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Abstract

In the present article, we deal with the problem of developing a systematic procedure for evaluating the
general reliability bounds developed recently by Fu and Koutras (Statist. Probab. Lett. 22 (1995) 137). More
speci1cally, we prove that, the identi1cation of the optimal bounds can be achieved by transforming the
set-theoretic and probabilistic conditions associated with the bounds to an equivalent set covering problem
(SC). As a consequence, available solution algorithms for the SC (exact or heuristic) can be exploited to
derive very tough approximation intervals for a general system’s reliability at very competitive computer
times as compared to the respective exact reliability evaluation algorithms.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the present article we consider binary reliability structures, that is systems consisting of com-
ponents that can only be in one of two states, operational (working, on, up) or failed (not working,
o;, down). Let I = {1; 2; : : : ; n} be the set of all components of the system and denote by zi; i∈ I
the state of component i at a 1xed instance, that is

zi =

{
1 if component i is working;

0 if component i is not working:
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The state of the system is completely determined by the state of its components, and the depen-
dence of the system state on the element states is usually expressed through the so-called structure
function ’(z1; z2; : : : ; zn) which takes on the value 1 if the system is up and the value 0 if the system
is down. An alternative method to describe a reliability structure is through the family of minimal
cut sets

C = {C1; C2; C3; : : : ; CN} (1.1)

or the family of minimal path sets.

P = {P1; P2; P3; : : : ; PM} (1.2)

A minimal cut set is a minimal set of components whose failure results in system’s failure. Likewise
a minimal path set is a minimal set of components whose functioning ensures the functioning of the
system. It can be proved (see e.g. Barlow and Proschan, 1975) that any coherent reliability system
can be represented as a series connection of parallel structures corresponding to the minimal cut sets
or as a parallel connection of series structures corresponding to the minimal path sets. These facts
are mathematically expressed by the following two formulae:

’(z1; z2; : : : ; zn) =
N∏

j=1


1−

∏
i∈Cj

(1− zi)


= 1−

M∏
j=1


1−

∏
i∈Pj

zi


 :

The reliability of the system can be written as

Rn = E[’(Z1; Z2; : : : ; Zn)];

where Zi is a binary random variable associated with the ith component’s state at a prespeci1ed in-
stance. For the evaluation of Rn by the aid of the last expression one has to reduce 1rst ’(z1; z2; : : : ; zn)
in a sum of products of zi and then apply the mean value operator. When the number of minimal
cut/path sets of the system is large this approach may lead to computationally demanding algorithms.
In such cases, the development of manageable lower and upper bounds o;ering satisfactory estimates
of system’s reliability may be proved quite useful.

From now on we assume that the components of the system work independently, and denote by
pi =E(zi); qi =1−pi; i∈ I their survival and failure probabilities, respectively. One of the earliest
approaches towards constructing simple reliability bounds for coherent structures with independent
components, should be attributed to Esary and Proschan (1963) who proved that

N∏
j=1


1−

∏
i∈Cj

(1− pi)


6Rn6 1−

M∏
j=1


1−

∏
i∈Pj

pi


 :

The lower bound

LEP =
N∏

j=1


1−

∏
i∈Cj

(1− pi)


 (1.3)

can be interpreted as the reliability of a 1ctitious system in which each minimal cut set of the
original system has been used to construct a parallel subsystem and all these subsystems have been
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independently replicated and connected in series. In a similar vain, the upper bound

UEP = 1−
M∏
j=1


1−

∏
i∈Pj

pi


 (1.4)

is the reliability of another 1ctitious system in which each minimal path set of the original system
has been used to construct a series subsystem and all these subsystems have been independently
replicated and connected in parallel.

