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On the Approximation of NP-Complete Problems
by Using the Boltzmann Machine Method: The
Cases of Some Covering and Packing Problems

V. Zissimopoulos, V.Th. Paschos, and F. Pekergin

Abstract—We describe a Boltzmann Machine (BM) Architecture in order
to solve the problems of Maximum Independent Set (IS), Set Partitioning
(SPP), Cligue, Minimum Vertex Cover (VC), Minimum Set Cover (5C),
and Maximum Set Packing (SP). We evaluate the maximum and the
average error of the method where the error is defined as the ratio of
the cardinality of the obtained solution for an instance with respect to the
optimal one. Moreover, we compare our results with the results obtained
from the implementation of the heuristic described in [6]. Our model
treats the general case of all these problems that is the case when costs
are associated with the data (vertices or subsets) describing them, the
unweighted case becoming a particular case in our approach. As we show
it succeeds to find optimal solutions for a large percentage of the treated
instances, for the rest providing a very good performance ratio.

Index Terms— Approximation algorithms, Boltzmann machine, com-
binatorial optimization, consensus function, feasibility, heuristic, neural
network, NP-complete.

I. INTRODUCTION

In this paper, we present a BM architecture [1], [2] for solving SPP,
SP, IS, and its complementary VC as well as the Clique problem
and we discuss a possible way for solving SC by using the same
model. The described model concerns the general case where costs
are associated with each variable (each vertex or each subset) and
deals with unweighted cases of each of these problems as particular
cases. Connections are established to express local constraints, that
is, the desirability about incompatible individual states of connected
units. Inhibitory connections expressed by negative weights are used
to imply antagonistic competition between linked units appearing in
a final solution. Globality about constraints satisfaction is considered
through the values of the individual weights. These values are chosen
such that the global energy of the network reflects the extent of
the consensus of the units states. In a general case, approaching an
optimization problem by a BM requires local optima of the networks
global energy to be feasible solutions of the implemented problem
[1]. Moreover, the order induced by the optimization function on
any couple of feasible solutions is required to remain the same for
the values of the consensus on the corresponding configurations of
the BM. Consequently, since we know that a BM with symmetrical
strengths always converges to a local optimal (maximal consensus
or minimal energy) ([1], [5], [10], [11]), we can obtain, obviously,
a feasible solution, and if a mechanism such as simulated annealing
[7] is applied to escape from a local optimal to a better local optimal
(higher maximal), we are able to obtain a better feasible solution.
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Thus, if the BM is stabilized over a configuration with the Maximum
Consensus, the optimum solution for the optimization problem is
obtained. Unfortunately, for an optimization problem it is not evident
how to obtain a set of weights leading to a global energy with the
previous interesting characteristics. We mention here that in [1], IS
is also treated but only in the unweighted case. In this paper, we
generalize this construction for the case where costs are associated
to each vertex of the graph: We prove that the proposed weights
are “well defined,” and lead to a suitable global energy function.
Moreover, our procedure permits us to “see” the case of cardinality
as a particular case.

We treat firstly VC and IS. These two problems are known to be
equivalent with respect to their complexity [4], [6]. In fact, there is
a very simple relation between the cardinalities of a VC and an IS
in a graph. Given a graph G, an IS is the complement of a VC with
respect to the vertex set of G. Thus, any algorithm that solves the IS
gives also the solution for VC by a simple subtraction. Moreover, a
method solving these two problems can also solve the Clique Problem
because given a graph G, a set of vertices constituting an independent
set on G induces a subgraph that constitutes a clique on G where G is
the complement of G constructed as follows: (u, v) is an edge of G iff
u and v are not adjacent in G. Moreover, SP and IS are isomorphic.
Thus, the method for IS is immediately applicable to the case of
SP. For SPP it is proved that this problem (with or without costs)
is equivalent to an IS with costs under the condition that the former
one is feasible. Finally we discuss the case of SC. We show that even
SC can be approached by the BM model presented in this paper. We
test the performance of our model by giving simulation results for
SPP, IS, and VC. Of course, the model can be immediately used,
as we have already discussed, to reflect also the cases of SP, SC,
and Clique.

