Linear time approximation schemes for parallel processor scheduling

Y. Kopidakis,
D. Fayard,

and

V. Zissimopoulos

Université de Paris Sud
L.R.I, CNRS-URA 410
Centre d’Orsay, 91405 Orsay, France
e_mail:kopidaki @Iri.lri.fr

Abstract

We present a general framework Jor approximation
schemes on parallel processor scheduling. We propose -
approximation algorithms for scheduling on identical, uni-
form and unrelated machines when the number of proces-
sors is fixed. For each of the three problems considered, we
perform grouping on job Processing times in order to pro-
duce a rransformed scheduling instance where the number
of distinct task types is bounded We optimally solve the
corresponding mixed integer program and we prove that the
optimal makespans for the initial and the transformed prob-
lems can differ at most by a Jactorof 1 +¢. The complexity
of all e-approximation algorithms is O(n), where n is the
number of jobs 1o be scheduled.

1 Introduction

The problem of scheduling parallel processors in order
to minimize schedule completion time has been extensively
studied in various formulations. We are interested in the
case where n independent tasks are to be scheduled on a
fixed number of processors m. We consider the following
classical NP-complete scheduling problems: identical pro-
cessors where task execution time is the same on any pro-
cessor (known as the multiprocessor scheduling problem),
uniform processors where task execution cost depends on
the computational speed factor of each processor and unre-
lated machines where the execution time of a task depends
on the processor in the general way.

In the study of an NP-complete problem, the strongest
possible type of result is an approximation scheme. An
€-approximation algorithm resolves the problem within an

0-8186-7683-3/96 $05.00 © 1996 IEEE

482

arbitrarily small precision ¢, fixed in advance as desired.
Formally, let 7 be the set of instances of a NP-complete
minimization problem. Let 7 € T and OPT(I) the value
of the optimal solution for I, We say that an algorithm A is
a polynomial time approximation scheme for the problem,
if givenany ¢ > 0: A(I) < (1+) OPI(N, MieZ
where A(]) is the value of the solution for I returned by
A in O(p(n)) time and p(n) a polynomial depending on
n. In addition, if algorithm A runs in O(p(n,%) time,
where p(n, 1) is a polynomial on both n and 1, we say
that algorithm A is a fully polynomial time approximation
scheme.

In this paper, we propose a general approximation frame-
work which we apply for each of the scheduling problems
considered when the number of processors is fixed. The time
complexity of the general approximation scheme proposed
is linear on the number of jobs to be scheduled. Although
approximation schemes exist for identical and uniform pro-
cessor scheduling in the general case, that is when we do not
fix the number of processors, the interest of our approach lies
in its asymptotically reduced time complexity. Furthermore,
the extension of the general framework to the problem of
unrelated machines, provides a significant complexity im-
provement compared to existing approximation schemes for
the case of fixed number of processors.

2 Multiprocessor scheduling

The problem of finding a minimum completion time
schedule of n independent jobs on m identical proces-
sors 1s one of the most well-studied NP-complete prob-
lems. In [9], Sahni presented a fully polynomial time
approximation scheme for fixed number of processors,
running in O(n(”%)’"']) time. The notion of dual ap-

proximation algorithms has been introduced by Hochbaum
and Schmoys [2] and has provided the first approximation
scheme for the general problem, having a time complex-
ity of (O((%)?'f). This complexity was later improved by
Leung [8] to (O((2) %9),

In what follows, we design a polynomial time approx-
imation scheme for multiprocessor scheduling on a fixed
number of processors which runs in O(n (og%%‘ﬁ)i) time.

Initially, we consider a mixed integer programming for-
mulation for the problem. Let t;, i = 1,..., n represent the
processing time of job ¢, e G
0-1 variable indicating whether task 7 is assi gned on proces-
sor j and C'y, 4, an auxiliary variable representing schedule
completion time. Then, any instance of the problem can be
formulated as (M P):
min Crnae 820 30 ti2ij < Cpasz, j=1,..,m,
Z;r;ll'ij =1l,i=1,..,n and
Tij € {O, 1}, = — | SR B =

We transform M P into another multiprocessor schedul-
ing instance where all tasks are distributed into & distinct
task types using geometric grouping on task processing
time. The description of the corresponding linear program-
ming formulation for the transformed instance M P’ will be
provided in the lines to follow. Let t:- the transformed pro-
cessing time for task 7 in M P'. Initially, we normalize pro-
cessing times in the interval (0, 1], dividing¢;, Vi =1, ..,n
by tmaz = maz{t;, i = 1,..,n}. Next, following the lines
of research of [1], [5] and [8], we partition the interval (0,1]
into k subintervals as follows:

[tmin = (1+ €)%, (14)=*-1], (14 ¢)=¢:-D),
)DL ((1+)7, (1+ =D (1 +)1, 1].

