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Abstract

This paper studies a resource allocation problem in a graph, concerning the joint optimization of capacity allocation decisions
and object placement decisions, given a single capacity constraint. This problem has applications in Internet content distribution
and other domains. The solution to the problem comes through a multi-commodity generalization of the single commodity
k-median problem. A two-step algorithm is developed that is capable of solving the multi-commodity case optimally in
polynomial time for the case of tree graphs, and approximately (within a constant factor of the optimal) in polynomial time
for the case of general graphs.
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1. Introduction mation objects, such that the average distance from all
clients to all the requested objects be minimized. Pro-

This paper studies a joint placement and dimen- d_ucing the required opject placement not only identi-
sioning problem in a content distribution network fies the set of information object for each node but also

(CDN) for the dissemination of Internet content. returns the fraction of the total storage capacity that

A CDN operator has at its disposal a total storage ca- Must be allocated to each node. In [6] we have formu-
pacity for S unit-sized information objects. The target at€d & specific instance of this problem and proposed
is to use this storage budget to selectively replicate in- Neuristic algorithms for it.

formation objects drawn from a set of available infor-  1he discussed problem will henceforth be called
the capacity allocation problemabbreviated CAP. At

an abstract level, the goal of CAP is to select appropri-
O This work and its dissemination efforts have been supported ate locations for the installment of different types of
in part by the IST Programs of the European Union under contract facilities, under known topological and demand pat-
IS'[—ZC()Ol-SZGSZI(Broadr\]Nay) and IST-2001-33116 (FLAGS). tern information and the constraint that the maximum
orresponding author. . i
E-mail addressedaoutaris@di.uoa.gr (N. Laoutaris), number C?f opened fe10|||t|es (of all types) does not ex
vassilis@di.uoa.gr (V. Zissimopoulos), istavrak@di.uoa.gr _Ceed agien (fapaCWY- The name CAP owes r.nU(.:h to
(I. Stavrakakis). its application in allocating generic capacity units in a
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network, with each capacity unit being able to host a
single facility chosen among a set of available types.
Multi-commodity placement problems that have
appeared in the literature differ substantially from the
stated CAP problem. Korupolu et al. [5] have studied
a multi-commodity object placement problem in a tree
and given an exact polynomial time algorithm for
it. This work differs from our’s in that it considers

Arya et al. [1] have given the first polynomial constant
factor approximation algorithm for the-median in a
general graph, with an approximation ratio of2/p

(p is a parameter of the local search heuristic em-
ployed in the work of Arya et al.). Using this algorithm
in conjunction with the two-step algorithm leads to a
3+ 2/p approximation for CAP in a general graph. In
effect, the two-step algorithm is able to guarantee for

per-node capacity constraints and assumes a specificCAP an approximation ratio that is as good as the one

distance metric called ultra-metric. Under the ultra- for the k-median.

metric, the distance between any two nodes equals

the diameter of the smallest subtree containing both

nodes. This is actually an approximate notion of 2. The k-median problem

distance and is not as precise as the usually employed

notion of distance (length of a shortest path connecting  Consider an undirected connected grépk: (V, E)

two nodes). Here we allow for an additional degree of with node setV = {v1, ..., v,} and edge seE. Each

freedom by allowing the algorithm to dimension the edge is associated to a non-negative weight and the

nodes along with the placement of objects and assumelength of a path irG is equal to the sum of the weights

a general metric space for distance. Notice that a of all edges in the path. Lek(v;, v;/) denote the dis-

solution to CAP does not stem from a trivial extension tance between a pair of nodés, v;/), given by the

of [5], as the latter cannot guarantee a total allocated |ength of a shortest length path connectinginduv; .