Due to their simplicity, the aforementioned bounds have by now been incorporated into many
graduate and post-graduate textbooks; see for example Barlow and Proschan (1975) or Ross (1985).
Unfortunately, the Esary and Proschan bounds cannot be e;ectively used for approximating system
reliability from both sides (above and below); as numerical experimentation indicates, LEP yields
good approximations for high reliability structures while UEP performs well only for low reliability
structures. Motivated by this observation, Fu and Koutras (1995) established recently two classes of
reliability bounds which can be e;ectively coupled with the Esary and Proschan bounds to construct
very tight intervals estimates; see also Boutsikas and Koutras (2000) for a further generalization.
Their bounds have the form

LFK = 1−
M∏
j=1


1−


∏

i∈Kj

qi





∏

i∈Pj

pi




6Rn6

N∏
j=1


1−


∏

i∈Lj

pi





∏

i∈Cj

qi




= UFK ;

(1.5)

where Lj; Kj ⊆ I are appropriate index sets satisfying speci1c conditions. Although there always exist
such index sets, the authors have not provided any standard procedure leading to the determination
of them.

In the present article, we prove that the optimal choices of Lj; Kj can be acquired by solving
non-unicost set covering problems (SC) that is, problems of the form

Minimize
∑
t∈T

ctxt

Subject to
∑
t∈T

�vtxt¿ 1 for all v∈V;

where A = (�vt) is a |V | × |T | matrix with entries 0 or 1 (�vt ∈{0; 1}); V is the set of rows to
be covered, T is the set of columns for covering the rows and ct are cost coeLcients determined
by the survival probabilities of the components. Therefore, solution algorithms for the SC can be
applied to evaluate the bounds LFK and UFK. Since the SC is well known to be NP-complete (see
e.g. Lund and Yannakakis, 1994; Johnson, 1974; LovPasz, 1975) a great research e;ort has been
invested in establishing e;ective algorithms for solving problems of practical size, Balas (1980),
Beasley (1990), Fischer and Kedia (1990), A1f et al. (1995).

A variety of heuristic solution methods have also been developed for SC’s. For a review on them
the interested reader may consult Paschos (1997). In a recent paper, Beasley and Chu (1996) intro-
duced a genetic algorithm-based heuristic for set covering problems, which is capable of producing
high quality solutions. In the present article, we employed Beasley and Chu’s algorithm to test,
numerically, the e;ectiveness of the suggested procedure in establishing tight interval estimates for
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the unknown system reliability. Moreover, a variation of this algorithm was also put to test. Our
extensive numerical experimentation revealed that this approach can be eLciently applied even for
large reliability structures.

2. Cut set-based reliability bounds

In this section, we assume that the family C of minimal cut sets of a coherent structure is
given by (1.1) and that the components of the structure work independently. Then the Esary and
Proschan lower bound (1.3) can be easily evaluated. On the other hand, the Fu and Koutras upper
bound (1.5) can be computed, provided that the index sets Lj; j=1; 2; : : : N have been identi1ed. A
direct comparison of LEP and UFK reveals that, for systems involving high reliability components, the
discrepancy between the lower and upper bound is expected to be quite small. Moreover, for speci1c
pi’s, the best choice for UFK is the one that maximizes the products

∏
i∈Lj

pi, or equivalently, the
one that maximizes

− ln
∏
i∈Lj

pi =
∑
i∈Lj

(−lnpi): (2.1)

We recall that the index sets Lj in Fu and Koutras upper bounds UFK are not determined in a
unique way. In order to arrive at a valid selection of Lj, we introduce 1rst the auxiliary index sets

L∗
1 =I;

L∗
j = {i : Ci ∩ Cj 
= I; 16 i6 j}; j = 2; 3; : : : ; N (2.2)

and for each nonempty L∗
j we construct another index set Lj satisfying the conditions

Lj ∩ Cj =I; (2.3)

Lj ∩ Ci 
= I for every i∈L∗
j : (2.4)

If L∗
j = I we set Lj = I. It is evident that, for any coherent system, there always exist Lj ⊆ I

satisfying (2.3), (2.4); for example,

L1 =I; Lj =
j−1⋃
i=1

(Ci ∩ C ′
j); j = 2; : : : ; N

consist always a valid choice of Lj (C ′
j stands for the set theoretic complement of Cj with respect

to I). The next question to be answered is, how could one technically arrive at optimal choices of
Lj , that is the ones that minimize (2.1)? For small systems or systems with special structure of the
cut sets, one may manually identify the optimal choices of Lj by exploiting conditions (2.3) and
(2.4). However in the general case, this task becomes quite involved and this is why we need an
alternative modeling of the problem at hand so that standard computer procedures (instead of set
operations) can be applied. To start with, let us 1x j (j¿ 2) and observe 1rst that condition (2.3)
implies that Lj ⊆ C ′

j. If we set

C ′
j = {j1; j2; : : : ; jn−|Cj|}
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it is evident that Lj is(uniquely) determined by a binary vector

x= (xj1 ; xj2 ; : : : ; xjn−|Cj|
)

whose entries xjs ∈{0; 1} are de1ned by

xjs =

{
1 if component js belongs to Lj;

