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Abstract

This paper studies a resource allocation problem in a graph, concerning the joint optimization of capacity allocation d
and object placement decisions, given a single capacity constraint. This problem has applications in Internet content d
and other domains. The solution to the problem comes through a multi-commodity generalization of the single com
k-median problem. A two-step algorithm is developed that is capable of solving the multi-commodity case optim
polynomial time for the case of tree graphs, and approximately (within a constant factor of the optimal) in polynom
for the case of general graphs.
 2003 Elsevier B.V. All rights reserved.
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This paper studies a joint placement and dim
sioning problem in a content distribution netwo
(CDN) for the dissemination of Internet conte
A CDN operator has at its disposal a total storage
pacity forS unit-sized information objects. The targ
is to use this storage budget to selectively replicate
formation objects drawn from a set of available info
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ducing the required object placement not only ide
fies the set of information object for each node but a
returns the fraction of the total storage capacity t
must be allocated to each node. In [6] we have form
lated a specific instance of this problem and propo
heuristic algorithms for it.

The discussed problem will henceforth be cal
thecapacity allocation problem, abbreviated CAP. A
an abstract level, the goal of CAP is to select appro
ate locations for the installment of different types
facilities, under known topological and demand p
tern information and the constraint that the maxim
number of opened facilities (of all types) does not
ceed a given capacity. The name CAP owes muc
its application in allocating generic capacity units in

.
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network, with each capacity unit being able to host a
single facility chosen among a set of available types.
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Arya et al. [1] have given the first polynomial constant
factor approximation algorithm for thek-median in a
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Multi-commodity placement problems that ha
appeared in the literature differ substantially from
stated CAP problem. Korupolu et al. [5] have stud
a multi-commodity object placement problem in a tr
and given an exact polynomial time algorithm f
it. This work differs from our’s in that it consider
per-node capacity constraints and assumes a spe
distance metric called ultra-metric. Under the ult
metric, the distance between any two nodes eq
the diameter of the smallest subtree containing b
nodes. This is actually an approximate notion
distance and is not as precise as the usually emplo
notion of distance (length of a shortest path connec
two nodes). Here we allow for an additional degree
freedom by allowing the algorithm to dimension t
nodes along with the placement of objects and ass
a general metric space for distance. Notice tha
solution to CAP does not stem from a trivial extens
of [5], as the latter cannot guarantee a total alloca
capacity. More recently Baev and Rajaraman
have provided approximation algorithms for mul
commodity placement in general graphs. Their w
too considers per-node capacity constraints.

In the sequel thek-median problem is introduced
followed by a formal statement of CAP and the p
sentation of the two-step algorithm for its solutio
A distinctive characteristic of the two-step algorith
is that it depends on the specific properties of the s
ied graph only through the specifick-median algo-
rithm that it uses as a building block. This allows fo
unified treatment of trees and general graphs. Usi
polynomial time exact algorithm for thek-median in a
tree in conjunction with the two-step algorithm lea
to a polynomial time exact algorithm for CAP in
tree. For general graphs, the combination of a poly
mial time approximation algorithm fork-median and
the two-step algorithm leads also to a polynomial ti
approximation algorithm for CAP. In view of the fa
that CAP is NP-hard for general graphs (it reduce
k-median when considering only one type of facilit
the resulting approximation becomes particularly
teresting as it has the property of retaining the go
properties of the employedk-median algorithm. It is
in fact possible to directly construct a constant f
tor approximation algorithm for CAP by employing
constant factor approximation algorithm fork-median.
general graph, with an approximation ratio of 3+ 2/p
(p is a parameter of the local search heuristic e
ployed in the work of Arya et al.). Using this algorith
in conjunction with the two-step algorithm leads to
3+ 2/p approximation for CAP in a general graph.
effect, the two-step algorithm is able to guarantee
CAP an approximation ratio that is as good as the
for thek-median.

