
The densest k-subgraph problem on clique graphs

M. Liazi1⋆, I. Milis2, F. Pascual3 and V. Zissimopoulos1

1 Department of Informatics and Telecommunications,

University of Athens, 157 84 Athens, Greece

{mliazi,vassilis}@di.uoa.gr

2 Department of Informatics,

Athens University Economics and Business,

104 34 Athens, Greece

milis@aueb.gr

3 IBISC, University of Évry,

523, Place des Terrasses de l’agora,

91000 Évry, France

fpascual@lami.univ-evry.fr

Abstract. The Densest k-Subgraph (DkS) problem asks for a k-vertex subgraph of a given graph

with the maximum number of edges. The problem is strongly NP-hard, as a generalization of the well

known Clique problem and we also know that it does not admit a Polynomial Time Approximation

Scheme (PTAS). In this paper we focus on special cases of the problem, with respect to the class of

the input graph. Especially, towards the elucidation of the open questions concerning the complexity

of the problem for interval graphs as well as its approximability for chordal graphs, we consider graphs

having special clique graphs. We present a PTAS for stars of cliques and a dynamic programming

algorithm for trees of cliques.

Key Words: Densest k-subgraph, Clique graph, Polynomial Time Approximation Scheme, Dynamic

programming

1 Introduction

In the Densest k-subgraph (DkS) problem we are given a graph G = (V, E), |V | = n, and

an integer k ≤ n, and we ask for a subgraph of G induced by exactly k of its vertices such

⋆ The project is co-financed within Op. Education by the ESF (European Social Fund) and National Resources.

that the number of edges of this subgraph is maximized. The problem is directly NP-hard

as generalization of the well known Maximum Clique problem. In the weighted version of

the DkS we also given non negative weights on the edges of G and the goal is to find a

k-vertex induced subgraph of maximum total edge weight.

During last years a large body of work [2, 3, 5–7, 10, 14, 19, 20] has been concentrated on

the design of approximation algorithms for both the DkS problem and its weighted version,

based on a variety of techniques including greedy algorithms, LP relaxations and semidef-

inite programming. For a brief presentation of this body of work the reader is referred to

the most recent of these articles [3]. However, the best known approximation ratio for the

DkS problem, which performs well for all values of k, is O(nδ), for some δ < 1

3
[5]. On the

other hand, it has been shown that the DkS problems does not admit a Polynomial Time

Approximation Scheme (PTAS) [13]. However, there is not a negative result that achieving

an approximation ratio of O(nǫ), for some ǫ > 0, is NP-hard. Concerning approximation

algorithms for special cases of the problem it is known that the DkS problem admits a

PTAS for graphs of minimum degree Ω(n) as well as for dense graphs (of Ω(n2) edges)

when k is Ω(n) [1]. Moreover, algorithms achieving approximation factors of 4 [18] and

2 [11] have been proposed for the weighted DkS problem on complete graphs where the

weights satisfy the triangle inequality.

The DkS problem is trivial on trees (any subtree of k vertices contains exactly k − 1

edges). It is also known that DkS is polynomial for graphs of maximal degree two [7] as

well as for cographs, split graphs and k-trees [4]. On the other hand the DkS problem

remains NP-hard for bipartite graphs [4], even of maximum degree three [7], as well as for

comparability graphs, chordal graphs [4] and planar graphs [12]. The weighted version of

the DkS problem is polynomial on trees either if we ask for a connected solution [9, 15, 16]

or not [17]. In fact, the result for the later case is implied by a result for the solution of

the quadratic 0-1 knapsack problem on edge series-parallel graphs in [17].

An outstanding open question concerns the complexity of the DkS problem on interval

graphs as well as its approximability for chordal graphs. Towards this direction we focus,

in this paper, on chordal or interval graphs having special clique graphs. A clique of an

undirected graph, G = (V, E), is a subset of its vertices inducing a complete subgraph in

G. The intersection graph of a family, F , of subsets of a set is defined as a graph, G, whose

vertices correspond to the subsets in F , and there is an edge between two vertices of G if

the corresponding pair of subsets intersect. Given these definitions, the clique graph of a

graph G is defined as the intersection graph of the maximal cliques of G. It is well known

that all maximal cliques, and hence the clique graph, of a chordal graph can be found in

polynomial time [8]. It is, clearly, convenient to study the DkS problem on the clique graph

of a chordal graph G instead on the G itself.