This paper is organized as follows. In Section IT we present
the definitions of the examined problems. We discuss also some
interesting properties of the representations adopted. In Section III,
we discuss all the details of the neural network architecture of our
BM model. In the same section also we prove some nontrivial
equivalences between the problems we deal with, and we study the
properties of the consensus function defined to deal with our model.
Finally in Section IV, we present a summary of the obtained results
and we make comments about them. We use many performance
measures to characterize the effectiveness of the designed BM. These
measures give us several kinds of information such as the ratio of the
obtained solutions with respect to the optimal ones, the percentage of
the optimal solutions obtained by using the proposed method, etc. In
the cases of VC and IS we present also information about the results
provided by the heuristic of [6].

II. THE PROBLEMS: DEFINITIONS AND
ADOPTED REPRESENTATIONS

In what follows we give the definitions of the problems as integer
linear programs. The definitions for the unweighted cases can be
found in [4]. In the sequel, all vectors are column vectors. In what
concerns VC and IS we consider a graph G = (V, E), while for SPP,
SP, and SC we consider the couple 8, @, and where S is a family
of subsets of the set Q.

0018-9340/91$01.00 © 1991 IEEE



1414

Independent Set:
ma.xz:c,-mj subject to Za.jz, <l
=1
where i = 1,---,m, z; € {0,1},j =1,---,n,m = |E|, n = |V|,
a with a;,; = 0 or 1 the edge-vertex incidence matrix of G and
¢ = (c;) the profit vector or cost vector. If ¢; = 1, j = 1,+--,n, we
look for a subset of nodes which are not adjacent in G (cardinality
case).
Vertex Cover:

1=1

n

mianJ.-xj subject to Za.-jxj >1

7=1 j=1

where i = 1,---,m, z; € {0,1}, j=1,--+,n,m = |E|, n = |V|,
a with a;; = 0 or 1, the edge-vertex incidence matrix of G and
¢ = (e;) the cost vector (cardinality case whene; = 1, = 1,:--, n),
The clique following the discussion of the previous section is defined
similarly to IS.

Set Partitioning:

mine’ @ subject to Az = ¢

where z; € {0.1}, j = 1,---,n, |S] = n, |Q| = m, ¢” is the
transposed vector of the cost vector, z is the solution vector, e is
the m-dimensional unit vector, and A = (a,;), i = 1,---,m and
ai; = 1if g € S; and 0 otherwise,

Set Packing:

maxec’ x subject to Az < e

where z; € {0,1}, j = 1,---,n, |S| = n, |Q] = m, ¢’ is the
transposed vector of the cost vector, = is the solution vector, e is
defined as above, and A = (a;;), i = 1,---,m, with a;; = 1 if
¢i € S; and 0 otherwise.

Set Cover:

minc’z  subject to Az > e

where z; € {0,1}, j = 1,+--,n, |S| = n, |Q| = m, " is the
transposed vector of the cost vector, x is the solution vector, e is
defined as above, and A = (ay;), i = 1,---,m, with a;; = 1 if
¢: € S; and 0 otherwise.

For the instances of SC, SP, and SPP we construct the following
characteristic graph.

Definition 1: The characteristic graph B = (S, Q, E) of an instance
of SC (resp., SP, SPP) is a bipartite graph defined as follows:

S: the vertex set of B corresponding to the family of subsets, Q:
the vertex set of B corresponding to the set @ and E = {(Si,q;) :
q; € SiAg; € Q}. 0

Moreover, for those problems we can construct another kind of
characteristic graph, called the intersection graph.