2. The k-median problem

Consider an undirected connected graphG = (V ,E)

with node setV = {v1, . . . , vn} and edge setE. Each
edge is associated to a non-negative weight and
length of a path inG is equal to the sum of the weigh
of all edges in the path. Letd(vi, vi′ ) denote the dis
tance between a pair of nodes(vi, vi′ ), given by the
length of a shortest length path connectingvi andvi′ .
Each node has a demand forri units of service from
its closestsupply node. A k-placement,P (k), is a set
of no more thank nodes out of the totaln that are
selected to act as supply nodes, offering service
the client nodes (a node may be both a client an
supply node). LetP(k) denote the set of all possib
k-placements. Thek-median problem amounts to s
lecting an optimalk-placement,P (k) ∈ P

(k), that min-
imize the weighted sum of distances from all nod
(clients) to the their closest supply node, i.e., minim

φ(P (k))=
∑
vi∈V

ri · min
u∈P (k)

d(vi, u), P (k) ∈ P
(k). (1)

This is equivalent to maximizing

ψ(P (k))=
∑
vi∈V

ri · (dw − min
u∈P (k)

d(vi, u)
)
,

P (k) ∈ P
(k), (2)

wheredw is a constant. Kariv and Hakimi [3] hav
proved thatk-median is NP-hard for general graph
They showed however that for undirected trees
problem can be solved in O(k2n2). More recently the
complexity of the undirected tree version has be
reduced to O(kn2) by Tamir [10]. For directed tree
the problem has been solved in O(k2P) by Vigneron
et al. [11], for the specific type of directed trees wh
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all edges are directed upwards towards the root (here
P denotes the path length of the tree which is O(n2)

[7]
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(jh, kjh)-placements,P
(kjh )

jh
, 1 � h � R � S, with R

members, having the property:
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g
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in the worst case). For the case ofk-median in a
general graph and metric distance, Lin and Vitter
gave a (2(1+ ε),1+ (1/ε))-approximation algorithm
and Korupolu et al. [4] gave a(1 + ε,3 + 5/ε) and
a (1 + 5/ε,3 + ε)-approximation algorithm.1 More
recently Arya et al. [1] gave a(3 + 2/p) polynomial
time approximation algorithm using no more thank
supply nodes (p is the maximum swap of facilitie
allowed by their local search procedure); this appe
to be the first constant factor approximation algorit
without blowup in the number of supply nodes.

3. The capacity allocation problem

The capacity allocation problem (CAP) is a gen
alization of thek-median problem, involving multiple
types of service and the requirement that all nodes
ceive all types of service, either locally, or from t
closest supply node for a given type of service.
the number of different services may exceed the t
number of allowed medians, an additional nodew is
introduced that lays outsideG and is capable of offer
ing all the types of service. Nodew is accessible by al
nodes inG at the same distancedw = d(v,w), v ∈ V ,
that is larger than the diameter ofG. For the purpose o
this paper it will be assumed that a service is the a
ity to offer a certain information object (e.g., a we
page) that is stored locally but this does not limit t
applicability of the model to other circumstances
well. There existN distinct unit-sized objects com
prising the object setO = {o1, . . . , oN }, oj denoting
the j th object. The demand of each nodevi is de-
scribed by a rate vector overO , ri = {ri1, . . . , riN },
rij denoting the rate at which nodevi requests ob
ject oj . The origin nodew is assumed to be holdin

the entire object setO . A (j, k)-placement,P (k)
j , is

a set of no more thank nodes out of the totaln that
are selected as supply nodes for objectoj . Let P

(k)
j

denote the set of all possible(j, k)-placements. An

S-placement,P (S) = {P (kj1)

j1
, . . . ,P

(kjR )

jR
}, is a set of

1 A (a, b)-approximation algorithm is a polynomial time algorithm th
computes a solution using at mostb · k supply nodes and with distance
most a times worse than the distance under the optimal algorithm usink

supply nodes.
R∑
h=1

kjh � S, kjh > 0,∀h.