In this paper we consider chordal or interval graphs having special clique graphs, in

order to further identify the frontier between hard and polynomial solvable/approximable

variants of the the DkS problem. In the next section we present a PTAS for graphs that

having as clique graph a star (star of cliques) and in Section 3 we present an O(nkm+1)

time dynamic programming algorithm for graphs having as clique graph a tree (tree of

cliques) of maximum degree m. This algorithm gives an O(nk3) time algorithm for graphs

having as clique graph a path (path of cliques). Note that, in general, stars of cliques as

well as trees of cliques are neither graphs of minimum degree Ω(n) nor dense graphs (of

Ω(n2) edges) for which a PTAS is already known [1].

2 The DkS problem on stars of cliques

In this section we study graphs having as clique graph a star of cliques. Let C0, C1, . . . , Cm−1

be the maximal cliques of such a star such that C0 intersects with each other clique and

no other intersection exists (by convention we denote by Ci both the clique Ci and the set

of its vertices). Since such a star is the clique graph of a graph G, there is no edge of G

between vertices belonging to different cliques.

We shall call the C0 central clique and all other cliques, Ci, 1 ≤ i ≤ m − 1, exterior

cliques. For each exterior clique Ci we denote by ai the number of vertices in its intersection

with C0 i.e., ai = |Ci∩C0| and by bi the number of its vertices outside C0 i.e., bi = |Ci|−ai >

0. By C ′
0 we denote the clique consisting of the vertices of C0 not belonging to any other

clique i.e., C ′
0 = C0 \

⋃m−1

i=1
Ci.

By S we denote a solution to the DkS problem i.e., a subset of |S| = k vertices, and by

E(S) we denote the number of edges in the subgraph induced by S. By S∗ we denote an

optimal solution to the DkS problem. By n > k is denoted the total number of vertices in

all cliques.

We say that a clique Ci, 0 ≤ i ≤ m − 1, is completely in a solution S if all its vertices

are in S. On the other hand, we say that the cliques C0 and C ′
0 are partially in a solution

S if a non-empty subset of their vertices, but not all, are in S. However, we say that an

exterior clique Ci, 1 ≤ i ≤ m − 1, is partially in S if a non-empty subset of its Ci \ C0

vertices, but not all, are in S. We distinguish the definition of the partial inclusion in a

solution S for an exterior clique Ci because if only some of its Ci ∩ C0 vertices are in S,

they can be considered as vertices of C0. In general we say that a clique is participating in

a solution S if it is either completely or partially in S.

Concerning an optimal solution S∗ we observe that if an exterior clique Ci is partially

in S∗, then all its |Ci ∩ C0| = ai vertices are in S∗. Otherwise replacing a vertex y ∈

Ci \ C0, y ∈ S∗ by a vertex x ∈ Ci ∩ C0, x /∈ S∗ yields a better solution, a contradiction.

In the following we assume that:

(i) k > |Ci|, i = 0, 1, . . . , m − 1. Otherwise S∗ consists of any subset of k vertices of some

clique for which |Ci| ≥ k.

(ii) m > 2. For m = 1 the point (i) holds. For m = 2, if k > |C0| ≥ |C1|, then S∗ consists

of the vertices of C0 plus any subset of k − |C0| vertices of C1 \ C0.

Using these definitions and assumptions we give in the next propositions some structural

properties of an optimal solution S∗.

Proposition 1. At most one of the cliques C ′
0, C1, . . . , Cm−1 is partially in an optimal

solution.

proof: We prove first that at most one of the exterior cliques is partially in S∗. Suppose

that two exterior cliques Ci, Cj, 1 ≤ i 6= j ≤ m− 1 are partially in S∗ and assume w.l.o.g.

that |S∗ ∩ Ci| ≥ |S∗ ∩ Cj|.