Definition 2: Given a graph B (definition 1) that characterizes an
instance of SC (resp., SP, SPP) the intersection graph Gs = (S, E, [)
is constructed as follows:

S: The vertex set S of B, E = {(s;,s;) : there is a path [S;, g,
S;]in B}, I: a function from E(G's) to Q(B) such that if (s;, s;) €
E(Gs) and [S;, qx. S,] is a path of length two in B then I((si, 8,)) =
k- 0

Of course, as there can exist more than one path of length 2
between two given vertices of B, G's is rather a multigraph. In the
case of SP and SPP, as we can see, we do not need to use the labeling
function and thus we consider graph G's as an ordered pair (S, E).
For the relation between SP and IS the following proposition holds
(8]

Proposition 1: When an instance of SP is represented in terms of
G, then each solution of SP is exactly an independent set of Gs.
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III. NEURAL NETWORK ARCHITECTURE

Let G = (V,E) be an undirected graph where V = {u;},
1 < i < n is the set of vertices and E is the set of edges.
The neural network is constructed to be ismorphic to the graph
G. Each vertex corresponds to a neuron i which is in a state
u; € {1,0} at cach time step ¢t € {0,1,:-}. If there is an edge
between vertices v; and v; then the corresponding neurons i and
J are linked with an appropriate strength w;;, otherwise they are
not linked or the strength is zero. At each neuron i, there is an
external or bias connection expressing the desirability for this unit
to be included in the final solution. At any time a configuration
of the network, i.c., a global state vector, determines a solution of
the implemented combinatorial optimization problem. The connection
strengths, imposing local constraints, express the compatibility of two
linked units to be both included in the final solution. The values of
the connection strengths are chosen in such a way that they ensure
mutual exclusion between adjacent units and define the network’s
energy in a manner that this energy characterizes a suitable overview
about global satisfaction of the constraints and global optimality of the
optimization function. The network’s energy is a function of the states
of units and of the strengths on the links between them. It expresses an
overall measure of the consensus reached by the states of the units of
the BM. For each configuration k of the BM this consensus function
C' is defined as follows: C'(k) = 3, wi;uiu;, where i and j range
over all pairs such that there exists a connection between units i and
J. The appropriate values of the strengths, which reflect the suitable
global overview, should be chosen such that the above consensus
function C is feasible, i.e., all local maxima of the consensus function
should correspond to feasible solutions (feasibility). Additionally,
the consensus function has to be order preserving. This means
that, for two configurations of the BM which represent feasible
solutions, the optimization function and the consensus function have
the same order. The feasibility condition of the consensus function
implies that when the BM is stuck in a local optimum, a feasible
solution is always found. The order preserving condition implies
that when the BM reaches the maximum consensus (near-maximum),
the optimal (near-optimal) solution is found. Futhermore, in order
to make the BM escape from locally optimal configurations, a
stochastic acceptance criterion is used, allowing the units to adjust
their states to those of their neighbors. The generation mechanism
of new configurations used here permits only one unit at a time
to change its state (sequential BM). Certainly, since the network
is not fully connected, a limited parallelism, where nonadjacent
units may change their states in parallel, could be applied without
introducing erroneously calculated state transitions. This limited
parallelism in synchronous or asychronous mode would conserve
asymptotical convergence to the set of optimal configurations [1],
[3]. The consensus of the BM for each new configuration, by
changing the state of a unit i, is completely determined by the states
of the neighbors of the unit i and the corresponding strengths, since
[according to the definition of C'(k)] the difference is calculated to
be AC = (1 - 21.1,}[2J wiju; + w.,] where u; = 1 if current state
of unit ¢ proposed to be changed is “ON” and u; = 0 otherwise, and
all j range over the units connected with unit i. Consequently the
adjustment of each unit and the evaluation of its state transition can
be performed locally, implying a potential for parallel execution. If
the consensus for a given configuration of the BM does not increase
by a single state transition AC' < 0 for all units, then the BM
is lying on a local maximal. The updating rule UR, reflecting the
typical sigmoid response of neurons in a (biological) neural network
is selected as follows: P (state u; is changed) = ———Jxz77 . The term
AC stands for the difference in consensus between two consecutive
configurations. The parameter T is a control parameter. In this work
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the following law is used: T = iyzty, Where t = f(n) and

f(n) = f(n—1)(1+ rate) with f(0) = 1.0, n = 1,2,--- and
rate is a small suitable parameter to control the decrement of T. The
value of this parameter permits us to choose short or long decrements
which in relation to the length of the generated Markovian chains will
significantly influence the quality of the solutions and the required
computation time. The previously discussed model can be used for
the examined problem as follows. We consider the graph G that
represents the intersection graph in the cases of SPP, SP, and SC
problems. In the cases of IS and VC, we consider directly the initial
graph. We construct the BM network to be isomorphic to this graph.
Therefore, each unit corresponds to a subset for the SPP, the SP and
the SC or to a vertex for the IS and the VC.

