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Abstract

We give polynomial size threshold neural networks and encoding formalisms, which guarantee worst case performance
for two hard optimization problems. We show that a massively parallel algorithm based on such neural network models
guarantee an approximation ratio, asymptotically equal to 4/2 for the maximum independent set problem, where 4 is the
maximum degree of the graph, and equal to 2 for the vertex covering problem. These results on the power of polynomial
size threshold neural networks within polynomial number of neural updates provide the first approximation results for neural

network models.
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1. Introduction

Owing to their convergence properties, massive par-
allelism, generality, flexibility and adaptability, neural
networks have drawn considerable attention in recent
years from both academic and industrial communi-
ties. Several neural networks have been synthesized to
solve approximately hard optimization problems. The
empirical investigations indicate a very good perfor-
mance of these models when they are compared to
conventional heuristics. In general, in these studies,
execution time is neglectable, expecting optical de-
vices implementations allowing the models to operate
at a higher speed than conventional electronics.

Recently, two theoretical results on the power of
polynomial size threshold neural networks have been
established. Bruck and Goodman [2] have shown that
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for any NP-hard optimization problem, a polynomial
size threshold neural network that solves it, does not
exist unless NP = co-NP. Also, finding e-approximate
solutions to the traveling salesman problem is not pos-
sible unless P = NP. Furthermore, Yao [5] has shown
that for minimum set covering, maximum independent
set, minimum vertex cover, maximum clique, maxi-
mum set packing and knapsack problems, getting &-
approximate solutions by a polynomial size neural net-
work is impossible unless NP = co-NP.

In this paper, we show rigorously that neural net-
works have important approximation properties and
thus, the empirical investigation is not the only way
to study their performance. To this aim, we consider
the maximum independent set problem (IS), i.e. find-
ing in a simple graph G(V E) of order n and |E| =
{(u,v) | u,v € V}| edges, a subset V' of maximum
cardinality such that Yu,v, u,v € V' = (u,v) € E.
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The best approximation ratio known for this problem
is (asymptotically) equal to 4/2 [4], where 4 is the
maximum degree of the graph. More precisely, for a
connected graph the approximation ratio is shown to
be equal to (4/2) (1 +1/(n— 1)) + 1/2. We show
that it is possible to design appropriate neural network
topologies and to define encoding formalisms which
permit to guarantee for the IS a level of performance
and even more an approximation ratio equal, for large
values of n and 4, to the best actually known approxi-
mation ratio of sequential algorithms for IS. In fact, at
a first time we present a simple neural network with
an encoding formalism that guarantees approximation
ratio equal to 4. This topology was first presented by
Aarts in [1]. Next, we give a new topology with an
encoding formalism allowing to guarantee an approx-
imation ratio equal asymptotically to 4/2. The neural
network model that we propose is a massively parallel
implementation of the algorithm presented in [4]. It
is a discrete time system which can be described as a
weighted undirected graph. The computational process
carried out by the model is strongly related to a sum-
marizing function, the so called networks consensus.
Information can be stored via connection strengths be-
tween processing elements and then it can be retrieved
by allowing the system to settle into local consensus
maxima. For solving optimization problems this func-
tion can be associated with the objective function and
the constraints of the problem. The evolution in time
of the model promotes the optimization of this func-
tion.

Let n be the number of neurons or processing el-
ements. The neural network is uniquely defined by
a symmetric matrix W = (w;j)nxn, Where w;; is the
connection strength between neurons i and j, and wy;
is an external or bias connection. The state of the
network at time ¢ is represented by a vector U(t) =
(u;(t))n, where u;(t) € {0, 1} is the state of neuron
i (OFF or ON). The consensus function is C(¢) =
Zij wiu; (£)u;(t), where i and j range over all pairs
such that there exists a connection between neurons i
and j. The next state of neuron { is computed as fol-
lows:

1 —ui(t)y if ACi(¢) 20,
ui(t+1) = . (1)
u; (t) otherwise,

where AC; is given by

A1) = (1= 2u(0)) | Y wyuy(e) +wi] . (2)

Ji*i

The next global state of the network U(t + 1) is
computed from the current state by performing the
evaluation (1) at a subset of vertices of the network,
denoted by P. According to the size of the set P in
each time interval the following three modes of oper-
ation are determined: serial mode when |P| = 1, fully
parallel mode when |P| = n and limited paraliel mode
when 1 < |P| < n. A state vector U(t) is called stable
if there is no change in the state of the network. One
of the most important properties of the model is the
fact that it always converges to a stable state while op-
erating in a serial mode. This stable state corresponds
to a local maximum of the consensus function. This
suggests the use of the network as a device for per-
forming a local search for getting a maximal value of
the objective function.