A node-object pair(u, oj ) is said to belong toP (S),
(u, oj ) ∈ P (S), if and only if there existsh: 1 � h �
R,jh = j, u ∈ P

(kjh )

jh
. Let P

(S) denote the set of a
possibleS-placements. CAP amounts to identifyin
an optimalS-placement,P (S) ∈ P

(S), that minimizes
the weighted sum of distances from all nodes to th
closest supply node, for all objects inO , i.e., minimize

f (P (S))=
∑
vi∈V

∑
oj∈O

rij · min
(u,oj )∈(P (S)∪w)

d(vi , u),

P (S) ∈ P
(S), (3)

P (S) has the property of maximizing the followin
expression.

g(P (S))

=
∑
vi∈V

∑
oj∈O

rij ·
(
dw − min

(u,oj )∈(P (S)∪w)
d(vi, u)

)

=
∑
vi∈V

∑
oj∈O:

∃u∈G:(u,oj )∈P (S)

rij

×
(
dw − min

(u,oj )∈P (S)
d(vi, u)

)
,

P (S) ∈ P
(S), (4)

min{f (P (S))} is equivalent to max{g(P (S))} because
g(P (S))= (dw · ∑n

i=1
∑N

j=1 rij )−f (P (S)). The tran-
sition from the first to the second line of (4)
because(dw − min(u,oj )∈(P (S)∪w) d(vi, u)) = 0 when
min(u,oj )∈(P (S)∪w) d(vi, u)= dw, i.e., for all objectsoj
that do not have a replica inG (i.e., for objectsoj that
there does not exist au ∈G such that(u, oj ) ∈ P (S)).
Using the function,

ψj

(
P
(k)
j

) =
∑
vi∈V

rij ·
(
dw − min

u∈P (k)
j

d(vi, u)
)
,

P
(k)
j ∈ P

(k)
j (5)

and the definition ofP (S), g(P (S)) may be re-written
as:

g(P (S))=
R∑

h=1

ψjh

(
P
(kjh )

jh

)
. (6)



ARTICLE IN PRESS
S0020-0190(03)00537-4/SCO AID:3014 Vol.•••(•••) P.4 (1-7)
ELSGMLTM(IPL):m3 v 1.181 Prn:12/01/2004; 14:33 ipl3014 by:PS p. 4

4 N. Laoutaris et al. / Information Processing Letters••• (••••) •••–•••

Notice that theψj () function of (5) is ak-median
objective function for objectoj ; its sole difference to
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the ψ() function of (2) is thatri is replaced byrij .

In effectψj (P
(k)
j ) captures the total gain in terms

reduced access distance achieved by placingk replicas
of objectoj in G thus not having to fetchoj from the
origin node but rather from a node inG. The function
g(P (S)) sums all the gains for theR individual objects
ojh, 1 � h � R that get to have at least one replica
the context of anS-placementP (S).

4. An exact algorithm for CAP

This section describes an exact solution algorit
for CAP. The algorithm involves two steps: (1) ade-
composition stepinvolving the solution of a serie
of k-median problems relating to the original CA
problem; (2) acomposition stepinvolving the selec-
tion of a number of optimal solutions from the fir
step, that when combined together yield the exact
timal solution for the original CAP. The decompo
tion step solves a sufficient number of single co
modityk-medianlocation problems. The composition
step is apacking problemthat selects among th
optimally solvedk-medians to construct an optim
S-placement.

4.1. Decomposition step:k-medians

In this stepN ·S′ k-medians, whereS′ = min{n,S},
are solved and their solutions stored for use in
second step. Specifically for each objectoj ∈ O a
series ofS′ k-medians, 1� k � S′, is solved using
an appropriate algorithm for the given type of gra
G. In fact the largest possible median of theoj series,
i.e., the one withk = n, occurring only whenS � n,

Table 1

The six columns of the table contain the following information: (1) typ
then nodes. LetGjk denote thegain underP (k)
j , the

optimal placement ofk replicas of objectoj in G.Gjk

is defined to be the difference between the maxim
sum of distances incurred when all nodes fetchoj
fromw minus the minimum sum of distances incurr
when k replicas ofoj are installed inG optimally,
thus:

Gjk = max
P
(k)
j ∈P

(k)
j

ψj

(
P
(k)
j

)
. (7)

TheGjk values are the input of the subsequent s
that decides how many replicas from each objec
include in the finalS-placement.