. p— —', min
Clearly: k = [374 =]

We define t:- as follows:
b=ty = (14)
Hl+ag <l gl g=1, ...k
Let b, denote the number of tasks regrouped in task type
g. Obviously, "5_ b, = n. Ifzy, g = 1,k j
1, .., mis now a non negative integer indicating the number
of tasks of type ¢ assigned on processor j, the optimal so-

(1+
(1)

(2)

lution is provided by the following mixed integer program,
(AP):
min C,.,. s.t: Z;‘:l t;z,”- 20 A=,

Z:;n:lr?j :bQI q= l,-.,k and
&N, g=1..kislum O, €R

Proposition 1 When the number of processors m is fixed,
MP can be optimally solved in constant time.

Proof: Let's consider the mixed integer programming
formulation for M P’. The maximum number of variables
in the formulation is km + 1, since there are at most km
assignment variables z,; and one auxiliary variable C,, ..

483

The number of constraints is m + k. In the case where
the number of processors m is fixed, both the number of
variables and constraints are bounded above by constants
not depending on n. Consequently, we can resolve M P’ in
constant time (see the work of Lenstra {6]). However, since
the number of variables and constraints depends on £ and
m, the constant time needed to optimally solve the program,
is in the worst case exponential on the number of machines
and on the number of distinct task types. O

In addition, we claim that the minimum makespans for
the initial and the transformed instances differ at most by a
factor of 1 + €:

Proposition 2 If OPT(M P) and OPT(M P') are the op-
timal solutions for M P and M P respectively, we have:
OPT(MP) < OPT(MP') < (1+¢) OPT(MP)

Proof: In transformation (2), remark that s <1, Yi=
1, ...;n. Thus, the inequality OPT(MP) < OPT(MP')
is straightforward.

For the second part, in solution Ol”T(MP), we trans-
form each ¢; into t,. Let FEAS(MP') the corresponding
feasible solution for M P’ By the grouping procedure,
when t:- = (1+ €79 then t; > (1 + ¢)~(e+), Con-

sequently: i—t < (—]% y Vi = 1,..,n and thus:
L <(l+e)t , Yi=1,.,n (3)

The above relation bounds the size growth of each trans-
formed task length and consequently the size growth of
the corresponding solution. In fact, let » be the pro-
cessor with the heaviest load in the optimal solution of
MP. Let T, C {1,..,n} denote the set of jobs assigned
torand hy = 37 7 t; the total load for r. Clearly,
OPT(MP) = h,.. When we transform each t; into t:-,
for FEAS(M P") we consider two cases :

a) processor ~ continues to have the heaviest load.
Then, FEAS(MP') = h_, where h, = D T t;. How-
ever, from (3), h’r <Vier. 1+ ti= (1+6)h, =
(1+¢) OPT(M P) and finally:

FEAS(MP') < (1+¢) OPT(MP).

b) another processor s has now the heaviest load.

Then, FEAS(MP') = h,. Clearly. in OPT(M P), we
have: h, < A,. Exactly as in case a), we have h.', < (14
&) hs = h, < (1+€) h. = h, < (1+¢) OPT(MP)
and finally: FEAS(MP') < (14 ¢) OPT(MP).

Thus, for both cases, we have shown the following:
FEAS(MP') < (1+¢) OPT(MP). Since OPT(MP')
is the optimal solution of M P, we have: OPT(MP') <
FEAS(MP') and finally:

OPT(MP') < FEAS(MP') < (1 +¢) OPT(MP)
which proves the second part and the proposition. O

We can now describe the approximation scheme for mul-

tiprocessor scheduling with a fixed number of processors.

Initially, we normalize task processing times into interval
(0.1, dividing by tmar = maz{t;, i = 1,..,n}. This
step requires O(n) time. Next, for £ = fﬁ-‘%ﬁ;"—(“] we
get M P with t; = (14+€)" 01, g = 1,.... kby group-
ing task lengths into k distinct task types as indicated by
equation (2). The grouping proceclure can be performed

in O(n log k) = O(n log :,D—:’-’ﬁ) time. Then, using

proposition 1, we can find the optimal solution of M P "in
constant time. Finally, we transform in linear time the de-
termined solution into a feasible one for M P by changing
¢, into initial ; and we return total height A as solution cost.