The Independent Set Problem: The external connections are of
positive weights, the connections between units which represent
linked vertices in G are of negative weights, while the nonlinked
vertices in G are not connected (or of zero weights) in the BM model.
More precisely the connection matrix is as follows:

ifi=j and

Wi; =G
ik

where &;; = 1 if {i,j} € E and 0 otherwise. In the above equation,
¢, is the cost associated to the vertex i and ¢ is a very small real
positive parameter whose importance is discussed in remark 3.

Remark 1: The weights defined above remain valid for the un-
weighted case. It is sufficient to put ¢; = 1,7 = 1,2,---n and we
will find the same weights proposed in [1]. The solution vector of IS
is equal to the vector state of the BM.

Remark 2: It can be proved that the proposed weights are “well
defined” and lead to a consensus function having the good properties,
discussed in the previous section.

Theorem 1: When dealing with IS the stable states of the network
with the above connection matrix correspond to solutions which are
feasible and maximal.

Proof: a) feasibility: Let us consider a configuration k of the
BM inducing a nonfeasible solution z*. It can be proved that this
configuration is not a local maximum. In fact, since z* is not feasible
there are adjacent units i and j, both on state “ON.” By changing the
state of one of them, say i, the consensus increases. In fact,

w;; = —[max {ci.c;} + €]bi;

AC(k) = C(k : u; off) — C(k : u; on)

I=1,1%:

Iulf) 2 '—(urll + "-’lj_)

= —(wii + [- max {wii,w;;} =€) 2 >0

b) maximality: 1f +* is not a maximal IS, then there is a nonac-
tivated unit i not adjacent with any activated unit. By changing the
state of i the consensus increases since AC' = w;; > 0. a

Theorem 2: The consensus function derived by the connection
matrix IS is order preserving.

Proof: For any configuration of the BM inducing a feasible
solution z*, since nonadjacent units are both “ON,” the consensus
function is written as

C-‘(k}=zn.'.-.-v-.2-+ i iw.‘,u.—u,

1=1 i=1la<y =1
n n

= E Wi, = E Cylly
=1 =1

which is identical to the cost function f(z) = 3 1, ci®i. O
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Remark 3: The parameter ¢, which appears in the definition of
the connection matrix of IS, validates Theorem 1, while it is also
significant for the overall behavior of the network. When small values
are attributed to it, a weak level of inhibition between the connected
units is determined and so, more freedom is allowed to all units
to pass through the firing state according to the sigmoid shape of
the UR. Therefore, the capture of high consensus states is more
likely to happen. On the contrary, when large values are allowed
to the parameter ¢, then strong inhibitions are imposed, and thus the
possibilities for some units to fire, according to UR, are reduced. As
a result of this, the network gets quickly stuck to a local maximum
by satisfying constraints of problems rather than optimality of the
objective function. A tradeoff between the two above cases would be
to start with very small values and progressively, as the network has
captured information about the objective function, allow for small
increments to the values of €.

The Set Packing Problem: As was already mentioned the network
is constructed to be identical to the intersection graph, and units to
represent the subsets. If ¢ is the cost for the subset Si, for any

i = 1,-++,n we consider the following connection matrix:
Wiy = ¢ if ¢ =2
w;; = —[max{ei.c;} +€di; if i #J,

where 6;; = 1 if AT A; > 1, and 0 otherwise. A; and A; are the ith
and jth column vectors, respectively, of the m x n matrix: A = (aij)
with a;; = 1 if ¢; € S; and 0 if ¢ ¢ S, and € a small positive
parameter (remark 3). The solution vector is again equal to the vector
state. The choice of such a set of weights is justified through the
following considerations: 1) The SP is equivalent to IS through the
intersection graph (Definition 2) with the initial costs associated with
each vertex, i.e., a solution x is a feasible (optimal) solution for SP
if and only if it is a feasible (optimal) solution for IS (Proposition 1),
2) the weights as it has been shown above are well defined since the
two problems have the same set of optimal solutions.