In this paper, we study neural networks operating
in a serial mode (|P| = 1) with threshold output func-
tion (Eq. 1). We give two neural network topologies
and appropriate encoding formalisms and we show
that a performance guarantee is achieved and even this
equals the performance of the best sequential approx-
imate algorithms, for IS.

2. Neural network topologies and performance
guarantee

Let G(VE) be an undirected connected graph,
where V = {v1,02,...,0,} is the set of vertices and
E is the set of edges, with |V| = n and |E| = m. Edges
are indicated by pairs of vertices, for example (v;, v;),
the maximum degree by 4, the minimum degree by &
and the degree of vertex v; by 4;. Consider a neural
network topology 77 (U, C) isomorphic to the graph
G, with U = {1,2,...,i,...,n} the set of neurons,
and C the set of connections. The state of a neuron
at time ¢ is indicated by u;(t) or simply by u;.

The encoding for the general case where weights
are associated to the vertices of the graph is performed
by the symmetric connection matrix W = (w;;), w;; =
ciif i = j and wij = —[max{c;,¢;} + €18y if i # J,
where 8;; = 1 if (v;,v;) € E and 0 otherwise, and ¢ is
a small real positive parameter. If there are not weights
on the vertices we consider that ¢; = 1,i=1,2,...,n
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and we get the same encoding matrix as proposed in
[1]. The consensus of the network for each new con-
figuration, is completely determined by the states of
the neighbours of the neuron whose state is changed,
say neuron i, and the corresponding strengths, accord-
ing to (2) and the consensus of the current configura-
tion. If the consensus of a given configuration of the
network does not increase by any single state transi-
tion, i.e., AC; < O for all neurons, then the network
is lying on a local maximum (stable state). The so-
lution vector for IS is equal to the vector state of the
network. In [ 1] it was proved that each stable state of
this network with the above defined connection matrix
(and with ¢; = 1, Vi = 1,...,n) corresponds always
to feasible and locally maximum solutions for the 18.
This allows us to obtain the following result, for the
maximum cardinality independent set problem.

Theorem 1. Given a connected graph G(V, E) with
maximum degree A, the neural network Ty(U,C)
which is isomorphic to G, guarantees, for the maxi-
mum independent set problem on G, an approxima-
tion ratio equal to A, when it operates in a serial
mode with threshold output function.

Proof. In a stable state an active neuron prevents at
most 4 neurons from being active. Note that, when a
neuron becomes active, it remains always in this state,
while its neighbours are definitely removed and they
remain inactive. So, if u; = 1 then u; =0, Vj € N(i),
where N(i) is the set of neighbours of neuron i. The
solution for the maximum IS is {v; | u; = 1 Ai €
{l,...,n}}. In the worst case, [n/(4+ 1)] neurons
are active providing a solution of size h > n/(A4+1).
Let us now consider an optimal solution including &
vertices. The n vertices of the graph G can be parti-
tioned into two sets S and V — S, with |S| = @ and
V — § including the vertices discarded by the a ver-
tices. Then, since all edges are either between § and
V — S or inside V — S, we have:

doa< 4

i€s JEV—S
= |S|6<<|V—S5|4
= ad<(n—a)Ad
= a< 4n/(4+6).

Finally, we have that a/h < A(44+1)/(4+8) < 4,
i.e., the neural network 7) guarantees an approxima-
tion ratio equal to 4. [

Let us consider the following topology: T (U, UU, U
Uy U{d}, C,UC,UC, U CsUCy) including two
levels of neurons U, U, U Ué and a single decision
neuron {d}. The first level has {U;| = n neurons and
|C}| = m inhibitory connections representing exactly
the topology T, defined previously.

The second level includes two sub-networks with
Us, U; neurons and C,, C2/ connections, respec-
tively. Each neuron in U, corresponds to an edge
of G and each inhibitory connection in C, links
two neurons i and j if the corresponding edges, say
(vg, 0), (v o) € E, k #+ I, kK #+ I, have a com-
mon vertex. Let denote this part by T>. Next, we refer
to this part, as the first sub-network of the second
level. T; is obviously, isomorphic to the line graph of
G. Each neuron in Uj corresponds to a vertex of G
and each excitatory connection in C; links a neuron
i€ Ué to a neuron j € U, if and only if the vertex v;
is incident with the edge corresponding to neuron ;.
Thus, each neuron in U is connected to exactly two
neurons in U3, while inside Uj there is no connection
at all. Next, the set of neurons Uj with the C; con-
nections to 7, is denoted by (7;) and is refered as the
second sub-network of the second level.

The neuron 4 is a decision neuron without bias con-
nection. It is linked by a set C; of inhibitory connec-
tions to all neurons in 77, and with a set C_{ of excita-
tory connections to all neurons in Tj. Between neurons
of the two levels there is no connection at all.