capacity. More recently Baev and Rajaraman [2] Each node has a demand fgrunits of service from

have provided approximation algorithms for multi- its closestsupply nodeA k-placementP® | is a set

commodity placement in general graphs. Their work of no more thark nodes out of the totat that are

too considers per-node capacity constraints. selected to act as supply nodes, offering service to
In the sequel thé-median problem is introduced, the client nodes (a node may be both a client and a

followed by a formal statement of CAP and the pre- supply node). Lef?®) denote the set of all possible

sentation of the two-step algorithm for its solution. k-placements. Thé-median problem amounts to se-

A distinctive characteristic of the two-step algorithm |ecting an optimak-placementP® e P®) | that min-

is that it depends on the specific properties of the stud- imize the weighted sum of distances from all nodes

ied graph only through the specifiemedian algo-  (clients) to the their closest supply node, i.e., minimize
rithm that it uses as a building block. This allows for a

unified treatment of trees and general graphs. Using a¢(P*)) = Z ri - min d(vi, u), PR epP®. (1)
polynomial time exact algorithm for themedian in a ey ueP?

tree in conjunction with the two-step algorithm leads Thjs js equivalent to maximizing

to a polynomial time exact algorithm for CAP in a

tree. For general graphs, the combination of a polyno- v (P®) = Z ri - (dw — min d(vi,u)),

mial time approximation algorithm fdt-median and vev uep®

the two-step algorithm leads also to a polynomial time ph) ¢ p) )

approximation algorithm for CAP. In view of the fact
that CAP is NP-hard for general graphs (it reduces to whered,, is a constant. Kariv and Hakimi [3] have
k-median when considering only one type of facility) proved thatt-median is NP-hard for general graphs.
the resulting approximation becomes particularly in- They showed however that for undirected trees the
teresting as it has the property of retaining the good problem can be solved in @n?). More recently the
properties of the employekkmedian algorithm. It is ~ complexity of the undirected tree version has been
in fact possible to directly construct a constant fac- reduced to @n?) by Tamir [10]. For directed trees
tor approximation algorithm for CAP by employing a the problem has been solved ii3P) by Vigneron
constant factor approximation algorithm fomedian. et al. [11], for the specific type of directed trees where



50020-0190(03)00537-4/SC0  AID:3014 Vol. ( ) 1 P.3 (1-7)

ELSGMLTM(IPL):m3 v 1.181 Prn:12/01/2002; IZ:"SB... |p|3014 by:PS p. 3
N. Laoutaris et al. / Information Processing Lettaiés (seoe) ecee—oee 3

. k; .

all edges are directed upwards towards the root (here (jj, kjh)-placementsP;h”’), 1<h< RS, withR

P denotes the path length of the tree which i&:© members, having the property:

in the worst case). For the case bfmedian in a R

general graph and metric distance, Lin and Vitter [7] ijh <S, kj >0,Vh.

gave a (21+ ¢), 1+ (1/¢))-approximation algorithm ;=

and Korupolu et al. [4] gave &l + ¢,3 + 5/¢) and
a (1 + 5/, 3 + ¢)-approximation algorithm. More
recently Arya et al. [1] gave &3 + 2/p) polynomial
time approximation algorithm using no more than
supply nodes g is the maximum swap of facilities

A node-object pail(u, o) is said to belong taP®),

(u,0;) € P, if and only if there existd: 1< h <
k.
R,jh=1]J, ue P;”‘). Let P9 denote the set of all

possibleS-placements. CAP amounts to identifying

allowed by their local search procedure); this appears an optimalS-placementP®) e P*®), that minimizes

to be the first constant factor approximation algorithm
without blowup in the number of supply nodes.
3. The capacity allocation problem

