconstrained version 70.63 67.5 61.50 66.54

Average over versions 77.19 71.875 68.25 72.935

Table 3

Percentage of the surface covered by the different algorithms (the output considered is the one of Algorithm 2)

Group Constrained case Unconstrained case

FSA Algorithm of [3] Algorithm of [2] FSA Algorithm of [13]

G1 69.32 63.25 63.78 72.07 68.17

G2 73.49 65.19 65.99 80.51 74.43

G3 77.37 * 67.68 83.32 *

Average 73.39 64.22 65.82 78.63 71.30

Table 4

Execution times (in minutes) of the tested methods (SA is Algorithm 1)

Group Constrained case Unconstrained case

SA Algorithm of [3] Algorithm of [2] SA Algorithm of [13]

G1 55.04 65.07 62.31 84.14 10.47

G2 170.38 208.56 192.23 292.12 21.58

G3 357.39 * 401.52 566.58 *

444 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
algorithm is not able to solve this type of instances (on our machine) because memory requirements are too

large.

As one can see, Algorithm 2 is superior to the other methods giving, in average, a covering greater

than 73% for both constrained and unconstrained cases and for all groups, while the surface usage of

the other algorithms is less than 66% for the constrained case and less than 71.50% for the uncon-

strained one. Moreover, note that the method seems to be more efficient in unconstrained case than in

the constrained one. This is due to the fact that since for the latter case the number of pieces available

is greater than for the former one, more pieces can be placed in R, covering so a larger part of its
surface.

We also note that, for all the tested algorithms, the surface covering increases with the size of instances.

Concerning Algorithm 2, this phenomenon is due to the fact that the transformations (T1) to (T5) described

in Section 2.4 make the introduction of small pieces around the big ones easier and this reduces the residual

waste.

Table 4 shows the execution times (in minutes) of the different algorithms on the several types of in-

stances. The average execution time for the Algorithm 1 is about 70 min for G1, about 3.85 h for G2, and

about 7.7 h for G3. For the constrained case, Algorithm 1 is very efficient in time and faster than the al-
gorithms of [3] and [2]. We think that an important factor explaining this superiority is the existence of the

upper bounds bi, i ¼ 1; . . . ; n, that reduce duplications of the pieces. On the other hand, in the uncon-

strained case, Algorithm 1 is considerably time consuming, and in any case, much slower than the algo-

rithm of [13]. This is due to the lack of bounds that allows consideration of a more important number of

duplicate pieces. We also observe some superiority of the algorithm of [2] to the one of [3]. Very likely, this

is due to the fact that the displacements and rotations performed produce in step 2 an initial feasible

solution better than the solution produced by the latter. Achieving of such solution shortens the size of

the tree constructed in step 3.

3.2. Second series of experiments

We now further confirm the efficiency of our method by testing it on instances for which optimal, or

near-optimal solutions are known. We note here that for all the experiments that will be described in the

sequence, the method used is Algorithm 1. More precisely, our SA-method has always computed feasible

solutions in the interior of R; the cycles intersecting its edges have simply been removed.

3.2.1. The method of Stoyan–Yaskov

As we have already mentioned, [16] deals with the circular strip-packing problem. In this paper, a set of

different circular pieces are considered, dimension H is fixed, authors try to minimize L.
For the tests of this section, the inputs of Algorithm 1 are the diameters of the pieces of [16] and the

dimensions of the optimal plate: H (fixed in [16]) and L (the output of [16]). Our objective is to feasibly place

cycles of [16] in such a way that the surface of the plate of dimensions ðL;HÞ covered by them is as large as

possible.