On this topology, we define the following connec-
tion strengths,

(474 ifi=jniel
{bias connections},
—[min{47%, 4,7} + €18
ifi# jALjeU,
1 ifi=jAie U
wij = {bias connections}, (3)
ifi+ jALjEUs
Ao No(j) *+ 0,
1 ific Uy AjeUs,
1—u ificUynj=d,
-1 ificU Aj=d,
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where 9;; = 1 if there is an edge (v;,v;) € E and 0
otherwise, € is a real positive parameter such that € <
[A(A+1)]1~M+D (i) denotes the two vertices inci-
dent with the edge i and u; is the state of the neuron i.

We consider now that the two levels T} and (73, T;)
operate in parallel. In the second level, the two sub-
networks 7> and T, operate sequentially. The sub-
network 7; operates once 7> has reached stability. The
connection matrix in each level being symmetric and
since a serial mode of operation is assumed, the net-
work reaches stability. Then, the output of the neurons
in 7y and 7} pass to the decision neuron d which has
two states 0 and 1. The state of this neuron is deter-
mined by its total input: Iy = .y oy Wajtty- If 1a >
0, the neuron becomes active and the solution for the
IS is equal to the inactive neurons in 7;. Otherwise,
the neuron is inactive and the solution is obtained by
the active neurons in 7. Essentially, the state of the
decision neuron determines the bigger solution for IS.

In the sequel, we consider the consensus function
for each level, since the two levels operate in parallel
and no connections exist between the two levels. The
decision neuron is considered only after stability of
both levels.

Lemma 2. Each stable state of the neural network
T, with the encoding matrix (3), corresponds to two
feasible solutions, at least one of which is a local
maximum for the independent set problem.

Proof. The sub-network 7, in the second level gives
a locally maximum /S for the line graph of G. In fact,
this topology and the encoding matrix are defined as
in [1] and the proof can be found there. This inde-
pendent set on the line graph of G provides a locally
maximum matching for G. Next, after operation of
the sub-network T3, the active neurons in T represent
exactly the incident vertices with the matched edges
(active neurons in 7). Therefore, the inactive neu-
rons in 7, are the exposed vertices of G with respect
to the considered matching (vertices that are not in-
cident to any matched edge) which form a feasible
solution for the IS in G [3]. In fact, if this solution
is not a feasible solution, the matching would not be
locally maximum.

Let us now revisit the first level. We prove that a fea-
sible and locally maximum solution is obtained. Con-
sider a configuration k of the network inducing a non

feasible solution x¥. We prove that this configuration
is not a stable state. In fact, since x* is not feasible
there are neurons i and j which are adjacent and both
are on state ON. By changing the state of the neu-
ron with the larger degree (4; > 4;) the consensus
increases. Really,

ACi(k) =C(k:u;=0) —=C(k:u;=1)

n
—(Wii + Z thut)

=1, 1#i

Z — (Wi + wij)
Z

]

—(w;i + [—min{w;, wj;} —&])
(474 + [47% —eD)
=e>0.

In the case where the two neurons have the same de-
gree, also by changing the state of one of them the
consensus increases. Moreover, if x* does not corre-
spond to a local maximum /S, then there is an inactive
neuron { which is not adjacent with any active neuron.
By changing the state of i the consensus increases,
since AC; = w;; = Ai_d’ >0 U

Lemma 3. For an irregular graph, at each stable
state of the neural network T with encoding matrix
(3), at least one neuron corresponding to a vertex
with minimum degree is at state “N s” in the first level,
and thus, at least one vertex with minimum degree is
taken into account in the solution for the maximum
independent set problem.

Proof. Let us consider a stable state where all neurons
corresponding to vertices with minimum degree & <
A are OFF. Let ¢ be one of these neurons. Consider
the worst case where all neighbors of i are ON. The
vertices corresponding to these neurons have degrees
4;, j=1,...,8suchthat: 6 < 4, < 4,6 < 4 < 4,
..., 0 < 45 < A. This state is not a stable state, since
by changing the state of the neuron i the consensus
increases. In fact,

AC;i(k) =C(k:u;=1) —C(k:u; =0)

= (+1)<Wn+ i Wilul)

I=1,1#i
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Note that, once a neuron corresponding to a vertex
of minimum degree becomes active, it always remains
active. Its neighbours are definitely eliminated even if
they have the same degree. Lemma 2 and 3 show that
the sub-network of the first level of neural network
T presents a massive parallel implementation of the
natural greedy algorithm of smallest degree [3].

Theorem 4. Given a connected graph G(VE) with
maximum degree A, the neural network T, with the
encoding matrix (3), guarantees an approximation
ratio asymptotically equal to A/2 for the maximum
independent set problem on G, when it operates in a
serial mode with threshold output function.

