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Abstract The Densest k-Subgraph (DkS) problem asks for a k-vertex subgraph of
a given graph with the maximum number of edges. The problem is strongly NP-
hard, as a generalization of the well known Clique problem and we also know that
it does not admit a Polynomial Time Approximation Scheme (PTAS). In this paper
we focus on special cases of the problem, with respect to the class of the input graph.
Especially, towards the elucidation of the open questions concerning the complexity
of the problem for interval graphs as well as its approximability for chordal graphs,
we consider graphs having special clique graphs. We present a PTAS for stars of
cliques and a dynamic programming algorithm for trees of cliques.
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1 Introduction

In the Densest k-subgraph (DkS) problem we are given a graph G = (V ,E), |V | = n,
and an integer k ≤ n, and we ask for a subgraph of G induced by exactly k of its
vertices such that the number of edges of this subgraph is maximized. The problem is
directly NP-hard as generalization of the well known Maximum Clique problem. In
the weighted version of the DkS we also given non-negative weights on the edges of
G and the goal is to find a k-vertex induced subgraph of maximum total edge weight.

During last years a large body of work (Asahiro et al. 2000; Billionnet and
Roupin 2004; Feige et al. 2001; Feige and Langberg 2001; Feige and Seltser 1997;
Han et al. 2002; Kortsarz and Peleg 1993; Srivastav and Wolf 1998; Ye and Zhang
1999) has been concentrated on the design of approximation algorithms for both the
DkS problem and its weighted version, based on a variety of techniques including
greedy algorithms, LP relaxations and semidefinite programming. For a brief presen-
tation of this body of work the reader is referred to the most recent of these articles
(Billionnet and Roupin 2004). However, the best known approximation ratio for the
DkS problem, which performs well for all values of k, is O(nδ), for some δ < 1

3
(Feige et al. 2001). On the other hand, it has been shown that the DkS problems does
not admit a Polynomial Time Approximation Scheme (PTAS) (Khot 2004). How-
ever, there is not a negative result that achieving an approximation ratio of O(nε), for
some ε > 0, is NP-hard. Concerning approximation algorithms for special cases of
the problem it is known that the DkS problem admits a PTAS for graphs of minimum
degree Ω(n) as well as for dense graphs (of Ω(n2) edges) when k is Ω(n) (Arora
et al. 1995). Moreover, algorithms achieving approximation factors of 4 (Ravi et al.
1994) and 2 (Hassin et al. 1997) have been proposed for the weighted DkS problem
on complete graphs where the weights satisfy the triangle inequality.

The DkS problem is trivial on trees (any subtree of k vertices contains exactly k−1
edges). It is also known that DkS is polynomial for graphs of maximal degree two
(Feige and Seltser 1997) as well as for cographs, split graphs and k-trees (Corneil
and Perl 1984). On the other hand the DkS problem remains NP-hard for bipartite
graphs (Corneil and Perl 1984), even of maximum degree three (Feige and Seltser
1997), as well as for comparability graphs, chordal graphs (Corneil and Perl 1984)
and planar graphs (Keil and Brecht 1991). The weighted version of the DkS problem
is polynomial on trees either if we ask for a connected solution (Goldschmidt and
Hochbaum 1997; Maffioli 1991; Perl and Shiloach 1983) or not (Rader and Woegin-
ger 2002). In fact, the result for the later case is implied by a result for the solution
of the quadratic 0–1 knapsack problem on edge series-parallel graphs in (Rader and
Woeginger 2002).

An outstanding open question concerns the complexity of the DkS problem on in-
terval graphs as well as its approximability for chordal graphs. Towards this direction
we focus, in this paper, on chordal or interval graphs having special clique graphs.
A clique of an undirected graph, G = (V ,E), is a subset of its vertices inducing a
complete subgraph in G. The intersection graph of a family, F , of subsets of a set is
defined as a graph, G, whose vertices correspond to the subsets in F , and there is an
edge between two vertices of G if the corresponding pair of subsets intersect. Given
these definitions, the clique graph of a graph G is defined as the intersection graph
of the maximal cliques of G. It is well known that all maximal cliques, and hence the
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clique graph, of a chordal graph can be found in polynomial time (Gavril 1972). It is,
clearly, convenient to study the DkS problem on the clique graph of a chordal graph
G instead on the G itself.