Let x /∈ S∗ be a vertex in Ci \C0 and y ∈ S∗ be a vertex in Cj \C0. Then consider the

solution S in which we replace y by x. Then, E(S) = E(S∗)− (|S∗ ∩Cj| − 1) + |S∗ ∩Ci| ≥

E(S∗) + 1, a contradiction to the optimality of S∗.

To complete the proof it suffices to prove that is not possible both clique C ′
0 and an

exterior clique Cj to be partially in S∗. This fact follows by using the same arguments as

before, but now we consider C0 instead of Ci and x /∈ S∗ to be a vertex in C ′
0. �

Proposition 2.

(i) If C0 is the largest clique i.e., |C0| > |Ci|, 1 ≤ i ≤ m − 1, then C0 belongs completely

to every optimal solution.

(ii) If C0 is partially in an optimal solution S∗, then |C0| ≤ |Ci| for every clique Ci

participating in S∗.

proof:

(i) Suppose that S∗ does not contain some q > 0 vertices of C0 and consider a solution

S obtained from S∗ by replacing q vertices of exterior cliques not in C0 by the q vertices

of C0 not in S∗. Let us denote by E− and E+ the number of edges which are removed

and inserted, respectively, to E(S∗) by this replacement. Then, E(S) = E(S∗)−E− +E+.

E− equals to the number of edges that q vertices of exterior cliques contribute to E(S∗).

This number, even if all the q vertices belong to the same exterior clique, is strictly less

than
(

q

2

)

+ (|C0| − q)q. On the other hand, E+ equals to the number of edges that the q

vertices of C0 not in S∗ will contribute to E(S). This number is equal to
(

q

2

)

+(|C0| − q)q.

Therefore, E(S) > E(S∗), a contradiction to the optimality of S∗.

(ii) Suppose that there is an exterior clique Ci in S∗ such that |C0| > |Ci| and that S∗

does not contain some q > 0 vertices of C0. Notice that |C0|− q > ai, since if |C0|− q ≤ ai,

then no other exterior clique participates in S∗, that is S∗ is part of a single clique (either

Ci or C0).

Consider a solution S obtained from S∗ by replacing vertices of S∗ ∩ Ci not in C0 by

vertices of C0 not in S∗. Let b′i = |S∗ ∩ (Ci \ C0)|, 0 < b′i ≤ bi. Using again E− and E+

as in part (i) we have E(S) = E(S∗) − E− + E+. Now we distinguish between two cases

w.r.t. the values of q and b′i.

If q ≥ b′i then E− equals to the number of edges that b′i vertices of the exterior clique

Ci contributes to E(S∗) while E+ equals to the number of edges that the b′i vertices of C0

not in S∗ will contribute to E(S). Then E(S) = E(S∗) − E− + E+ = E(S∗) − (
(

b′i
2

)

+

b′i ai) + (
(

b′i
2

)

+ b′i(|C0| − q)) = E(S∗) + b′i((|C0| − q) − ai) > E(S∗), a contradiction to the

optimality of S∗.

If q < b′i then E− equals to the number of edges that q vertices of the exterior clique Ci

contributes to E(S∗) while E+ equals to the number of edges that the q vertices of C0 not

in S∗ will contribute to E(S). Then E(S) = E(S∗)−E− +E+ = E(S∗)− (
(

q

2

)

+ q(ai + b′i−

q)) + (
(

q

2

)

+ q(|C0| − q)) = E(S∗) + q(|C0| − (ai + b′i)) ≥ E(S∗) + q(|C0| − |Ci|) > E(S∗), a

contradiction to the optimality of S∗. �

Despite the nice structural properties of an optimal solution in Propositions 1 and 2,

many natural greedy criteria based on the sizes of the cliques or/and the sizes of intersec-

tions fail to give such an optimal solution. In the following we are able to give a polynomial

time dynamic programming algorithm for the case where the central clique is completely

in the optimal solution and a PTAS for the general case.