Proof. If the graph is regular, in the first level T has
bias connection w;; equal to A~ for all neurons. The
active neurons provide a solution h such that 2 >
n/(A+1). So, by the expression for ¢ < 4n/(A+8),
we get for regular graphs « < n/2 and thus, a/h <
(A+ 1)/2, i.e., an approximation ratio equal to (4+
1)/2.

We consider now irregular graphs (6 < 4). The
sub-network 7 after stability provides a locally maxi-
mum matching m’. Since, m’ < n/2, we can put m’ =
(n/2)(1 — ), for areal y € [0, 1]. Obviously, the
2m’ vertices incident upon to the matched edges con-
stitute a vertex covering C in G (a set of vertices such
that (u,0) € E=u € C orv € C). These vertices
correspond to the active neurons in 73. From this ver-
tex covering we can obtain an independent set of size
n — |C| by a simple set difference. On the other hand,

the optimal vertex covering is always greater or equal
to §|C|. In particular, for |C| = 2m’ we obtain in T} an
independent set ( vertices corresponding to the inactive
neurons) of size hy = n—2m’ = n-2((n/2)(1-y)) =
vn, with y € [0, 1]. For the size of a global optimal
maximum independent set we have: @ < n — %|C | =
n—m'=n—-5(1—-v) =5(1+y). Therefore, the sec-
ond level of the neural network T gives: i S %iy—)

In the first level, since the vertex with the smallest
degree is included in the solution (lemma 2), after
stability 7} gives a solution of size

n—(8+1)

by > ———— 2 41

: ar1
_n-@+rD+A+1 ntl
B A+1 T A+

Clearly, by using the expression for @ we obtain:

a __n20+4y) (49441
b S (n+1D)/(A+1) T 2n+1)

By the same way as in [4] the two functions of
v (upper bounds of a/hy and a/h), the first be-
ing monotonously decreasing and the second one
monotonously increasing, have a “breakpoint” at
Yo = n—("—AE'l—). For y > y, take the solution in 7} while
for v < o take the solution in 7). By replacing yo
in these functions we obtain an approximation ratio
equal to 4—;—'[1 - n_Jer] + % So, in the worst case,
since the decision neuron chooses the best solution
h= max{hl,hg}, we have always the same approxi-
mation ratio which for large values of n and 4 tends

to4/2. O

In what concerns the architectural complexity of the
neural network 7, we remark that 77 has n neurons,
T, has m neurons, T; has n neurons and a decision
neuron. In total, T has 2n + m + 1 neurons. Also, T
requires: m inhibitory connections and n bias connec-
tions in 77, at most Am inhibitory connections and m
bias connections in 7, 2m excitatory connections be-
tween T» and T, n excitatory connections between the
decision neuron and T; and » inhibitory connections
between the decision neuron and 7. The total num-
ber of connections is at most { A+ 4)m + 3n which is
bounded by (n + 4)m + 3n.

If we consider a specified order to update neurons,
the number of neural updates required by T to reach
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stability is at most equal to n. In fact, in 7}, a neu-
ron corresponding to a vertex of minimum degree is
activated after at most n neural updates (one cycle).
More precisely, the first neuron, say i, corresponding
to a vertex of minimum degree, becomes active the
first time we meet it in the sequence and it always
remains at this state. Also, the other neurons corre-
sponding to vertices of minimum degree, if they are
neighbours of already active neurons of minimum de-
gree they become definitely inactive. Otherwise, they
become definitely active. Thus, the neuron i reaches
a definitive state after at most » neural updates. In
the next cycle, at least the neighbours of the neuron
i adjust their states and they become definitely inac-
tive. In each new cycle at least one neuron, from the
n — (6 + 1) remaining neurons, adjusts definitely its
state. Finally, all neurons find their definitive state af-
ter at most n — (& + 1) + 2 < n cycles. Therefore,
T, reaches stability after at most n? neural updates. 7>
requires only one cycle to reach stability, i.e., m neu-
ral updates. This is because each neuron reaches its
definitive state after only one neural update and if it
becomes active, it eliminates definitely its neighbours.
T; requires also only one cycle and thus, n neural up-
dates. Consequently, since the two levels operate in
parallel the neural updates required for taking a solu-
tion for the IS is equal to max{n?, m + n}.

Note that, in the proofs of Lemma 2 and Theorem 4
it is also shown that the sub-networks 75 and 7 in the

second level of T represent a neural network for mini-
mum vertex covering, which with the encoding matrix
(3) guarantees an approximation ratio for this prob-
lem equal to 2. This neural network has m + n neu-
rons and at most m( 4+ 3) < m(n+ 3) connections.
The number of neural updates required for taking a
solution for the vertex covering problem giving an ap-
proximation ratio equal to 2 is m + n. The developed
algorithm on this neural network constitutes a mas-
sive parallel implementation of the greedy algorithm
described in [3] which guarantees the same approxi-
mation ratio for minimum vertex covering problem.
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