The complexity of the decomposition step depe
on the properties of the studied graph. LetFG(k,n)

denote the asymptotic complexity of solving thek-
median problem in a graphG with n nodes, using the
best algorithm for the specific type ofG. Then solving
S′ � n − 1 k-medians for each objectoj , 1� j � N ,
independently, would lead to an overall complex
O(nN ·FG(n−1, n)) for the decomposition step. Th
complexity can be reduced to O(N · FG(n − 1, n))
for algorithms that solve thek-median using dynami
programming which by construction solves all t
smallerk′-medians, 1� k′ < k, in order to solve the
k-median. The algorithms of Tamir and Vigneron et
fall in this category and thus allow to solve the ent
series ofk-medians for a given objectoj—“all-in-
once”—by solving only the largest problem, i.e., t
S′-median. The third and the fourth columns of Tabl
summarize the complexity of thek-median (FG(k,n))
and of the resulting decomposition step (that uses
k-median algorithm of the previous column), for t
following cases: directed tree, undirected tree,
general graph.
e of the studied graphG; (2) type of available solutions for thek-median
at
ynamic
and CAP for the given type ofG; (3) complexity of bestk-median algorithm forG; (4) complexity of the decomposition step of CAP th
uses thek-median algorithm of the previous column; (5) complexity of the composition (packing) step of CAP using the general d
programming algorithm; (6) overall complexity of CAP

Graph Solution Singlek-median Decomposition Composition Overall CAP

undirected tree exact O(kn2) (Tamir) O(n3N) O(n2N2) O(max{n3N,n2N2})
directed tree exact O(k2n2) (Vigneron) O(n4N) O(n2N2) O(max{n4N,n2N2})
general approx. O(np) (Arya) O(np+1N) O(n2N2) O(max{np+1N,n2N2})



ARTICLE IN PRESS
S0020-0190(03)00537-4/SCO AID:3014 Vol.•••(•••) P.5 (1-7)
ELSGMLTM(IPL):m3 v 1.181 Prn:12/01/2004; 14:33 ipl3014 by:PS p. 5

N. Laoutaris et al. / Information Processing Letters••• (••••) •••–••• 5

4.2. Composition step: a packing problem
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In this step the following packing problem, which
a special type of integer linear program (ILP), is solv
optimally by appropriate polynomial time algorithm

Maximize:

N∑
j=1

S ′∑
k=1

Gjk · Yjk. (8)

Subject to:

S ′∑
k=1

Yjk � 1, 1 � j �N (9)

and,

N∑
j=1

S ′∑
k=1

k · Yjk � S, (10)

Yjk ∈ {0,1}, 1 � j � N, 1 � k � S′ is a binary in-
teger variable taking the value one if and only if t
optimal (j, k)-placement,P (k)

j , is selected for inclu-

sion in the optimalS-placement,P (S), for CAP. For
this packing problem two exact polynomial time alg
rithms are described; the first is a dynamic progra
ming algorithm appropriate for all instances of CA
while the second is a greedy algorithm that yields
exact optimal solution for a broad family of CAP in
stances having concaveGjk ’s. When applicable, the
greedy algorithm provides for a substantial reduct
of complexity as compared to the more general
namic programming algorithm.

4.2.1. Exact dynamic programming algorithm for th
packing problem

Fig. 1 gives an illustrative abstraction of the pac
ing problem described in the aforementioned ILP f
mulation. There areN “boxes” with indicesj , 1 �
j � N , and each box containsS′ “objects” of typej
with indices(j, k), 1� k � S′. Object(j, k) of box j
has avalueGjk and aweightk. There is also a knap
sack that can hold a weight that is at most equal toS.
The packing problem amounts to filling the knapsa
(constraint (10)) by selecting at most one object fr
each box (constraint (9)) such that the total value
the objects that fit in the knapsack be maximized (
jective function (8)). This description resembles mu
Fig. 1. The packing problem involved in the composition step

the 0/1 knapsack problem [8,9] with the main diffe
ence be that whereas in the 0/1 knapsack there is onl
one object of typej , here there areS′ objects of type
j each having its own weight and value. This pack
problem can be solved by an appropriately modifi
version of the dynamic programming algorithm th
solves the original 0/1 knapsack [9].