In this paper we consider chordal or interval graphs having special clique
graphs, in order to further identify the frontier between hard and polynomial solv-
able/approximable variants of the DkS problem. In the next section we present a
PTAS for graphs that having as clique graph a star (star of cliques) and in Sect. 3
we present an O(nkm+1) time dynamic programming algorithm for graphs having
as clique graph a tree (tree of cliques) of maximum degree m. This algorithm gives
an O(nk3) time algorithm for graphs having as clique graph a path (path of cliques).
Note that, in general, stars of cliques as well as trees of cliques are neither graphs
of minimum degree Ω(n) nor dense graphs (of Ω(n2) edges) for which a PTAS is
already known (Arora et al. 1995).

2 The DkS problem on stars of cliques

In this section we study graphs having as clique graph a star of cliques. Let
C0,C1, . . . ,Cm−1 be the maximal cliques of such a star such that C0 intersects with
each other clique and no other intersection exists (by convention we denote by Ci

both the clique Ci and the set of its vertices). Since such a star is the clique graph of
a graph G, there is no edge of G between vertices belonging to different cliques.

We shall call the C0 central clique and all other cliques, Ci, 1 ≤ i ≤ m−1, exterior
cliques. For each exterior clique Ci we denote by ai the number of vertices in its
intersection with C0, i.e., ai = |Ci ∩ C0| and by bi the number of its vertices outside
C0, i.e., bi = |Ci | − ai > 0. By C′

0 we denote the clique consisting of the vertices of

C0 not belonging to any other clique, i.e., C′
0 = C0 \ ⋃m−1

i=1 Ci .
By S we denote a solution to the DkS problem, i.e., a subset of |S| = k vertices,

and by E(S) we denote the number of edges in the subgraph induced by S. By S∗ we
denote an optimal solution to the DkS problem. By n > k is denoted the total number
of vertices in all cliques.

We say that a clique Ci, 0 ≤ i ≤ m − 1, is completely in a solution S if all its
vertices are in S. On the other hand, we say that the cliques C0 and C′

0 are partially in
a solution S if a non-empty subset of their vertices, but not all, are in S. However, we
say that an exterior clique Ci, 1 ≤ i ≤ m − 1, is partially in S if a non-empty subset
of its Ci \C0 vertices, but not all, are in S. We distinguish the definition of the partial
inclusion in a solution S for an exterior clique Ci because if only some of its Ci ∩ C0
vertices are in S, they can be considered as vertices of C0. In general we say that a
clique is participating in a solution S if it is either completely or partially in S.

Concerning an optimal solution S∗ we observe that if an exterior clique Ci is
partially in S∗, then all its |Ci ∩ C0| = ai vertices are in S∗. Otherwise replacing a
vertex y ∈ Ci \ C0, y ∈ S∗ by a vertex x ∈ Ci ∩ C0, x /∈ S∗ yields a better solution,
a contradiction.

In the following we assume that:

(i) k > |Ci |, i = 0,1, . . . ,m − 1. Otherwise S∗ consists of any subset of k vertices
of some clique for which |Ci | ≥ k.
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(ii) m > 2. For m = 1 the point (i) holds. For m = 2, if k > |C0| ≥ |C1|, then S∗
consists of the vertices of C0 plus any subset of k − |C0| vertices of C1 \ C0.

Using these definitions and assumptions we give in the next propositions some
structural properties of an optimal solution S∗.

Proposition 1 At most one of the cliques C′
0,C1, . . . ,Cm−1 is partially in an optimal

solution.

Proof We prove first that at most one of the exterior cliques is partially in S∗. Suppose
that two exterior cliques Ci,Cj , 1 ≤ i �= j ≤ m − 1 are partially in S∗ and assume
w.l.o.g. that |S∗ ∩ Ci | ≥ |S∗ ∩ Cj |.

Let x /∈ S∗ be a vertex in Ci \C0 and y ∈ S∗ be a vertex in Cj \C0. Then consider
the solution S in which we replace y by x. Then, E(S) = E(S∗) − (|S∗ ∩ Cj | − 1) +
|S∗ ∩ Ci | ≥ E(S∗) + 1, a contradiction to the optimality of S∗.