The Set Partitioning Problem: The network is again isomorphic to
the intersection graph, without labels and with units representing the
subsets. We consider the following connection matrix:

1l

cle|Si|—ci ifi=j,
= [ma.x{rreis.-l —ciyclelS;| — r'_?} + 5]5.3-
if €29

Wi;

“—'.l'} —

where &, ; = 1if ATA; > 1, and 0 otherwise and where c” is the
transposed cost vector, e is the n-unit column vector and A; and A;
are the column vectors of the m x n matrix A = (a;;) with a;; = 1 if
qi € S; and 0if g; & S;, |S:| is the cardinality of subset 5, and ¢ is
a small real positive parameter (remark 3), The solution vector again
equals the vector state of the BM. The basic motivation in choosing
such a connection matrix is due to the equivalence of the (costed)
SPP and the costed 1S. We prove below that the SPP is equivalent
to an SP with the same set of optimal solutions, if the first one is
feasible. Of course, the resulting SP is equivalent to the IS problem.
Let us consider two solution spaces (2 and ¥ defined as follows:

Q = {z € {0,1}" such that Az < e},

T = {z € {0,1}" such that Az = e}
where ¢ is the m-dimensional-unit column vector. Also we define
B =y ol

Lemma 1: If x €
©cT Ay — cTy.

Tandy € @ — T then Oe’ Az — 'z >
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Proof: We have ©[e” Az — eTAy] > © since one component

at least of Ax — Ay is 1. Moreover, ¢’z — ¢T y<c‘ LS ] O

Theorem 3: Consider the m xn binary matrix A ve S (i S 1) €

R™ and assume that the set X is not empty. Then, the following
problems are equivalent.

SEE: mi-n{cr.x}, T E _Z
SE.- max{@cTA.r - cT.r-}.
SP' : min{(rT:r — el A+ em},

z € 1,

T € Z
Proof: From Lemma 1 it is obvious that the solutions of SP
are in . Moreover, by the definition of ¥ we have obviously:
©e” Az = ©m. Thus, SP and SP’ are equivalent in the sense that
the vectors of ¥ that maximize the function ©m — ¢!z minimize
also the function ¢’ .
For the equivalence of SPP and SP' we have «nmply to observe
that because of the equality (—)er Az = ©Om, SP' becomes exactly
min e’ b R = )|

Now, we proceed. as in the.case of SP. We construct the associated--

intersection graph (Definition 2) without labels and we consider the
vertices to be costed by the new calculated values é; = O|S;| — ¢;
where |S;| = e” A;. Thus, if SPP is feasible, then the optimal solution
of the IS is also the optimal solution of the SPP. The significance of
the above connection matrix is highlighted by the theoretical results
that follow. In fact from these results it can be deduced that the
network’s energy has some “good” properties, that is, the energy
is always order preserving even if it is not always feasible. Let us
consider two conﬁgurations k and [ of the BM inducing the feasible
solutions =* and z' for SPP (and obviously for IS) and let us denote
by f and f the cost functions of the SPP and IS, respectively. Then
the following results can be proven.

Lemma-2: ¥ &
1) < 16 = f(*) > §(a).

Proof: f(z*) < f(.t,‘l) => eTak < Ty > am - (‘T.r" >
Om — cTz! = Bedzk — cz* > Oeda' — ca' = e > &' =
f(z*) > f(=Y). 0

Proposition 2: 1f one of two feasible solutions of the IS, say
z*, is also feasible for SPP and the other one, z', infeasible, then
f(z*) > f(a'). This means that, the configurations which are
feasible solutions of the SPP are of higher maximum independent
cost value, with respect to any one which is not feasible.