0 if component js does not belong to Lj:

On the other hand, on introducing a binary matrix A= (�ik)Nxn by

�ik =

{
1 if component k belongs to minimal cut set Ci;

0 if component k does not belong to minimal cut set Ci:
(2.5)

for i = 1; 2; : : : ; N and k = 1; 2; : : : ; n condition (2.4) takes on the following equivalent form:∑
k∈C′

j

�ikxk ¿ 1 for all i∈L∗
j :

Any feasible solution x = (xj1 ; xj2 ; : : : ; xjn−|Cj|
) of the above system of |L∗

j | inequalities, gives rise to
a valid choice of Lj, namely

Lj = {i∈C ′
j: xi = 1}:

3. The algorithm

According to the analysis performed at the beginning of the present paragraph, the optimum choice
of Lj (in the sense that the respective upper bound UFK shifts as close to the lower bound LEP as
possible) is achieved by minimizing the sum (2.1), or equivalently

f(x) =
∑
k∈C′

j

(−lnpk)xk =
∑
k∈C′

j

ckxk

where

ck =−lnpk; k = 1; 2; : : : ; n: (2.6)

Therefore, the following algorithm can be exploited for deducing the Esary and Proschan lower
bounds LEP and the bound UFK for a coherent structure whose family of minimal cut sets (1.1) has
been given.
Step 1: Set LEP =UFK=1 (initial values) and evaluate �ik and ck by (2.5) and(2.6), respectively.
Step 2: Repeat steps 3–6 for j = 1; 2; : : : ; N .
Step 3: Set LEP = LEP ∗ (1−

∏
i∈Cj

qi).
Step 4: Compute the auxiliary index set L∗

j de1ned by (2.2). If L∗
j =I then set UFK =UFK ∗ (1−∏

i∈Cj
qi) and return to step 3 (for the next j). If L∗

j 
= I then perform steps 5–6.
Step 5: Solve the weighted set covering problem:

Minimize
∑
t∈T

ctxt

Subject to
∑
t∈T

�vtxt¿ 1 for all v∈V; xt ∈{0; 1} for all t ∈T;
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where

V = L∗
j the set of rows to be covered;

T = C ′
j the set of columns for covering the rows:

Step 6. If {xt; t ∈T} is the solution obtained in step 5, compute Lj by

Lj = {t ∈T : xt = 1}

and set

UFK = UFK


 N∏

j=1


1−


∏

i∈Lj

pi





∏

i∈Cj

qi






 :

Then return to step 3 (for the next j).
After having completed steps 1–6, the variable LEP and UFK contain the Esary and Proschan lower

bound and the optimal Fu and Koutras upper bound for system’s reliability, respectively.
It is worth mentioning that the SC described in step 5 involves |L∗

j | rows and at most |C ′
j|=n−|Cj|

columns. As a matter of fact the number of columns is strictly less than n − |Cj| if for some t’s
it holds true that �vt = 0 for all v∈V = L∗

j . Another pertinent remark here is that, in the iid case
(identical components) pi = p; i = 1; 2; : : : ; n the SC mentioned in step 5 reduces to the unicost
(unweighted) problem i.e. the objective function can be replaced by f(x) =

∑
xt .