To complete the proof it suffices to prove that is not possible both clique C′
0 and an

exterior clique Cj to be partially in S∗. This fact follows by using the same arguments
as before, but now we consider C0 instead of Ci and x /∈ S∗ to be a vertex in C′

0. �

Proposition 2

(i) If C0 is the largest clique, i.e., |C0| > |Ci |, 1 ≤ i ≤ m − 1, then C0 belongs
completely to every optimal solution.

(ii) If C0 is partially in an optimal solution S∗, then |C0| ≤ |Ci | for every clique Ci

participating in S∗.

Proof (i) Suppose that S∗ does not contain some q > 0 vertices of C0 and consider
a solution S obtained from S∗ by replacing q vertices of exterior cliques not in C0

by the q vertices of C0 not in S∗. Let us denote by E− and E+ the number of edges
which are removed and inserted, respectively, to E(S∗) by this replacement. Then,
E(S) = E(S∗) − E− + E+. E− equals to the number of edges that q vertices of
exterior cliques contribute to E(S∗). This number, even if all the q vertices belong to
the same exterior clique, is strictly less than (

q
2 ) + (|C0| − q)q . On the other hand,

E+ equals to the number of edges that the q vertices of C0 not in S∗ will contribute
to E(S). This number is equal to (

q
2 )+ (|C0|−q)q . Therefore, E(S) > E(S∗), a con-

tradiction to the optimality of S∗.
(ii) Suppose that there is an exterior clique Ci in S∗ such that |C0| > |Ci | and that

S∗ does not contain some q > 0 vertices of C0. Notice that |C0| − q > ai , since if
|C0| − q ≤ ai , then no other exterior clique participates in S∗, that is S∗ is part of a
single clique (either Ci or C0).

Consider a solution S obtained from S∗ by replacing vertices of S∗ ∩ Ci not in
C0 by vertices of C0 not in S∗. Let b′

i = |S∗ ∩ (Ci \ C0)|, 0 < b′
i ≤ bi . Using again

E− and E+ as in part (i) we have E(S) = E(S∗) − E− + E+. Now we distinguish
between two cases w.r.t. the values of q and b′

i .
If q ≥ b′

i then E− equals to the number of edges that b′
i vertices of the exterior

clique Ci contributes to E(S∗) while E+ equals to the number of edges that the b′
i

vertices of C0 not in S∗ will contribute to E(S). Then E(S) = E(S∗) − E− + E+ =
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E(S∗)−((
b′
i

2 )+b′
i ai)+((

b′
i

2 )+b′
i (|C0|−q)) = E(S∗)+b′

i ((|C0|−q)−ai) > E(S∗),
a contradiction to the optimality of S∗.

If q < b′
i then E− equals to the number of edges that q vertices of the exterior

clique Ci contributes to E(S∗) while E+ equals to the number of edges that the q

vertices of C0 not in S∗ will contribute to E(S). Then E(S) = E(S∗) − E− + E+ =
E(S∗)−((

q
2 )+q(ai +b′

i −q))+((
q
2 )+q(|C0|−q)) = E(S∗)+q(|C0|−(ai +b′

i )) ≥
E(S∗) + q(|C0| − |Ci |) > E(S∗), a contradiction to the optimality of S∗. �

Despite the nice structural properties of an optimal solution in Propositions 1
and 2, many natural greedy criteria based on the sizes of the cliques or/and the sizes
of intersections fail to give such an optimal solution. In the following we are able
to give a polynomial time dynamic programming algorithm for the case where the
central clique is completely in the optimal solution and a PTAS for the general case.

2.1 Clique C0 is completely in the optimal solution

Lemma 1 If clique C0 is completely in the optimal solution, then there is an O(nk2)

dynamic programming algorithm for the DkS problem on a star of cliques.

Proof Since clique C0 is completely in the optimal solution we have to choose k′ =
k−|C0| vertices from exterior cliques. If we choose q vertices from an exterior clique
Cj , then they contribute q · aj + (

q
2 ) edges to the solution.