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 445
Professor Y.G. Stoyan has sent us two sets of tests. The first one includes two tests with the following
characteristics:

1. in the first test, 100 circular pieces of diameters varying from 1.018 to 4.3694 and a dimension H ¼ 19 are

given; the least length L, such that all the pieces given are feasibly placed in a plate R ¼ L� H , is

L ¼ 38:647179; the usage of the plate in [16] is 82.24%; our inputs here are the diameters of the pieces

and the dimensions H ¼ 19 and L ¼ 38:647179;
2. in the second test, 100 circular pieces of diameters varying from 1.066 to 4.3728 are to be placed to a

plate whose height is fixed to H ¼ 15; the least length L such that all the pieces given are feasibly placed
in a plate R ¼ L� H is L ¼ 38:0465; the usage of the plate is 82.22%; as previously, our inputs are the

diameters of the pieces and the dimensions of the final plate H ¼ 15 and L ¼ 38:0465.

A summary of the results obtained for the first set of tests is presented in Table 5. The approximation

ratio of the third line is the ratio of the usage (%) of Algorithm 1 to the usage (%) of the algorithm of [16].

The second set of tests includes four tests with the following characteristics:

1. inputs: number of circular pieces: 20, H ¼ 8:5 (the fixed dimension);
outputs: L ¼ 14:895, coverage: 81.597%;

2. inputs: number of circular pieces: 25, H ¼ 9 (the fixed dimension);

outputs: L ¼ 14:93, coverage: 81.898%;

3. inputs: number of circular pieces: 30, H ¼ 9:5 (the fixed dimension);

outputs: L ¼ 17:491, coverage: 83.144%;

4. inputs: number of circular pieces: 35, H ¼ 11 (the fixed dimension);

outputs: L ¼ 24:355, coverage: 81.697%.

A summary of the results obtained by Algorithm 1 for the second set of tests is given in Table 6. Here

also the approximation ratio of the third line is the ratio of the usage (%) of Algorithm 1 to the usage (%) of

the algorithm of [16].

For more details about the experiments performed as, for example, the placement of the pieces in the

solution computed by Algorithm 1, expressed by means of the coordinates ðxi; yiÞ of their centers, or the
Table 5

The first set of tests with the method of [16]; by SA we denote Algorithm 1

ðL;HÞ ¼ ð38:647179; 19Þ ðL;HÞ ¼ ð38:0465; 15Þ
SA Algorithm of [16] SA Algorithm of [16]

Number of pieces placed 91 100 92 100

Usage (%) 79.453 82.24 80.208 82.22

Approximation ratio 0.966 1 0.9755 1

CPU time (s) 174 159

Table 6

The second set of tests with the method of [16]; as in Table 5, by SA we denote Algorithm 1

ðL;HÞ (14.895,8.5) (14.93,9) (17.491,9.5) (24.355,11)

SA [16] SA [16] SA [16] SA [16]

Pieces placed 19 20 23 25 28 30 33 35

Usage (%) 69.908 81.597 65.385 81.898 74.357 83.144 71.796 81.697

Ratio 0.857 1 0.798 1 0.894 1 0.879 1

CPU time (s) 36 49 42 121

446 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
pieces that have not been placed (with respect to the corresponding solution of [16]), the interested reader
can contact the authors of this paper.

3.2.2. SA and the strip-packings of Graham–Lubachevsky

In [12], authors consider disks of the same diameter. They fix a number of cycles and a diameter, and

search for the side length of the smallest square that contains the disk centers. Here, inputs are the diameter

of the cycles and their number; the output of each packing is the parameter m, i.e., the ratio of the disk

diameter to the side length of the smallest square (called Graham–Lubachevsky square in what follows) that

contains the disk centers.
In order to follow a protocol similar to the one of section, we had to determine the dimension L of the

Graham–Lubachevsky square R containing these disks. Next, we used L and the diameters of the cycles as

inputs, and we computed the number of cycles feasibly packed in R. All cycles having the same radius, there

exists a direct relationship between their number and the surface covered.