Proof: Immedialely from Lemma 1. O
___Proposition 3: 1f z* and a' are feasible solutions for the IS, but

infeasible solutions for the SPP and o and 3 denote the number of
covered basic set’s elements, by the above solutions, respectively,

b (68 <10 > 01 = 702> 112

Proof: [(f(x )<f( ))/\[r})f’i]:‘.‘r[[: =t <.cTzl) A
(a>d)]=-(—)a—r:r >95—CT.1"=>96 Axfi—clat =
QeT Az — Ta' = &Tzk > &7 =t = f(2*) > f(2'). ]

Thus, increasing maximum independent cost values, we improve
SPP’s partial solutions in a large sense. We can obtain either better
cost values and fewer covered elements, or worst cost values and
more covered elements, or better cost values and more covered
elements.

Theorem 4: Let us consider two configurations k and I of the
BM, inducing the two feasible solutions =* and z' of the SPP. Then
i ol A elz") > e(a').

Proof: The proof is due to Lemma 2 and Theorem 2. O

Thus, the consensus function is order preserving for the SPP. From
the above results we can conclude that the higher the local maxima
of the consensus function, the higher the obtained mamma 0f IS and
therefore the better the solutions of SPP.

k_and-z' are-feasible solutions-of -the-SPP--then: --
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Proposition 2, that only configurations with near-optimum consensus
will provide feasible solutions of the SPP. Also, by Proposition 3
and Theorem 2, we conclude that the higher the local maxima of
the consensus function, even when they do not represent feasible
solutions of the SPP, the better the partial solution of the SPP in
a large sense, that is either on cost improvemeni or on eiements
covering. Moreover, if a local maximal of the consensus function
provides a feasible solution for SPP, then any other higher local
maximal will also provide a better feasible solution for this problem
(Proposition 2 and Theorem 4). Finally, if the BM is stuck in a
(global) maximum, the best feasible solution of the SPP will be found,
if this one is feasible. (Theorems 2 and 3).

The Minimum Vertex Cover: The network is constructed to be
isomorphic to the initial graph. The connection matrix is the same
as that of IS and the solution vector equals to the complement
state vector (no firing units). This result is a consequence of the
complementation of the two problems. However, as was mentioned in
[9], a neural network approach for this problem by a model permitting
a cooperation between linked units (for “exampie the competitive
activation. method) would be. more.convenient. This. happens.for.the..
reason that both linked units could be winners and so included in the
final solution. The above remark becomes obvious on a triangle form
graph where two winners are required. But for problems like the IS
where only a winner is permitted among the two competitors, a model
like BM with inhibitory connections is more suitable. For the simple
example mentioned above one can easily see that the antagonistic
competition of the units on a BM will give only one winner, and
thus two winners for the VC.

The Set Cover Problem: We consider again the intersection graph
but now with labels. We assume that each instance describing a
SC does not include elements which belong only to one subset. If
this was the case, the subset containing them should be included
in the final solution. Thus, we_should either exclude them from the.-
instance or associate with them very small costs in order to favorize
their appearance in the final solution. The necessary preprocessing is
described as follows [8].

1)

2

We construct the intersection multigraph G's (Definition 2.)
For every k = 1,---,n we remove all but one label. If after
the deletion there are edges without any label we remove those
edges too. Let G be the resulting graph.

3) Construct a BM by considering G's as the graph of a VC
problem.
4) Assign cost é; = ¢;/|S;| to each vertex.

The vector solution equals the complementary vector state. From
the discussion made in Section Il there is a one to one correspondence
between the labels of the edges and the edges themselves in G's. Thus,
by searching for a set of vertices that are adjacent to all the edges of
G's we find a set of vertices that also “sees” all the labels of G's
and therefore we have found also a set of subsets that covers all the
elements of Q.