Let f (i, j) be the maximum number of edges in a solution choosing i vertices
from the first j exterior cliques (recall that there are m− 1 exterior cliques). Thus for
i = 0,1,2, . . . , k′ and j = 2,3, . . . ,m − 1

f (i, j) = max
0≤q≤min{i,bj }

{

f (i − q, j − 1) + q · aj +
(

q

2

)}

.

For j = 1 the following boundary conditions hold for 0 ≤ i ≤ min{k′, b1}

f (i,1) =
{(

i
2

) + i · a1, if i ≤ min{k′, b1},
−∞, otherwise.

The complexity of the dynamic programming algorithm is O(nk2). The computation
of a single f (i, j) value takes O(k) time due to the possible values of q (0 ≤ q ≤
min{i, bj } ≤ k′ < k) and f (i, j) values are computed for every i ≤ k′ < k and j ≤
m − 1 < n. The optimal solution, for the DkS problem is f (k′,m − 1) + (

|C0|
2 ). �

Notice that if C0 is the largest clique, then, by Proposition 2(i), C0 belongs com-
pletely to every optimal solution and the above dynamic programming algorithm ap-
plies.

2.2 A PTAS for the general case

In the general case, C0 is partially in the optimal solution and, by Proposition 2(i),
there are exterior cliques larger than C0. Let c be the number of those cliques of size
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at least |C0|. Moreover, by Proposition 2(ii), the cliques participating in the optimal
solution are some of these c cliques. Next proposition gives a weak upper bound for
the number c.

Proposition 3 If C0 is partially in an optimal solution, then the number of exterior
cliques of size at least |C0| is at most

√
n.

Proof The number, c, of exterior cliques is smaller than or equal to |C0|, since Ci ∩
C0 �= ∅ and Cj ∩ Ci = ∅, 1 ≤ i �= j ≤ m − 1. Thus, if |C0| ≤ √

n, then c ≤ √
n.

Otherwise |C0| > √
n. Then, the total number of vertices in these c cliques is at least

c × √
n and at most n. Hence, c ≤ √

n. �

To proceed towards a PTAS we argue further on the number of the exterior cliques
of size at least |C0|. We define r = � k

|C0| . Then the number of exterior cliques of
size at least |C0| that can be involved in an optimal solution is at most r . Let also
δ be a fixed number which will be defined later. Comparing r with δ we distinguish
between two cases.

Case 1: r < δ

If r is “small”, then we proceed in an exhaustive manner. We examine all the possible
sets of r cliques out of c cliques of size at least |C0|, i.e., (

c
r
) sets of cliques. A tech-

nical detail here is that clique C′
0 should be also considered as one of the c cliques. It

can be easily done by considering clique C′
0 as an external clique with zero vertices

outside clique C0.
By Proposition 3 it follows that the number of all the (

c
r
) sets of cliques is O(n

r
2 ).

For each one of these sets of r cliques we compute the k vertices that maximize the
number of edges as follows.

Let R be a set of r cliques. By Proposition 1, at most one of the cliques in R is
partially in S∗. We consider all the 2r −1 subsets of R. Let Ri be one of these subsets
and let C

j
i be the j th, 1 ≤ j ≤ |Ri |, clique of the set Ri . Clearly if

∑|Ri |
j=1 |Cj

i | < k, we

discard the set Ri . Otherwise, let k(j) = ∑|Ri |
t=1,t �=j |Ct

i |, for each j = 1,2, . . . , |Ri |. If
k(j) > k then we discard this j . Otherwise (if k(j) ≤ k) we obtain a k-vertex solution
by taking k − k(j) vertices from clique C

j
i , starting from vertices which belong to its

intersection with C0.
Consider now all the solutions obtained for each j = 1,2, . . . , |Ri |, and for each

Ri ⊆ R. By their construction, these solutions are all the possible k-vertex solutions
for the set R of cliques, under the restriction that at most one of them is partially
taken. Therefore, to find the optimal solution we simply have to choose the one with
the maximum number of edges.

For a set R of r cliques, there are 2r −1 subsets Ri , and for each subset there are at
most r possible solutions. Therefore, the number of solutions to compare is O(r2r ).

Recalling that we have to examine O(n
r
2 ) sets of r cliques, the next lemma fol-

lows.