Since t; < t’ 4 is no greater than its correspond-
ing solution for M P’ and using proposition 2, we have:
AL OPT(MP) < (1+¢) OPT(M P). Thus, the above
algonthm is an approximation scheme for multiprocessor
scheduling with ﬁxed number of processors. Its time com-
plexity is O(n log o= lug(l+£=) N

3 Uniform processors

In the problem of scheduling uniform processors, we
consider m machines that run at different speeds. Let s;
the speed factor for processor j. Then, for the processing
time of job i on processor j we have: t;; = &, i =
1,..,n, j = 1,..,m. Again, the objective function is the
minimization of schedule completion time. A polynomial
time approximation scheme is provided by Horowitz and
Sahni [4] in the case of fixed number of processors, hav-
ing a complexity of O((1077°¢“n?)™~1). Hochbaum and
Schmoys [3] presented a dual approximation scheme for the

e

general problem, running in O™]) time. We propose
a polynomial time approximation scheme for fixed number
of processors which runs in O(n log _j—‘i‘;%%l) time.

We formulate the problem as an integer program (U P):
min Cmaz s.t: z:;l %;'Iij S Cma:n J =1,..m
E}';l gp=1, i=l,..,n ond
s:e{01}, i=1,. 5 i=1,..m Crac ER

Obviously, working in exactly the same way as in the pre-
vious section we can formulate [/ P’ by grouping all jobs into
k constant task types. Then, when the number of processors
is fixed, we can optimally solve U P in constant time. The
clamthat OPT(UP) < OPT(UP) < (14¢) OPT(UP)
can still be proved. Consequently, the algorithm described in
the previous section is an approximation scheme for schedul-
ing on a fixed number of uniform processors.

4 TUnrelated machines

In scheduling unrelated machines, processing time de-
pends on both the job and the processor to be used. Thus,
givent;; the length of task ¢ on processor j, t = 1,..,n, j =

484

1,.., m, we are asked to find the minimum completion time
assignment of tasks to processors. Horowitz and Sahni [4]
presented the first approximation scheme for the case where
the number of processors is fixed. Its time complexity is
O((10=1#¢p2)™~"). In [7], Schmoys, Lenstra and Tar-
dos provided an approximation scheme for fixed number
of processors, requiring the resolution of (n + 1)¥ linear
programming relaxations. In the same work, a negative
result is proved, excluding the existence of a polynomial
€- approximation algorithm for the general problem for any
€< 2, unless P = N P. In what follows, we present a poly-
nomial time approximation scheme for unrelated machines
scheduling for fixed number of processors which runs in
O(nm Iog—%‘{l—t_;“zﬁf‘-) time.

Consider the following mixed integer programming for-
mulation for unrelated machines scheduling, (UM):
min Cmae 81: 30 tii%ij € Cmog, J=1,.0m
E;-T;l Tij = 1| o —],..,ﬂ and
£ip £ {0, 1} e —0n D O, % VP, Crnas ER

We normalize ¢;; into interval (0, 1] dividing by tmar =
mer{ty, i=1,.0 3= 1,..,m}. Again, we partition
the interval (0, 1] into k subintervals:
Bipary = (Lo 5% (1 0=, (e =D (1

&)~ E=D].. (14 €)~9,(1+ €)==V ((1+)7, 1]

i min
where k = [—g—w—;o"g "H 1.

However, in the case of unrelated machines it does not
suffice to consider only % distinct task types. The reason
is that two jobs regrouped in the same task type on one
processor (their processing times are quite close on this pro-
cessor), do not necessarily belong to the same task type on
other processors (their processing times may differ signif-
icantly elsewhere). In fact, we consider separate grouping
into k types on each of the m processors, which totals at
most k™ distinct task types.

Formally, in UM each job i is characlerlzcd by a m-
dimensional processing time vector (t;,:2, ...). Since
we perform geometric grouping with parameter k separate]y
for each processor, in the transformed instance U M’ (tobe
described later in detail) job ¢ will be characterized by a
m-dimensional vector (., 1is, ..., t.p,) Where:

l‘;j =(1+4+ ()"(9"”,
if+0 << (14070, g=1,..k

InUM , let€={(1+€¢)~0=1 g=1,.. k) thesetof
all possible processing time values and 7 lhe set of possible
task types. Clearly, for task ¢, we have (¢4, ..., ‘m) gem
and since |E| = k: |T| < k™

Let by, | € T, the number of tasks belonging to task type
I. Then,) 17 b = n. ey l€T, j=1,..,misd
non negative integer indicating the number of tasks of type
{ ass1gncd On processor j, we formulate UM':
min Copag 1 ° 2oleT t;JJ:IJ T4 S
E;’nzl T = b[, le? and

zy EN,1€T,j=1,.,m, Cou. €R
Working as in section 2, we prove the following:

Proposmon 3 When the number of processors m is fixed,
UM’ can be optimally solved in constant time.