The capacity allocation problem (CAP) is a gener-
alization of thek-median problem, involving multiple

types of service and the requirement that all nodes re-

ceive all types of service, either locally, or from the
closest supply node for a given type of service. As
the number of different services may exceed the total
number of allowed medians, an additional nades
introduced that lays outside and is capable of offer-
ing all the types of service. Node s accessible by all
nodes inG at the same distaneg, =d (v, w), ve 'V,
thatis larger than the diameter@f For the purpose of
this paper it will be assumed that a service is the abil-
ity to offer a certain information object (e.g., a web
page) that is stored locally but this does not limit the
applicability of the model to other circumstances as
well. There existN distinct unit-sized objects com-
prising the object seD = {01, ...,0n}, 0; denoting
the jth object. The demand of each nodeis de-
scribed by a rate vector ove?, r; = {ri1,...,rin},

ri; denoting the rate at which nodg requests ob-
jecto;. The origin nodew is assumed to be holding

the entire object se®. A (j,k)-placementffk), is
a set of no more thak nodes out of the totat that
are selected as supply nodes for object Let IP’E.")
denote the set of all possiblg, k)-placements. An

k; ki), -
S-placement,P5) = (pl P;R’R)}, is a set of

1 g e ey

1a (a, b)-approximation algorithm is a polynomial time algorithm that
computes a solution using at mast £ supply nodes and with distance at
mosta times worse than the distance under the optimal algorithm using
supply nodes.

the weighted sum of distances from all nodes to their
closest supply node, for all objectsdn i.e., minimize

FPOY=3"3"r;-
v;ieVo;e0
PO P, 3)

P has the property of maximizing the following
expression.

min
(M,Oj)E(P(S)Uw)

d(vi,u),

g(P(S))
- Z Z Tij - (dw - min d(v;, u))
vieV 0;€0 (u,0;)€(PSUW)
= Z Z rij
v;eV 0;€0:
3u€G:(u,oj)ep(S)
X (dw —  min d(v,-,u)),
(u,aj)eP(S)

PO ep®), 4)

min{ f (P®)} is equivalent to majg(PS))} because
g(POY =(dy -1, Zj.vzlr,-j) — £(P®). The tran-
sition from the first to the second line of (4) is
becausdgd,, — min(ug(,_/)e(P(S)Uw)a’(v,-, 1)) = 0 when
MiN, o )e(pSUw) d Wi, u) = dy, i.€., for all object;
that do not have a replica ifi (i.e., for object; that
there does not existiace G such thatiu, 0;) € P).
Using the function,

vi(P) = ri- (dw
v;eV

(k) (k)
Pj elP ;

— min d(v,-,u)),
ueP;b

®)

and the definition ofP®), g(P®) may be re-written
as:

R
8P =3 u (P).

h=1

(6)
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Notice that they;() function of (5) is ak-median
objective function for objecd;; its sole difference to
the v/ () function of (2) is thatr; is replaced byr;;.

In effect wj(P}k)) captures the total gain in terms of
reduced access distance achieved by platcimgplicas

of objecto; in G thus not having to fetch; from the
origin node but rather from a node . The function
g(PYS)) sums all the gains for th® individual objects
0j,, 1< h < R that get to have at least one replica in
the context of ars-placementP®.

4. An exact algorithm for CAP

This section describes an exact solution algorithm
for CAP. The algorithm involves two steps: (1)de-
composition stepnvolving the solution of a series
of k-median problems relating to the original CAP
problem; (2) acomposition stepnvolving the selec-
tion of a number of optimal solutions from the first
step, that when combined together yield the exact op-
timal solution for the original CAP. The decomposi-
tion step solves a sufficient number of single com-
modity k-medianlocation problemsThe composition
step is apacking problemthat selects among the
optimally solvedk-medians to construct an optimal
S-placement.