Lemma 2 For the case r < δ, δ be a fixed number, an optimal solution for the DkS
problem in a star of cliques can be found in O(r2rn

r
2 ) time.
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Case 2: r ≥ δ

If r is “large”, then we proceed in a greedy manner. We consider the solution, S,
obtained by the following simple algorithm:

Let C1 ≥ C2 ≥ · · · ≥ Cm−1 and t be the largest integer number such that k ≥∑t
i=1 |Ci | = k′.
Return all the vertices of the cliques C1 ≥ C2 ≥ · · · ≥ Ct and k − k′ vertices of

clique Ct+1.
Next proposition for the case of independent cliques will be useful for bounding

the deviation of our solution from the optimal one.

Proposition 4 Let R1 and R2 be two sets of independent cliques with all cliques in
R1 of size at least L and all cliques in R2 of size exactly L. For any pair of sets of
k vertices S1 and S2 in R1 and R2, respectively, such that in both sets at most one
clique is taken partially, it holds that E(S1) ≥ E(S2).

Proof Transform S1 to an equivalent to S2 set as following. First, remove from each
clique in S1 some vertices such that each clique in S1 has now size exactly L. Let
k′ be the number of the removed vertices. Then, replace the k′ vertices with � k′

L
�

cliques, all, but one, of size exactly L. All the removed vertices now have degree at
most L − 1 while in S1 they had degree at least L − 1. Thus, E(S1) ≥ E(S2). �

Let us now consider the solution S obtained by our algorithm. By Proposition 2(ii),
the optimal solution S∗ involves exterior cliques of size at least |C0|. Since our al-
gorithm finds a solution S by choosing k vertices from the larger exterior cliques, it
follows that all cliques in S are of size at least |C0|.

Moreover, since r = � k
|C0| , we need at least r cliques of size |C0| in order to fill k.

Hence, choosing k vertices from a set of independent cliques of size |C0|, yields at
least rE(C0) edges. Therefore, by Proposition 4, it follows that E(S) ≥ rE(C0).

Clearly, an optimal solution, S∗, could contain cliques of smaller size than those
chosen by our algorithm. These small cliques are selected by S∗ due to the edges
between their overlaps with C0. Since these edges belong to C0, the optimal solution
cannot be greater than E(S) plus the edges of C0, i.e.,

E(S∗) ≤ E(S) + E(C0) ≤ E(S) + E(S)

r
≤ E(S) + E(S)

δ
= E(S)

δ + 1

δ
.

Thus, next lemma follows.

Lemma 3 For the case r ≥ δ, where δ = 1−ε
ε

, 0 < ε < 1, there is an (1 − ε)-
approximation algorithm for the DkS problem in a star of cliques.

The complexity of the greedy approximation algorithm of Lemma 3 is O(n logn).
The complexity of the exhaustive optimal algorithm of Lemma 2 is exponential in
r ≤ δ = 1−ε

ε
, that is exponential in 1

ε
. Hence, we obtain

Theorem 1 There is a polynomial time approximation scheme for the DkS problem
in stars of cliques.
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3 The DkS problem on trees of cliques

In this section we present a dynamic programming algorithm which yields an op-
timal solution for the DkS problem for graphs having as clique graph a tree. Let
C1,C2, . . . ,Ct be the cliques of such a tree and m its maximum degree. We consider
|Ci | < k, i = 1, . . . , t , otherwise the problem is trivial.

We consider the tree rooted at a leaf clique, say clique Ct . This way the root clique
Ct has at least one vertex outside its intersections with its children cliques. Let Ci be a
non-leaf clique with mi ≥ 1 children, Ci1, . . . ,Cimi

. We denote by Qh the intersection
of Ci with its hth child clique, Ch, for h = i1, . . . , imi

, i.e., Qh = Ci ∩Ch. We denote
by Fi the intersection of the clique Ci with its father clique, Cf , in the tree, i.e.,
Fi = Ci ∩Cf and by Di the vertices of a clique Ci not belonging to any intersection,

i.e., Di = Ci −Fi −⋃imi

h=i1
Qh. By convention we consider Ft , for the root clique Ct ,

to be consisted of a single vertex, i.e., |Ft | = 1.
The algorithm traverses the tree of cliques starting from the leaves cliques. In

each step it computes an optimal solution for all the j -vertex densest subgraph (DjS)
problems, for j = 1, . . . , k, on the subtree rooted at clique Ci .