DefineV [j, s] to be the maximum value of the ob
jects that fit into a knapsack of sizes when the selec
tion is confined among objects of type 1, . . . , j, 1 �
j � N and 0� s � S. The objective is to identify
V [N,S] and the selection of objects that leads to
First define the initial conditions:

V [j,0] = 0, 1� j �N,

V [1, s] =
{
G1,s, if 1 � s � S′,
G1,S ′, if S′ < s � S.

Now define the recursive relationship for the ca
2 � j �N, 1 � s � S:

V [j, s]
= max

{
V [j − 1, s],

max
1�k�min{s,S ′}

{
V [j − 1, s − k] +Gjk

}}
.

(11)

Proposition 1. The dynamic programming algorithm
defined by the recursive equation(11)solves optimally
the packing problem defined by Eqs.(8)–(10).

The proof is a straightforward generalization of t
proof of the correctness of the dynamic programm
solution for the standard 0/1 knapsack problem and i
thus, omitted.

Since there areNS subproblemsV [j, s] to be
solved and each subproblem requires at mostS′ com-
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parisons to identify whether to add to the knapsack
one of the objects(j, k) of box j , the time complex-
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is the object of maximum weight that has already been
chosen from boxj at a prior iteration.
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ity of the packing problem is O(NSS′). In general
such an algorithm is called pseudopolynomial as
running time depends not only on the size of the
put (hereN,n) but on the magnitude of some of th
parameters as well (here onS). In the context of the
stated CAP problem, however, the parameterS is up-
per bounded byS � nN , capturing the fact that CAP
becomes meaningless when the available storage
pacity is larger than the minimum required to sto
all N objects on alln nodes of the graph. The up
per bound guarantees that the dynamic programm
algorithm will terminate in polynomial time. Usin
S � nN andS′ � n the complexity of the packing be
comes O(n2N2). Notice that this complexity does no
depend upon the type of graphG.

4.2.2. Exact greedy algorithm for the packing
problem under concaveGjk ’s

It is possible to reduce the complexity of th
packing problem to O(nN logN), for an interesting
family of CAP instances involvingGjk ’s that are
concave with respect tok, for all oj ∈ O. This can
be achieved by replacing the dynamic programm
algorithm with a faster greedy algorithm that, howev
when operating on concaveGjk ’s is guaranteed to
be leading to an optimal solution for the packi
problem.

The concaveness ofGjk ’s implies that the “val-
ue” of adding more capacity is progressively decl
ing. This is the case under many topologies and
quest patterns. The test for concaveness may be
plemented at no additional cost while computing
Gjk ’s at the first step. When the test succeeds, the
lowing sketched greedy algorithm may be employ
for solving the packing problem.

The algorithm assigns the total capacity in exac
S iterations, with each iteration assigning an additio
capacity unit. The first unit goes to the object th
has the largestGj1, 1� j � N . Then each additiona
unit goes to an object of typej∗, if and only if the
incremental gainfor j∗, Gj∗k+1 −Gj∗k , is larger than
any other available incremental gain for any other ty
of object. Referring back to Fig. 1, this amounts
selecting object(j∗, k+1) instead of object(j∗, k), so
as to maximizeGjk+1−Gjk , 1� j �N , where(j, k)
-

The greedy mode of operation combined with
concaveness ofGjk ’s guarantee the identification o
the optimal solution. By using a max-heap data str
ture to store the largest available incremental gain
an unselected unit of each of theN distinct objects,
the algorithm can be implemented at a complexity
O(nN logN) (O(N) for the initial creation of the max
heap plusS � nN iterations with each iteration re
quiring O(logN) complexity to re-organize the max
heap). Notice that the greedy solution for the fractio
knapsack problem is not applicable here because
current packing problem involves objects with a no
constant per-unit value (the normalized per-unit va
of (j, k) decreases withk).