As an illustration, let us consider the following pipeline system:

1

2 

3 

4 7 

6 5 A  B

Arcs 1–7 represent seven pump stations used for transferring water from points A to B. The set of
components is I = {1; 2; : : : ; 7} and after performing an elementary analysis of the structure we may
readily verify that the family C of minimal cut sets contains N = 5 elements, namely

C1 = {1; 4}; C2 = {1; 5; 6; 7}; C3 = {2; 4; 5}; C4 = {3; 4; 5; 6}; C5 = {3; 7}

(the arrangement of Cj’s was done according to the minimum component label contained in each
one).
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Matrix A takes on the form

Cut sets Components

1 2 3 4 5 6 7

C1 1 0 0 1 0 0 0
C2 1 0 0 0 1 1 1
C3 0 1 0 1 1 0 0
C4 0 0 1 1 1 1 0
C5 0 0 1 0 0 0 1

while L∗
j ; j = 1; 2; 3; 4; 5 are easily checked to be

L∗
1 =I; L∗

2 = {1}; L∗
3 = {1; 2}; L∗

4 = {1; 2; 3}; L∗
5 = {2; 4}:

Manifestly L1 =I. In order to compute L2, we consider

V = L∗
2 = {1}; T = C ′

2 = {1; 5; 6; 7}′ = {2; 3; 4}
and write down the system of inequalities deduced by singling out the 1rst row and columns 2–4
of matrix A. This results to the conditions

x4¿ 1;

x4 ∈{0; 1};
which yield to x4 = 1; hence L2 = {4}.
Working in a similar fashion we may e;ortlessly verify that L3 and L4 are uniquely determined

as L3 = {1} and L4 = {1; 2}, respectively. Finally the SC associated to L5 makes use of V = L∗
5 =

{2; 4}; T =C ′
5={3; 7}′={1; 2; 4; 5; 6} and the respective inequalities take on the form (after deleting

the column corresponding to component 2 which has all its entries 0)

x1 + x5 + x6¿ 1;

x4 + x5 + x6¿ 1;

x1; x4; x5; x6 ∈{0; 1}:
The set of feasible solutions of the above system contains 14 elements and the optimal choice of

L5 will be carried out by minimizing

f(x) = c1x1 + c4x4 + c5x5 + c6x6;

where ci=−lnpi; i=1; 4; 5; 6. It can be shown, by carrying out an elementary analysis on the system
of inequalities, that the optimal choice depends on the relative magnitude of p5; p6 and p1p4; more
speci1cally:

• If max(p5; p6; p1p4) = p6 then the optimal solution is (x1; x4; x5; x6) = (0; 0; 0; 1) and the optimal
choice for L5 is given by L5 = {6}.
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• If max(p5; p6; p1p4) = p5 then the optimal solution is (x1; x4; x5; x6) = (0; 0; 1; 0) and the optimal
choice for L5 is given by L5 = {5}.

• If max(p5; p6; p1p4)=p1p4 then the optimal solution is (x1; x4; x5; x6)=(1; 1; 0; 0) and the optimal
choice for L5 is given by L5 = {1; 4}.
Therefore, the Esary and Proschan lower bound and the Fu and Koutras upper bound are expressed

as

LEP = (1− q1q4)(1− q1q5q6q7)(1− q2q4q5)(1− q3q4q5q6)(1− q3q7);

UFK = (1− q1q4)(1− p4q1q5q6q7)(1− p1q2q4q5)(1− p1p2q3q4q5q6)(1− rq3q7); (2.7)

where r = p6 or p5 or p1p4. It is worth mentioning that any of the three available choices of r
leads to an upper bound for system’s reliability; however the optimal choice described earlier will
result in the best (smaller) upper bound. In the iid case, pi = p; qi = q i = 1; 2; : : : ; 7, the optimal
choice for L5 is L5 = {5} or L5 = {6} and the aforementioned bounds reduce to

LEP = (1− q2)2(1− q3)(1− q4)2;

UFK = (1− q2)(1− pq4)(1− pq3)(1− p2q4)(1− pq2): (2.8)

From expressions (2.7), (2.8) it is clear that, should the components of the system be highly
reliable (that is if min pi or p (in the iid case) is close to 1), UFK will approach LEP thereof
obtaining a very tight interval estimate of system’s reliability. On the other hand, if the components
are unreliable (that is, if min qi or q (in the iid case) is close to 1), UFK will depart from LEP and
the resulting interval may be useless. In this situation it is preferable to work with the path set based
bounds LFK and UEP as described in (1.4) and (1.5). Given the family P (cf. (1.2)) of minimal path
sets of the structure, the Esary and Proschan upper bound UEP can be easily calculated by (1.4).
In order to evaluate the Fu and Koutras lower bound LFK we 1rst introduce the auxiliary index
sets