4.1. Decomposition stefg-medians

In this stepN - S’ k-medians, wher§’ = min{n, S},
are solved and their solutions stored for use in the
second step. Specifically for each objegte O a
series ofS’ k-medians, I k < 8/, is solved using
an appropriate algorithm for the given type of graph
G. In fact the largest possible median of éheseries,
i.e., the one withk = n, occurring only whers > n,

Table 1
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does not have to be solved because its solution is
trivial—replicate one copy of objeat; in each of

then nodes. LetG j; denote thegain underP}k), the
optimal placement of replicas of objecb; in G. G jx

is defined to be the difference between the maximum
sum of distances incurred when all nodes fetgh
from w minus the minimum sum of distances incurred
when k replicas ofo; are installed inG optimally,
thus:

max
g

Gji= v (P). (7)
The G j; values are the input of the subsequent step
that decides how many replicas from each object to
include in the finalS-placement.

The complexity of the decomposition step depends
on the properties of the studied graph. L& (k, n)
denote the asymptotic complexity of solving the
median problem in a grap&i with n nodes, using the
best algorithm for the specific type 6f. Then solving
S <n —1 k-medians for each objeotj, 1< j < N,
independently, would lead to an overall complexity
OnN - Fg(n—1,n)) for the decomposition step. This
complexity can be reduced to(® - Fg(n — 1,n))
for algorithms that solve the-median using dynamic
programming which by construction solves all the
smallerk’-medians, X k' < k, in order to solve the
k-median. The algorithms of Tamir and Vigneron et al.
fall in this category and thus allow to solve the entire
series ofk-medians for a given objeai;—"all-in-
once”—hy solving only the largest problem, i.e., the
S’-median. The third and the fourth columns of Table 1
summarize the complexity of themedian E¢ (k, n))
and of the resulting decomposition step (that uses the
k-median algorithm of the previous column), for the
following cases: directed tree, undirected tree, and
general graph.

The six columns of the table contain the following information: (1) type of the studied graf) type of available solutions for themedian
and CAP for the given type of;; (3) complexity of besk-median algorithm foiG; (4) complexity of the decomposition step of CAP that

uses thek-median algorithm of the previous column; (5) complexity of the composition (packing) step of CAP using the general dynamic

programming algorithm; (6) overall complexity of CAP

Graph Solution Singlé-median Decomposition Composition Overall CAP
undirected tree exact (@nz) (Tamir) O(n3N) O(n2N2) O(max{n3N, n2N2})
directed tree exact @2n2) (Vigneron) an?nN) O(n2N?) O(max(n*N,n2N2})
general approx. @?) (Arya) OmP+IN) O(n2N?) O(max(nP+1N, n2N2})
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4.2. Composition step: a packing problem

In this step the following packing problem, which is
a special type of integer linear program (ILP), is solved
optimally by appropriate polynomial time algorithms.

Maximize:

N 5
Z Zij - Yik.

j=1 k=1

(8)

Subject to:

S/
D Yp<l 1<j<N 9)
k=1

and,

N 5

sz-ij< S,

j=1k=1

(10)

Yir€{0,1}, 1< j <N, 1<k < S isabinary in-
teger variable taking the value one if and only if the
optimal (j,k)—placementP](."), is selected for inclu-

sion in the optimalS-placementP®), for CAP. For
this packing problem two exact polynomial time algo-
rithms are described; the first is a dynamic program-
ming algorithm appropriate for all instances of CAP,
while the second is a greedy algorithm that yields the
exact optimal solution for a broad family of CAP in-
stances having concavg;;'s. When applicable, the
greedy algorithm provides for a substantial reduction
of complexity as compared to the more general dy-
namic programming algorithm.

4.2.1. Exact dynamic programming algorithm for the
packing problem

Fig. 1 gives an illustrative abstraction of the pack-
ing problem described in the aforementioned ILP for-
mulation. There areV “boxes” with indices;, 1 <
j < N, and each box contain& “objects” of typej
with indices(j, k), 1<k < 8. Object(j, k) of box j
has avalueG j; and aweightk. There is also a knap-
sack that can hold a weight that is at most equé .to
The packing problem amounts to filling the knapsack
(constraint (10)) by selecting at most one object from
each box (constraint (9)) such that the total value of
the objects that fit in the knapsack be maximized (ob-
jective function (8)). This description resembles much

select at most one object
==7 from each box
<

amtan
SR S8R

box j

box 1 box N

Fig. 1. The packing problem involved in the composition step.

the 0’1 knapsack problem [8,9] with the main differ-
ence be that whereas in thglOknapsack there is only
one object of type/, here there aré’ objects of type

J each having its own weight and value. This packing
problem can be solved by an appropriately modified
version of the dynamic programming algorithm that
solves the original i1 knapsack [9].