2.1 Clique C0 is completely in the optimal solution.

Lemma 1. If clique C0 is completely in the optimal solution, then there is an O(nk2)

dynamic programming algorithm for the DkS problem on a star of cliques.

proof: Since clique C0 is completely in the optimal solution we have to choose k′ = k−|C0|

vertices from exterior cliques. If we choose q vertices from an exterior clique Cj , then they

contribute q · aj +
(

q

2

)

edges to the solution.

Let f(i, j) be the maximum number of edges in a solution choosing i vertices from the

first j exterior cliques (recall that there are m−1 exterior cliques). Thus for i = 0, 1, 2, . . . , k′

and j = 2, 3, . . . , m − 1

f(i, j) = max
0≤q≤min{i,bj}

{f(i − q, j − 1) + q · aj +
(q

2

)

}

For j = 1 the following boundary conditions hold for 0 ≤ i ≤ min{k′, b1}

f(i, 1) =

(

i

2

)

+ i · a1, if i ≤ min{k′, b1}

−∞, otherwise

The complexity of the dynamic programming algorithm is O(nk2). The computation of a

single f(i, j) value takes O(k) time due to the possible values of q (0 ≤ q ≤ min{i, bj} ≤

k′ < k) and f(i, j) values are computed for every i ≤ k′ < k and j ≤ m − 1 < n. The

optimal solution, for the DkS problem is f(k′, m − 1) +

(|C0|
2

)

. �

Notice that if C0 is the largest clique, then, by Proposition 2(i), C0 belongs completely

to every optimal solution and the above dynamic programming algorithm applies.

2.2 A PTAS for the general case.

In the general case, C0 is partially in the optimal solution and, by Proposition 2(i), there

are exterior cliques larger than C0. Let c be the number of those cliques of size at least

|C0|. Moreover, by Proposition 2(ii), the cliques participating in the optimal solution are

some of these c cliques. Next proposition gives a weak upper bound for the number c.

Proposition 3. If C0 is partially in an optimal solution, then the number of exterior

cliques of size at least |C0| is at most
√

n.

proof: The number, c, of exterior cliques is smaller than or equal to |C0|, since Ci∩C0 6= ∅

and Cj ∩ Ci = ∅, 1 ≤ i 6= j ≤ m − 1. Thus, if |C0| ≤
√

n, then c ≤ √
n. Otherwise

|C0| >
√

n. Then, the total number of vertices in these c cliques is at least c ×√
n and at

most n. Hence, c ≤ √
n. �

To proceed towards a PTAS we argue further on the number of the exterior cliques of

size at least |C0|. We define r = ⌊ k
|C0|

⌋. Then the number of exterior cliques of size at least

|C0| that can be involved in an optimal solution is at most r. Let also δ be a fixed number

which will be defined later. Comparing r with δ we distinguish between two cases.

Case 1: r < δ

If r is ”small”, then we proceed in an exhaustive manner. We examine all the possible sets

of r cliques out of c cliques of size at least |C0| i.e.,
(

c

r

)

sets of cliques. A technical detail

here is that clique C ′
0 should be also considered as one of the c cliques. It can be easily

done by considering clique C ′
0 as an external clique with zero vertices outside clique C0.

By Proposition 3 it follows that the number of all the
(

c

r

)

sets of cliques is O(n
r
2). For

each one of these sets of r cliques we compute the k vertices that maximize the number of

edges as follows:

Let R be a set of r cliques. By Proposition 1, at most one of the cliques in R is partially

in S∗. We consider all the 2r − 1 subsets of R. Let Ri be one of these subsets and let Cj
i be

the jth, 1 ≤ j ≤ |Ri|, clique of the set Ri. Clearly if
∑|Ri|

j=1
|Cj

i | < k, we discard the set Ri.