Since we have no numerical data for the results of [12], we have created them based upon some of the

Figures 2.1–2.9 (pp. 5–13) of the paper. This was somewhat awkward, and for reasons of accuracy of our

input-data, we have chosen some figures where the packing of the cycles was ‘‘convenient’’. Any of the

packings given in [12] can be seen as a matrix whose inputs are the cycles packed. We have chosen packings
where the centers of the cycles of the first and last column and row of this matrix lied on the four edges of

the Graham–Lubachevsky square. For any of these packings, we have proceeded as follows:

• we have fixed the radius r of cycles to be equal to 1;

• we have determined the Graham–Lubachevsky square of side length 2r=m and have set L ¼ H ¼
ð2r=mÞ þ 2 ¼ ð2=mÞ þ 2 (L and H are the dimensions of the plate considered);

• we have run Algorithm 1 with inputs identical circular pieces with r ¼ 1 and with L as determined in the

item just above.

We have performed five tests refereed, in what follows, by the number of cycles packed, the value of m,
the figure number and the page number in [16]:

Test 1: 25 disks, m ¼ 0:25 (first sub-figure of Figure 2.2, p. 6);

Test 2: 51 disks, m ¼ 0:16561837431260 (second sub-figure of Figure 2.7, p. 11);

Test 3: 52 disks, m ¼ 0:16538623796964 (third sub-figure of Figure 2.7, p. 11);

Test 4: 56 disks, m ¼ 0:15615650046215 (sixth sub-figure of Figure 2.7, p. 11);
Test 5: 72 disks, m ¼ 0:13541666666667 (fifth sub-figure of Figure 2.8, p. 12).

The results for the five tests just described, as well as the sides of the squares that we have computed, are

shown in Table 7. More details about the placement of the pieces in the solution computed by Algorithm 1

(coordinates ðxi; yiÞ of their centers in the plate) are available; the interested reader can contact the authors

of this paper.
Table 7

Number of disks placed by Algorithm 1 and the corresponding patterns of [12]; the disks are supposed to be of radius 1

L Algorithm 1 Packing of [12]

Test 1 10 25 25

Test 2 14.076 52 51

Test 3 14.093 52 52

Test 4 14.807 52 56

Test 5 16.769 75 72

M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448 447
As one can see, the results of Algorithm 1 coincide with the results of [12] for tests 1 (25 disks) and 3 (52
disks). For test 4 (56 disks in [12]), the result of Algorithm 1 is inferior to the corresponding result of [12],

while for tests 2 and 5 (51 and72 disks in [12], respectively) the inverse situation is produced. Dealing with

test 5, it is mentioned in [12] that their pattern does not represent the best possible packing; hence, our

method brings to the fore a better one. From the coordinates of the centers of the disks in the square, we

have a strong intuition that the packing computed is (if not optimal) very near to the optimal one. Test 2 is

even more interesting and intriguing, since the corresponding pattern is conjectured to be optimal in [12].

We presently have no sufficient elements to privilege the one or the other result. It is likely that the decoding

of the corresponding figure of [12] (second sub-figure of Figure 2.7, p. 11) has introduced some errors to the
computation of L. We have considered that the centers of the cycles of the two extremal cycle-columns lie

on the two horizontal edges of the Graham–Lubachevsky square. But it is impossible to visually detect

from the respective figure whether disk centers lie exactly on the edges of the Graham–Lubachevsky square

or whether they were slightly moved to the right or to the left. In such case, this displacement together with

the rounding of the quantity 2=m could introduce some error in the computation of the dimensions of the

square, and therefore, an error on the computation on the number of disks feasibly placed in the real

Graham–Lubachevsky square. So, further comparisons of our method with the results of [12] have to be

done. They are actually in progress.
4. Conclusion

We have presented a SA method for solving both unconstrained and constrained circular cutting

problems. The approach used is principally based upon an energy function that, when it becomes minimum,

provides solutions composed by a set of pieces concentrated at the bottom-left corner of the initial rect-

angle. Computational results show that the approach presented is able to produce good solutions when
compared with different approaches of the literature. Experiences with examples taken from [16,12] further

confirm its efficiency. Its behavior with respect to the patterns presented in [12] merits further depthening

and such a work is actually in progress. Finally note that no post-processing has been applied in the results

of the second series of tests (taken form [16,12]), except of removal of cycles intersecting the right edge of

the plate.
Acknowledgements

The pertinent suggestions and useful remarks of three anonymous referees largely contributing in the

improvement of the impact, the scientific quality, the legibility and the presentation of this paper are

gratefully acknowledged. Many thanks to Professor Y.G. Stoyan for having provided us with numerical

data and results from his nice work [16] on strip-packing.
References

[1] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, a Stochastic Approach to Combinational Optimization and

Neural Computing, John Wiley & Sons, Chichester, UK, 1989.