We denote by fi(j) the value of the optimal solution of the DjS problem on the
subtree rooted at clique Ci . By fi(j, a) we denote the value of an optimal solution to
the DjS problem on the subtree rooted at clique Ci including exactly a vertices from
the clique Fi . It is clear that

fi(j) = max
0≤a≤|Fi |

{fi(j, a)}.

To compute an fi(j, a) value for a non-leave clique Ci we consider its children
cliques Ci1, . . . ,Cimi

,mi ≥ 1. Let fh(jh, ah) be the value of an optimal solution of
the jh-vertex densest subgraph, for jh = 1,2, . . . , k, on the subtree rooted at clique
Ch, h = i1, . . . , imi

, using ah vertices of Fh. Note that for the intersection of the
clique Ci with its child Ch it holds that Qh = Ci ∩ Ch = Fh. We compute the value
of fi(j, a), as follows.

If a = 0, then no vertex of Fi ∪ Di belongs to the optimal solution of the cor-
responding DjS problem on the subtree rooted at Ci . Therefore, the value of this
solution is the same as the value of the optimal solution to the DjS problem on the
subgraph which is the union of the subtrees rooted at the children of Ci plus the edges
between the vertices in their Qh’s, that is

fi(j, a) = max
∑imi

h=i1
jh=j

{ imi∑

h=i1

fh(jh, ah) +
imi∑

i,j=i1
i �=j

ai · aj

2

}

.

If a > 0, then an optimal solution to the DjS problem including a vertices of
Fi can also include b ≥ 0 vertices of Di , and ah ≥ 1 vertices1 of each Qh, h =

1Or ah ≥ 0 for a disconnected solution.



J Comb Optim (2007) 14: 465–474 473

i1, . . . , imi
. Then,

fi(j, a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
j
2

)
, if j ≤ ∑imi

h=i1
|Qh| + |Di | + a,

max
a+b+∑imi

h=i1
jh=j

{∑imi

h=i1
fh(jh, ah) + (

a+b
2

) + (a + b)
∑imi

h=i1
ah

+ ∑imi

i,j=i1
i �=j

ai ·aj

2

}
, otherwise.

For all cliques Ci that are leaves in the tree the following boundary conditions
hold for 1 ≤ j ≤ k:

If a = 0, then fi(j, a) = 0.
If 1 ≤ a ≤ |Fi |, then

fi(j, a) =
{(

j
2

)
, if j ≤ |Di | + a,

−∞, otherwise.

The algorithm terminates by computing the value ft (k) for the root clique Ct .
Recall that we consider |Ft | = 1 and thus the optimal solution for the k-vertex densest
subgraph problem is ft (k) = maxa=0,1{ft (k, a)}.

The computation of a single fi(j) value for a clique Ci with mi children takes

O(kmi+1) time due to the combinations of a, b and
∑imi

h=i1
jh, such that a + b +

∑imi

h=i1
jh = j . The algorithm computes fi(j), for every j = 1,2, . . . , k and for every

i = 1,2, . . . , t . Since in the worst case t is O(n) and maxi{mi} = m − 1 the next
theorem follows:

Theorem 2 There is an O(nkm+1) algorithm for the DkS problem on a tree of cliques
of maximum degree m.

Next corollary follows directly from Theorem 2.

Corollary 1 There is an O(nk3) optimal algorithm for the DkS problem on a path
of cliques.

4 Conclusions

We have presented a PTAS for the densest k-subgraph problem on a star of cliques
and an O(nkm+1) time optimal algorithm for the same problem on trees of cliques,
where n is the total number of vertices in all the cliques and m the maximum degree of
the tree. This last algorithm gives an O(nk3) optimal algorithm for paths of cliques.
Since interval and chordal graphs can be seen as clique graphs our result could be
exploited in the direction of exploring the complexity and the approximability of the
DkS problem in these classes of graphs.

Acknowledgement The authors would like to thank the two anonymous referees for their valuable com-
ments that significantly improved the presentation.
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