Otherwise, let k(j) =
∑|Ri|

t=1,t6=j |Ct
i |, for each j = 1, 2, . . . , |Ri|. If k(j) > k then we discard

this j. Otherwise (if k(j) ≤ k) we obtain a k-vertex solution by taking k − k(j) vertices

from clique Cj
i , starting from vertices which belong to its intersection with C0.

Consider now all the solutions obtained for each j = 1, 2, . . . , |Ri|, and for each Ri ⊆ R.

By their construction, these solutions are all the possible k-vertex solutions for the set R

of cliques, under the restriction that at most one of them is partially taken. Therefore, to

find the optimal solution we simply have to choose the one with the maximum number of

edges.

For a set R of r cliques, there are 2r − 1 subsets Ri, and for each subset there are at

most r possible solutions. Therefore, the number of solutions to compare is O(r 2r).

Recalling that we have to examine O(n
r
2) sets of r cliques, the next lemma follows.

Lemma 2. For the case r < δ, δ be a fixed number, an optimal solution for the DkS prob-

lem in a star of cliques can be found in O(r 2r n
r
2) time.

Case 2: r ≥ δ

If r is ”large”, then we proceed in a greedy manner. We consider the solution, S, obtained

by the following simple algorithm:

Let C1 ≥ C2 ≥ . . . ≥ Cm−1 and t be the largest integer number such that k ≥ ∑t

i=1
|Ci| =

k′.

Return all the vertices of the cliques C1 ≥ C2 ≥ . . . ≥ Ct and k−k′ vertices of clique Ct+1.

Next proposition for the case of independent cliques will be useful for bounding the

deviation of our solution from the optimal one.

Proposition 4. Let R1 and R2 be two sets of independent cliques with all cliques in R1

of size at least L and all cliques in R2 of size exactly L. For any pair of sets of k vertices

S1 and S2 in R1 and R2, respectively, such that in both sets at most one clique is taken

partially, it holds that E(S1) ≥ E(S2).

proof: Transform S1 to an equivalent to S2 set as following. First, remove from each clique

in S1 some vertices such that each clique in S1 has now size exactly L. Let k′ the number

of the removed vertices. Then, replace the k′ vertices with ⌈k′

L
⌉ cliques, all, but one, of size

exactly L. All the removed vertices now have degree at most L − 1 while in S1 they had

degree at least L − 1. Thus, E(S1) ≥ E(S2). �

Let us now consider the solution S obtained by our algorithm. By Proposition 2(ii),

the optimal solution S∗ involves exterior cliques of size at least |C0|. Since our algorithm

finds a solution S by choosing k vertices from the larger exterior cliques, it follows that all

cliques in S are of size at least |C0|.

Moreover, since r = ⌊ k
|C0|

⌋, we need at least r cliques of size |C0| in order to fill k.

Hence, choosing k vertices from a set of independent cliques of size |C0|, yields at least

rE(C0) edges. Therefore, by Proposition 4, it follows that E(S) ≥ rE(C0).

Clearly, an optimal solution, S∗, could contain cliques of smaller size than those chosen

by our algorithm. These small cliques are selected by S∗ due to the edges between their

overlaps with C0. Since these edges belong to C0, the optimal solution cannot be greater

than E(S) plus the edges of C0 i.e.,

E(S∗) ≤ E(S) + E(C0) ≤ E(S) +
E(S)

r
≤ E(S) +

E(S)

δ
= E(S)

δ + 1

δ
.

Thus, next lemma follows.

Lemma 3. For the case r ≥ δ, where δ = 1−ǫ
ǫ

, 0 < ǫ < 1, there is an (1−ǫ)-approximation

algorithm for the DkS problem in a star of cliques.

The complexity of the greedy approximation algorithm of Lemma 3 is O(n logn). The

complexity of the exhaustive optimal algorithm of Lemma 2 is exponential in r ≤ δ = 1−ǫ
ǫ

,

that is exponential in 1

ǫ
. Hence, we obtain

Theorem 1. There is a polynomial time approximation scheme for the DkS problem in

stars of cliques.