[2] A. Albano, G. Sapuppo, Optimal allocation of two-dimensional irregular shapes using heuristic search methods, IEEE

Transactions on Systems, Man, and Cybernetics 10 (5) (1980) 242–248.

[3] J.E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure, Operations Research 33 (1) (1985) 49–64.

[4] N.E. Collins, R.W. Eglese, B.L. Golden, Simulated annealing, an annotated bibliography, American Journal of Mathematical and

Management Sciences 8 (1988) 209–307.

448 M. Hifi et al. / European Journal of Operational Research 159 (2004) 430–448
[5] M.H. Correia, J.F. Oliveira, J.S. Ferreira, Cylinder packing by simulated annealing, Pesquisa Operacional 20 (2) (2000) 269–286.

[6] K.A. Dowsland, Palletisation of cylinders in cases, OR Spektrum 13 (1991) 171–172.

[7] K.A. Dowsland, W.B. Dowsland, Solution approaches to irregular nesting problems, European Journal of Operational Research

84 (1995) 506–521.

[8] H. Dyckhoff, A typology of cutting and packing problems, European Journal of Operational Research 44 (1990) 145–159.

[9] H.J. Fraser, J.A. George, Integrated container loading software for pulp and paper industry, European Journal of Operational

Research 77 (1994) 466–474.

[10] J.A. George, J.M. George, B.W. Lamar, Packing different-sized circles into a rectangular container, European Journal of

Operational Research 84 (1995) 693–712.

[11] P. Gilmore, R. Gomory, The theory and computation of knapsack functions, Operations Research 14 (1966) 1045–1074.

[12] R.L. Graham, B.D. Lubachevsky, Repeated patterns of dense packings of equal disks in a square, The Electronic Journal of

Combinatorics 3, 1996 Report #16.

[13] M.J. Haims, H. Freeman, A multistage solution of the template-layout problem, IEEE Transactions on Systems, Man, and

Cybernetics 6 (1970) 145–151.

[14] M. Hifi, V.T. Paschos, V. Zissimopoulos, Circular cutting problem: A simulated annealing approach, Technical Report 94.15,

CERMSEM, Universit�e Paris I, 1994.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing

machines, Journal of Chemical Physics 21 (6) (1953) 1087–1092.

[16] Y.G. Stoyan, G.N. Yaskov, Mathematical model and solution method of optimization problem of placement of rectangles and

circles taking into account special constraints, International Transactions of Operational Research 5 (1) (1998) 45–57.

[17] P.E. Sweeney, E.R. Paternoster, Cutting and packing problems: A categorized, application-oriented research bibliography,

Journal of the Operational Research Society 43 (7) (1992) 691–706.

	A simulated annealing approach for the circular cutting problem
	Introduction
	A simulated annealing algorithm for the circular cutting
	Some definitions and notations
	An energy function associated with the circular cutting
	Initial solution
	Generation of a neighboring solution
	Transformation (T1)
	Transformation (T2)
	Transformation (T3)
	Transformation (T4)
	Transformation (T5)

	Outline of the simulated annealing algorithm

	Computational studies
	First series of experiments
	Problem generation
	The experimental results
	On the feasibility of Algorithm 1
	Comparisons with the methods of Beasley, Albano-Sapuppo, and Haims-Freeman

	Second series of experiments
	The method of Stoyan-Yaskov
	SA and the strip-packings of Graham-Lubachevsky

	Conclusion
	Acknowledgements
	References