IV. EXPERIMENTS AND RESULTS

Simulations have been performed for SPP on 50 instances, and
for IS and VC on 224 instances. The control parameter T was
initialized to 2.0 and the decrement was controlled by the parameter
rate defined in Section IIl. A very small value of the paramcter
rate leads to a slow decrement of the parameter 7" and so to
better results than a quicker cooling schema. The length of the
generated Markovian chains for each temperature is avoided to
be large in order to reduce the required computation time and
was fixed to be equal to the number of the model units. The
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TABLE 1
PERFORMANCE OF BM IN THE CAses oF IS anp VC
Initial Temperature To = 2.0 Heuristic
Rate 102 105 i 106

% of Opt. Sol. IS and VC 28.3 84.3 86.2 87.1 344

IS Average € (%) 9.9 1.5 1.4 1.3 8.4
Maximum € (%) 333 16.7 16.7 16.7 28.6

Average € (%) 7.6 0.94 0.90 0.73 6.4

ve Maximum ¢ (%) 40 10 11.1 10 222

was chosen to be equal to 0.1. This leads to a weak inhibition
between the connected units avoiding in this way quick convergence
of the network to a nonoptimal configuration which satisfies the
constraints. The results of these tests are significantly interesting
particularly in the case of a slow decrement of the control parameter
T. When dealing with IS and VC, feasible solutions have been
always produced. The examined instances have been generated as
follows, The cardinality of the vertex set V" for the small instances
were fixed to vary between 15 and 25. We have generated both
regular (with degrees varying from 2 to 6) and irregular graphs
(with maximum degree varying from 3 to 6). The edges for the
irregular graphs were randomly obtained by uniformly choosing
two distinct vertices (no loops) on V. The isolated vertices were
removed. The costs associated with the vertices were all equal to
one and the optimal solutions of the instances have been found
by exhaustive search. The big instances have been produced by
using small ones and by adding edges between the components in
such a way that the cardinalities of the optimal solutions for the so
obtained instances were equal to the sum of the cardinalities of the
solutions for the small graphs composing those big instances and
that big instances were not disconnected. When regular small graphs
were combined to produce a big one the resulting graph was quasi-
regular because the “articulation points” had their degrees increased
by one. For the big graphs the number of vertices varied between
50 and 100 while the number of edges varied between 80 and 180,
All the produced instances have been tested with different values
of the control parameter rate. Feasible solutions have been always
produced and 87.1% of the tested instances are always optimally
solved when rate= 10"°. A summary of the performance of our
BM model is given in Table I. The overall effectiveness of the
model can be characterized by comparing the percentage of the
optimum solutions obtained, the average relative error, as well as the
maximum error for different values of the control parameter rate, It
is immediately concluded the crucial importance of this parameter in
the whole effectiveness of the model. We mention that for the three
smaller values of rare depicted in the table (slow cooling schema)
the difference between the optimal solution and the one obtained by
the model was never greater than 1 in the case of irregular graphs
and than 3 in the case of regular ones. Moreover, for these values
(of rate) the obtained results (by the model) were always (on all
the treated instances) better than the ones obtained by the heuristic
of [6]. In Table I also, by using the same performance measures,
the performance of our model in the case of VC is depicted. We
note here that the same instances as in the case of IS have been
solved. To generate the small instances of SPP we have fixed the
cardinality of the set (Q as well as the cardinality of the family S. The
cardinality of each subset varies from 1 to 5. The elements of each
subset are uniformly chosen on the set [1,---,|Q|]. The produced
instances included at least one feasible solution and their density,
fraction of nonzero entries in the matrix describing the instance, is