3 The DkS problem on trees of cliques.

In this section we present a dynamic programming algorithm which yields an optimal

solution for the DkS problem for graphs having as clique graph a tree. Let C1, C2, ..., Ct be

the cliques of such a tree and m its maximum degree. We consider |Ci| < k, i = 1, . . . , t,

otherwise the problem is trivial.

We consider the tree rooted at a leaf clique, say clique Ct. This way the root clique

Ct has at least one vertex outside its intersections with its children cliques. Let Ci be a

non-leaf clique with mi ≥ 1 children, Ci1 , . . . , Cimi
. We denote by Qh the intersection of Ci

with its hth child clique, Ch, for h = i1, . . . , imi
i.e., Qh = Ci ∩ Ch. We denote by Fi the

intersection of the clique Ci with its father clique, Cf , in the tree i.e., Fi = Ci ∩Cf and by

Di the vertices of a clique Ci not belonging to any intersection i.e., Di = Ci−Fi−
⋃imi

h=i1
Qh.

By convention we consider Ft, for the root clique Ct, to be consisted of a single vertex i.e.,

|Ft| = 1.

The algorithm traverses the tree of cliques starting from the leaves cliques. In each step

it computes an optimal solution for all the j-vertex densest subgraph (DjS) problems, for

j = 1, ..., k, on the subtree rooted at clique Ci.

We denote by fi(j) the value of the optimal solution of the DjS problem on the subtree

rooted at clique Ci. By fi(j, a) we denote the value of an optimal solution to the DjS

problem on the subtree rooted at clique Ci including exactly a vertices from the clique Fi.

It is clear that

fi(j) = max
0≤a≤|Fi|

{fi(j, a)}.

To compute an fi(j, a) value for a non leave clique Ci we consider its children cliques

Ci1 , . . . , Cimi
, mi ≥ 1. Let fh(jh, ah) be the value of an optimal solution of the jh-vertex

densest subgraph, for jh = 1, 2, ..., k, on the subtree rooted at clique Ch, h = i1, . . . , imi
,

using ah vertices of Fh. Note that for the intersection of the clique Ci with its child Ch it

holds that Qh = Ci ∩ Ch = Fh. We compute the value of fi(j, a), as follows:

If a = 0, then no vertex of Fi ∪Di belongs to the optimal solution of the corresponding

DjS problem on the subtree rooted at Ci. Therefore, the value of this solution is the same

as the value of the optimal solution to the DjS problem on the subgraph which is the union

of the subtrees rooted at the children of Ci plus the edges between the vertices in their

Qh’s, that is

fi(j, a) = max
Pimi

h=i1
jh=j

{
imi
∑

h=i1

fh(jh, ah) +

imi
∑

i,j=i1
i6=j

ai · aj

2
}.

If a > 0, then an optimal solution to the DjS problem including a vertices of Fi can

also include b ≥ 0 vertices of Di, and ah ≥ 1 vertices 4 of each Qh, h = i1, . . . , imi
. Then,

fi(j, a) =

(

j

2

)

, if j ≤ ∑imi

h=i1
|Qh| + |Di| + a

max
a+b+

Pimi
h=i1

jh=j

{
imi
∑

h=i1

fh(jh, ah) +

(

a + b

2

)

+ (a + b)

imi
∑

h=i1

ah+

imi
∑

i,j=i1
i6=j

ai · aj

2
}, otherwise.

For all cliques Ci that are leaves in the tree the following boundary conditions hold for

1 ≤ j ≤ k:

If a = 0, then fi(j, a) = 0.

If 1 ≤ a ≤ |Fi|, then

fi(j, a) =

(

j

2

)

, if j ≤ |Di| + a

−∞, otherwise.

The algorithm terminates by computing the value ft(k) for the root clique Ct. Recall

that we consider |Ft| = 1 and thus the optimal solution for the k-vertex densest subgraph

problem is ft(k) = maxa=0,1{ft(k, a)}.