DefineV[j, s] to be the maximum value of the ob-
jects that fit into a knapsack of sizewhen the selec-
tion is confined among objects of type.1., j, 1<
j < N and 0< s < S. The objective is to identify
V[N, S] and the selection of objects that leads to it.
First define the initial conditions:

V[j,0]=0, 1<j<N,
VIL s]= Gl,Sv iflgsgs/’
T Gy, (S <s<S.

Now define the recursive relationship for the cases
2<j <N, 1<s<S:

VIJj, sl
= max{V[j —-1,5],

max

X {VIj-1s —k]+ij}}.
1<k<min{s, S’}

(11)

Proposition 1. The dynamic programming algorithm
defined by the recursive equatifiil) solves optimally
the packing problem defined by E¢8)—(10)

The proof is a straightforward generalization of the
proof of the correctness of the dynamic programming
solution for the standard/@ knapsack problem and is,
thus, omitted.

Since there areVS subproblemsV|j,s] to be
solved and each subproblem requires at ns6stom-
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parisons to identify whether to add to the knapsack is the object of maximum weight that has already been
one of the objectsj, k) of box j, the time complex- chosen from boy at a prior iteration.

ity of the packing problem is QVSS’). In general The greedy mode of operation combined with the
such an algorithm is called pseudopolynomial as its concaveness of j's guarantee the identification of
running time depends not only on the size of the in- the optimal solution. By using a max-heap data struc-
put (hereN, n) but on the magnitude of some of the ture to store the largest available incremental gain for
parameters as well (here &). In the context of the  an unselected unit of each of thé distinct objects,
stated CAP problem, however, the paramétés up- the algorithm can be implemented at a complexity of
per bounded bys < nN, capturing the fact that CAP  O(nNlog N) (O(N) for the initial creation of the max-
becomes meaningless when the available storage ca-heap plusS < nN iterations with each iteration re-
pacity is larger than the minimum required to store quiring O(logN) complexity to re-organize the max-
all N objects on allz nodes of the graph. The up- heap). Notice that the greedy solution for the fractional
per bound guarantees that the dynamic programmingknapsack problem is not applicable here because the
algorithm will terminate in polynomial time. Using ~ current packing problem involves objects with a non-
S <nN andS’ < n the complexity of the packing be- ~ constant per-unit value (the normalized per-unit value
comes @n2N2). Notice that this complexity does not  ©f (J, k) decreases with).

depend upon the type of gragh
4.3. Correctness of the two-step algorithm

4.2.2. Exact greedy algorithm for the packing
problem under concavé j;'s

It is possible to reduce the complexity of the
packing problem to Q:N logN), for an interesting

In this section it is established that the solution ob-
tained from the aforementioned two-step algorithm is
an optimal solution to the CAP problem defined in
' ) ; . , Section 3. Informally, a description of the correctness
family of CAP instances involvingGi’'s that are  ,10¢ goes as follows. First it is shown that the ob-
concave with respect t, for all o; € O. This can  jective function of CAP is separable with regard to
be achieved by replacing the dynamic programming he different objects. Then it is shown that an opti-
algorithm with a faster greedy algorithm that, however, 5 S-placement for CAP must contain only, k)-
when operating on concavg ’s is guaranteed 10 placements that are optimal solutions temedian
be leading to an optimal solution for the packing problems (for different objects;). The last argument
problem. allows to limit the search for an optima&kplacement

The concaveness dfj;'s implies that the “val- o §-placements that contain only optimiaimedian
ue” of adding more capacity is progressively declin- (; x)-placements. This reduces the original CAP to
ing. This is the case under many topologies and re- the packing problem solved in the composition step.
guest patterns. The test for concaveness may be im-
plemented at no additional cost while computing the gpservation 1. The optimal(j, k)—placement:l?(.") c
G j«'s at the first step. When the test succeeds, the fol- /
lowing sketched greedy algorithm may be employed
for solving the packing problem.