about 6-8%. The optimal solution has been obtained by exhaustive
search. The big instances have been obtained similarly as above by
using the smaller ones. In order to preserve the connectivity of the
(equivalent) characteristic graph B (Definition 1) some subsets have
been added that contained elements from more than one set @ of
the small instances. The cardinalities of the optimal solutions of
the resulting instances were again equal to the sum of the optimal
solutions’ cardinalities of the small instances composing those big
instances. The costs associated with the subsets are taken equal to
one. The sizes of the so produced instances ranged between 20
and 50 elements for the set ) and between 30 and 100 for the
set (family) S. The performance of the model in the case of SPP
is summarized in Tables II, ITI, and IV. The whole behavior of
our BM is examined for different values of rate (Table II). The
percentage of the feasible solutions as well as the percentage of
the solutions not satisfying the covering property is presented. One
can remark that low values (slow decrements of the temperature)
when attributed to rate give a good behavior of the model. For
example, when rate is taken equal to 7 x 10~° then 70% of the
tested instances are solved with total satisfaction of the constraints,
the percentage of the optimal solutions being 28%. Moreover, in only
one instance over 50 examined ones, three elements left uncovered
(while, even this solution satisfies the packing property). In general
we note that small values of rate lead to a considerable reduction of
the number of “nonfeasible” solutions. This “nonfeasibility” appears
with respect to the covering property and even in this case the
number of the uncovered elements is very small. We remark here
that the “nonfeasible” solutions do not cover only between one to
five elements for sets of cardinalities 20—50 (Table IT). Furthermore,
the percentage of the optimal solutions obtained increases when
the temperature decreases slowly. In Table III the maximum and
average relative errors are depicted, when 0—4 elements are permitted
to be uncovered. In Table IV the average relative error as well
as the average number of covered elements are presented. These
measures are evaluated for the two smaller values of rate used
in the experiments. The results presented in the above tables refer
to a complete stabilization of the network. As we have already
mentioned, for a given temperature the equation UR and the one
expressing AC' are evaluated n times, where n is the size of the
problem. When the “slower” cooling schema was applied and for
a problem of 100 variables then covergence was attained at about
the 3000th value of temperature provided by this schema. As a
more “practical” estimation of the convergence time, the problem
admitting 100 variables needs about 3 h on a PC with a 386
processor.

V. CONCLUSIONS

The neural network model discussed here is based on a BM archi-
tecture, intended to solve approximately hard optimization problems
such as the Covering and Packing Problems. For all the five problems
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TABLE 11
PERFORMANCE OF BM IN THE CASE OF SPP
Initial Temperature T = 2.0 To = 5.0
Rate 10-% T%10=% 9x10-% 30~% Bx10-° 10—* 103 10+
Feasible Solutions (%) 68 70 56 54 40 28 14 10
Valid 1* 20 20 20 26 24 30 22 24
Partial 2T 6 8 16 14 28 34 34 30
i 3+ 2 2 4 2 4 6 20 28
olutions >4t 4 0 4 4 4 2 10 8
% Optimal Solution 28 28 30 28 22 10 2 2
*Number of uncovered eclements
TABLE III
RELATIVE ERROR FOR SPP
Initial Temperature Th =2.0
Rate 1086 7% 106

Average Error %

Maximum Error %

Average Error % Maximum Error %

44 9 44
44 7.6 44
44 8 44
44 79 44
44 * *

0 8.6
Elements not Covered Sl 8.7
<2 8.5
<3 8.7
<4 9
*No solution was provided with four or more uncovered clements

TABLE IV
FEASIBILITY RATIO AND AVERAGE RELATIVE ERROR FOR SPP

Initial Temperature Th =20
Rate 10-6 7x 1078
Average Error (%) 9.4 7.9
Average Covered Elements (%) 98.4 98.7

examined here the global energy is order preserving, that is when
the network is stabilized, the higher the local maximal, the better
the obtained solution. Moreover, for all but SPP cases, the energy is
feasible, that is a feasible solution is always found, when the network
reaches stability. In the case of SPP, this result is not always true.
However, if the maximum consensus is reached, then the optimum
solution for SPP is obtained. Moreover, the higher the local maxima
the higher the probabilities to obtain feasible solutions with reduced
cost. Generally, we obtain partial valid solutions (mutual exclusion
constraints satisfied) with few elements not covered. Concerning the
complexity of the model we point out that the necessary connections
are considerably reduced in the cases of SPP, SP, and SC, permitting
us to deal with large size problems involved in real optimization
applications.

The obtained results appear very promising, and one can deduce
that near-optimal solutions are provided by the model, when we deal
with instances of moderate sizes.

The obtained approximation ratio (fraction cardinality of the ob-
tained solution/cardinality of the optimal one even for the maximation
problems) for IS, SP, and Clique is always more than 0.833, (for
rate = 107°). For VC the experimentally attained ratio (when
rate = 107°) is equal to 1.1. Finally for SPP the error is less
than 1.44 (measured on the instances where the obtained solution
is feasible).
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