Proof: In UM, there are at most k™m assignment
variables since |T| < k™ (equation 4). Thus the maximum
total number of variables in the formulation is £™m + 1.
Similarly, the number of constraints is k™ +m. For fixed m,
both the number of variables and constraints are bounded
above by constants and U/ M can be optimally solved in
constant time [6]. O

Proposition 4 [fOPT(UM) and OPT(UM') are the op-
timal solutions for U M and UM’ respectively, we have:
OPT(UM) < OPT(UM') < (1 +¢) OPT(UM)

Proof: By the grouping procedure tij < ty, Wi
l,...,n, ¥j = 1,..,m and the inequality OPT (U M)
OPT(UM') still holds.

For the second part, we work in exactly the same way as
in the proof of proposition 2 and we only give the sketch of
the proof. If FEAS(U M) is the solution obtained from

5

OPT(U M) when each ¢, is transformed into t” , using the
inequality:
e < (lee)ty, B =olon i = 1,...,m, we

bound the maximum distance between FEAS(U M') and
OPT(UM): FEAS(UM') < (1+¢€) OPT(UM). Since
for the optimal solution of U/ M we have: OPT(UM') <
FEAS(UM') the second part of the proposition is proved.
O

The approximation scheme for scheduling unrelated ma-
chines on fixed number of processors is an extension of the
approximation framework presented in section 2, where we
consider a set of k™ distinct task types at most. Initially,
we normalize task processing times into interval (0,1], di-
viding by tmar = maz{ty;, i = 1,..,m, j = 1,.., m},

in O(n) time. Next, for k = [‘f—g-h'%'}"] we get UM’

by grouping task processing times t into £ and task
types into 7. The grouping procedure is performed in

O(n log (k™)) = O(n m log _,—i‘;f%e’)") time. Now, using

proposition 3, we can find the optimal solution of U M in
constant time. Finally, we transform in linear time the deter—
mined solution into a feasible one for I/ M by changmgt

into initial ¢;; and we obtain an ¢-approximate solution for
UM (proposition 4). The time complexity of the described

approximation scheme is O(n m log—”“i—‘;%l‘T“E‘)"v).

5 Conclusion

In this paper, we have presented a general framework
for approximation schemes for scheduling independent jobs

485

on a fixed number of parallel processors. We have applied
this general framework in the case of a fixed number of
identical, uniform and unrelated processors. All resulting
€-approximation algorithms run in linear time on the number
of jobs to be scheduled.

The interest of the approximation schemes presented for
multiprocessor and uniform processor scheduling, lies on
their asymptotically reduced time complexity. Furthermore,
the approximation scheme for the problem of unrelated ma-
chines, improves the complexity of existing approximation
schemes. The unfeasibility of an approximation scheme for
the general problem [7] implies that the best result one can
hope for scheduling unrelated machines is a fully polyno-
mial time approximation scheme for fixed number of proces-
sors. In addition, the flexibility of the general approximation
framework makes it suitable for other classes of important
scheduling problems, such as resource constrained schedul-
ing and typed task systems.

References

[1] W. Fernandez de la Wega and G. Lueker. Bin Packing
can be Solved in 1+¢ in Linear Time. Combinarorica,
1(4):349-355, 1981.

D.S. Hochbaum and D.B. Shmoys. Using Dual Approx-
imation Algorithms for Scheduling Problems: Theorit-
ical and Practical Results. JACM, 34(1):144-162, Jan-
uary 1987.

D.S. Hochbaum and D.B. Shmoys. A polynomial ap-
proximation scheme for scheduling on uniform proces-
sors: using the dual approximation approach. SIAM
Journal on Computing, 17(3):339-551, June 1988.

[4] E. Horowitz and S. Sahni. Exact and approximate algo-
rithms for scheduling nonidentical processors. JACM,

23:317-327, 1976.

[5] N. Karmarkar and R. Karp. An Efficient Approximation
Scheme for the One Dimentional Bin Packing problem.

In FOCS, pages 312-320, 1982.

[6] H.W.Lenstra. Integer programming with a fixed number
of variables. Math. Oper. Res., 8:538-548, 1983.

(7] J.K. Lenstra, D.B. Schmoys, and E. Tardos. Approx-
imation algorithms for scheduling unrelated parallel
machines. Marhematical Programming, 46:259-271,
1990.

[8] J. Leung. Bin Packing with restricted piece sizes. In-
Jormation Processing Letters, 31:145-149, 1989.

[9] S.K. Sahni. Algorithms for scheduling independent
tasks. JACM, 23:117-127, 1976.