The algorithm assigns the total capacity in exactly i i
S iterations, with each iteration assigning an additional 9€fines the gain und
capacity unit. The first unit goes to the object that wj(P;k)), P}k) € }P’E."). Under givenk and graplG the
has the largest j1, 1< j < N. Then each additional  f;nction wj(Pfk)) depends only ory throughr;;’s,

. : . . j
unit goes to an object of typg*, if and only if the 1<i< 5) for the definiti (p®
incremental gairfor j*, G j«1+1 — G j+, is larger than < i< n (see (5) for the definition o (P;™)).
any other available incremental gain for any other type - _
of object. Referring back to Fig. 1, this amounts to Pr(()IEo)st|on Zkte)t the opt|rr(1?l§)-plac(el(m)ent b =
selecting object;*, k + 1) instead of object;*, k), S0 {15].1’l A PjR’R }. ThenPjh./h =P, " forl<h<
as to maximizes i 11— Gk, 1< j < N, where(j, k) R.

}P’E.k), depends only orj for a givenk and graphG.

This can be verified by looking at Eq. (7) that
e}Pj(k) to be the maximum of
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Proof. This can be shown via contradiction. Since graph, while it obtains a constant factor approxima-
P® has been assumed to be optimal it must be tion in polynomial time, in the case of an arbitrary

that g(P®) > g(P®) for all P e PS), Suppose
that there existé’: 1 < h’ < R such thatP( i) +
P;k;/h’). A new solutionp®) may then be constructed
) — p for 1< h < W — 1 and
R and settmgfn( i) 7?( i)
Vi OB ) = vy Py >, (B it tums

that g(B®) > g(P(S)) which is a contradiction as
PS) has been assumed to be optlmal Thus it must

. (kj ) (kj, )
be thatP ”‘ =P, ”’ forall 1< h' <

by settmg‘p

W+1<h< . Since

O

Having established that an optim&tplacement
P contains only optimal k)-placementst(.k) it
becomes possible to limit the search & in B ¢
P where P denotes the set of-placements
that contain only optimalj, k)-placements. Thus for
the identification ofP'S) it suffices to look for the
S-placement that maximizes the following re-written
expression for thg (PS)) of (6):

R
gP) =Y "G,

h=1

PO B, (12)

Proposition 3. Let the optimalS-placement b@(S) =

k
(P PR Then,
S _ (kjp) (kjp) ) .
PO ={P, ", .. P} = Y, =1
1<h <R

Proof. The equivalence is a direct consequence of the
following two facts: (1) The objective function of CAP
givenin Eq. (12) is equivalent to the objective function
of the composition step given in Eq. (8) (by way of
constraint (9)); (2) the optimal solution of CAP is
known to be included i) which matches exactly
the feasible region defined by constraints (9), (10) of
the composition step. O

5. Concluding remarks

The two-step algorithm finds an optimal solution
to CAP in polynomial time, in the case of a tree

graph. The last column of Table 1 summarizes the ex-
act overall complexity for the various cases. Notice
that the final complexity is dominated by the com-
plexity of the most complex step, which in turn de-
pends on the relative magnitude of N for specific
applications. In problems haviny > n (e.g., web
caching, content distributions, see Section 1) it will be
the packing problem that dominates the overall com-
plexity. In such cases the greedy solution to the pack-
ing problem, when applicable, will offer a valuable
speedup.
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