4.3. Correctness of the two-step algorithm

In this section it is established that the solution o
tained from the aforementioned two-step algorithm
an optimal solution to the CAP problem defined
Section 3. Informally, a description of the correctne
proof goes as follows. First it is shown that the o
jective function of CAP is separable with regard
the different objects. Then it is shown that an op
mal S-placement for CAP must contain only(j, k)-
placements that are optimal solutions tok-median
problems (for different objectsoj ). The last argumen
allows to limit the search for an optimalS-placement
to S-placements that contain only optimalk-median
(j, k)-placements. This reduces the original CAP
the packing problem solved in the composition step

Observation 1. The optimal(j, k)-placement,P (k)
j ∈

P
(k)
j , depends only onj for a givenk and graphG.

This can be verified by looking at Eq. (7) th
defines the gain underP (k)

j to be the maximum o

ψj (P
(k)
j ), P (k)

j ∈ P
(k)
j . Under givenk and graphG the

function ψj (P
(k)
j ) depends only onj throughrij ’s,

1 � i � n (see (5) for the definition ofψj(P
(k)
j )).

Proposition 2. Let the optimalS-placement beP (S) =
{Ṗ (kj1)

j1
, . . . , Ṗ

(kjR )

jR
}. ThenṖ

(kjh )

jh
=P (kjh )

jh
for 1 � h�

R.
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Proof. This can be shown via contradiction. Since
P (S) has been assumed to be optimal it must be

d

s
ust

r

en

the
P
on
of
is
y
) of

on
e

graph, while it obtains a constant factor approxima-
tion in polynomial time, in the case of an arbitrary

ex-
ice
m-
e-

be
m-
ck-
le

al
,
M

ta
p.

1,

k

of
in:
M

al-
0th
),

ac-
n,

ic
9.
n:
k,

o-

.
n
.

that g(P (S)) � g(P (S)) for all P (S) ∈ P
(S). Suppose

that there existsh′: 1 � h′ � R such thatṖ
(kj

h′ )
jh′ �=

P
(kj

h′ )
jh′ . A new solutionP(S) may then be constructe

by settingP
(kjh )

jh
= Ṗ

(kjh )

jh
for 1 � h � h′ − 1 and

h′ + 1 � h � R and settingP
(kj

h′ )
jh′ = P

(kj
h′ )

jh′ . Since

ψjh′ (P
(kjh′ )
jh′ ) = ψjh′ (P

(kjh′ )
jh′ ) > ψjh′ (Ṗ

(kjh′ )
jh′ ) it turns

that g(P(S)) > g(P (S)) which is a contradiction a
P (S) has been assumed to be optimal. Thus it m

be thatṖ
(kjh′ )
jh′ =P

(kjh′ )
jh′ for all 1 � h′ �R. ✷

Having established that an optimalS-placement
P (S) contains only optimal(j, k)-placementsP (k)

j it

becomes possible to limit the search forP (S) in P̃
(S) ⊂

P
(S) where P̃

(S) denotes the set ofS-placements
that contain only optimal(j, k)-placements. Thus fo
the identification ofP (S) it suffices to look for the
S-placement that maximizes the following re-writt
expression for theg(P (S)) of (6):

g(P (S))=
R∑

h=1

Gjhkjh
, P (S) ∈ P̃

(S). (12)

Proposition 3. Let the optimalS-placement beP (S) =
{P (kj1)

j1
, . . . ,P (kjR )

jR
}. Then,

P (S) = {
P (kj1)

j1
, . . . ,P (kjR )

jR

} ⇐⇒ Yjhkjh
= 1,

1 � h�R.

Proof. The equivalence is a direct consequence of
following two facts: (1) The objective function of CA
given in Eq. (12) is equivalent to the objective functi
of the composition step given in Eq. (8) (by way
constraint (9)); (2) the optimal solution of CAP
known to be included iñP(S) which matches exactl
the feasible region defined by constraints (9), (10
the composition step.✷

5. Concluding remarks

The two-step algorithm finds an optimal soluti
to CAP in polynomial time, in the case of a tre
graph. The last column of Table 1 summarizes the
act overall complexity for the various cases. Not
that the final complexity is dominated by the co
plexity of the most complex step, which in turn d
pends on the relative magnitude ofn,N for specific
applications. In problems havingN � n (e.g., web
caching, content distributions, see Section 1) it will
the packing problem that dominates the overall co
plexity. In such cases the greedy solution to the pa
ing problem, when applicable, will offer a valuab
speedup.
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