The computation of a single fi(j) value for a clique Ci with mi children takes O(kmi+1)

time due to the combinations of a, b and
∑imi

h=i1
jh, such that a + b +

∑imi

h=i1
jh = j. The

algorithm computes fi(j), for every j = 1, 2, ..., k and for every i = 1, 2, ..., t. Since in the

worst case t is O(n) and maxi{mi} = m − 1 the next theorem follows:

Theorem 2. There is an O(nkm+1) algorithm for the DkS problem on a tree of cliques of

maximum degree m.

4 or ah ≥ 0 for a disconnected solution.

Next corollary follows directly from Theorem 2.

Corollary 1. There is an O(nk3) optimal algorithm for the DkS problem on a path of

cliques.

4 Conclusions

We have presented a PTAS for the densest k-subgraph problem on a star of cliques and

an O(nkm+1) time optimal algorithm for the same problem on trees of cliques, where n is

the total number of vertices in all the cliques and m the maximum degree of the tree. This

last algorithm gives an O(nk3) optimal algorithm for paths of cliques. Since interval and

chordal graphs can be seen as clique graphs our result could be exploited in the direction

of exploring the complexity and the approximability of the DkS problem in these classes

of graphs.

Acknowledgment: The authors would like to thank the two anonymous referees for their

valuable comments that significantly improved the paper.

References

1. S. Arora, D. Karger, and M. Kaprinski. Polynomial time approximation schemes for dense instances of NP-hard

problems. In Proceedings of the 27th annual ACM symposium on Theory of Computing, pages 284–293, 1995.

2. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. Journal of Algorithms,

34(2):203–221, 2000.

3. A. Billionnet and F. Roupin. A deterministic algorithm for the densest k-subgraph problem using linear

programming. Technical Report No486, CEDRIC, CNAM-IIE, Paris, 2004.

4. D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied Mathematics,

9:27–39, 1984.

5. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410–421, 2001.

6. U. Feige and M. Langberg. Approximation algorithms for maximization problems arising in graph partitioning.

Journal of Algorithms, 41(2):174–211, 2001.

7. U. Feige and M. Seltser. On the densest k-subgraph problem. Technical Report CS97-16, Weizmann Institute,

1997.

8. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum

independent set of chordal graph. SIAM Journal on Computing, 1(2):180–187, 1972.

9. O. Goldschmidt and D. Hochbaum. k-edge subgraph problems. Discrete Applied Mathematics and Combina-

torial Operations Research and Computer Science, 74(2):159–169, 1997.

10. Q. Han, Y. Ye, and J. Zhang. An improved rounding method and semidefinite programming relaxation for

graph partition. Mathematical Programming, 92(3):509–535, 2002.

11. R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. Operations

Research Letters, 21(3):133–137, 1997.

12. J. M. Keil and T. B. Brecht. The complexity of clustering in planar graphs. Journal of Combinatorial

Mathematics and Combinatorial Computing, 9:155–159, 1991.

13. S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In Proceedings of

the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 136–145, 2004.

14. G. Kortsarz and D. Peleg. On choosing a dense subgraph. In Proceedings of the 34th Annual IEEE Symposium

on Foundations of Computer Science, pages 692–701, 1993.

15. F. Maffioli. Finding a best subtree of a tree. Technical Report 91.041, Politechnico di Milano, Dipartimento

di Elektronica, 1991.

16. Y. Perl and Y. Shiloach. Efficient optimization of monotonic functions on trees. SIAM Journal of Algebric

and Discrete Methods, 4(4):512–516, 1983.

17. D. J. Jr. Rader and G. J. Woeginger. The quadratic 0-1 knapsack problem with series-parallel support.

Operation Research Letters, 30(3):159–166, 2002.

18. S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems.

Operations Research, 42(2):299–310, 1994.

19. A. Srivastav and K. Wolf. Finding dense subgraphs with semidefinite programming. In Proceedings of the

International Workshop on Approximation Algorithms for Combinatorial Optimization, pages 181–191, 1998.

20. Y. Ye and J. Zhang. .519 approximation of dense-n/2-subgraph. Working Paper, Department of Management

Sciences, Henry B. Tippie College of Business, The University of Iowa, 1999.