K∗
1 =I;

K∗
j = {i :Pi ∩ Pj 
= I; 16 i6 j}; j = 2; 3; : : : ; M (2.9)

and for each nonempty K∗
j we construct another index set Kj satisfying the conditions

Kj ∩ Pj =I; (2.10)

Kj ∩ Pi 
= I for every i∈K∗
j : (2.11)

For K∗
j = I we set Kj = I. The construction of the (nonempty) index sets Kj can be carried out

by transforming the problem to the following SCP, the derivation following an exact parallel to that
used for cut sets. Let A= (�ik)Mxn be a binary matrix de1ned by

�ik =

{
1 if component k belongs to minimal path set Pi;

0 if component k does not belong to minimal path set Pi
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and set ck =−ln qk ; k = 1; 2; : : : ; n. Then the optimal choice for Kj is provided by

Kj = {t ∈T : xt = 1};

where {xt; t ∈T} is the solution of the weighted SC

minimize
∑
t∈T

ctxt

subject to
∑
t∈T

�vtxt¿ 1 for all v∈V; xt ∈{0; 1} for all t ∈T:

The set V of rows to be covered equals now K∗
j , while the set T of columns for covering the

rows equals P′
j. An algorithm similar to the one described for cut sets can also be worked out for

path sets. Moreover, the remarks following steps 1–6 above remain still valid for the path set case
as well. The details are left to the reader.

4. Genetic algorithms for the SC

The algorithm in Section 3 requires to solve a series of set covering instances in order to arrive at
the computation of UFK. Clearly, pursuing the exact solution of each one, would result to prohibitive
execution times. As alternative we use a genetic algorithm (GA) to approximately solve each instance
(for a related discussion on meta-heuristics eLciency, see Hordijk and Stadler (1998) or Angel and
Zissimopoulos (2000)), thereof obtaining an upper bound of the exact value of UFK. In a recent
paper, Beasley and Chu (1996) introduced a GA for SC, which is capable of producing high quality
solutions. In our numerical calculations we used the same algorithm with some modi1cations that
we shall discuss later on.

The idea of GA’s is based on the evolutionary process of biological organisms in nature. They
use a population-based sampling scheme with successive populations biased towards regions where
1t solutions (that is, solutions resulting at “desirable” values of a speci1c objective function) tend
to cluster. In general, a GA sets o; by taking an initial population of individuals (usually randomly
selected) and applies genetic-like operations to produce the “future” generations. Solutions which are
more 1t, according to the objective function, are more likely to be selected, so that the search tends
to regions where optimal solutions are located. After recoding each individual in the population into
a string (chromosome) which represents a possible solution, highly 1t individuals are participating in
a reproduction procedure by exchanging pieces of their genetic information. The main reproduction
mechanism in use is a crossover procedure that gives rise to new “o;spring” solutions (children)
that share some characteristics fetched from both parents. Very often, a further procedure (mutation)
is applied after crossover, which alters some bits in the string.

The reproduction mechanism gives one or two o;spring solutions that can either replace the whole
population (generational approach) or the less 1t individuals (steady-state approach). This cycle of
evaluation–selection–reproduction is repeated until an appealing solution is reached. The basic steps
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1 2 3 4 5 n-1 n

0 1 1 0 1 . . .

. . .

0 1

Fig. 1. Binary representation of a chromosome (solution).

of the GA may be formally stated in the form of an algorithm as follows:

Randomly generate an initial population
Evaluate 1tness of each individual in the population (in terms of a pre-speci1ed objective function)
Repeat

Select parents from the population that will be used for reproduction,
Apply crossover procedure to the parents to produce children

Perform mutation on children
Evaluate 1tness of the children
Replace some or all of the population by children

Until good enough solution has been found

As mentioned before, the 1rst step before applying a GA, is to decide on a suitable representation
scheme for encoding the population. For the SC, the usual 0–1 binary string representation is an
obvious choice, since it can directly describe the underlying 0–1 integer variables xt , t ∈T . Thus,
each individual is encoded as an n-bit binary string, where n is the number of columns in the SC
(see Fig. 1). A value of 1 at the ith bit implies that column i belongs to the solution.

The GA is launched by producing N random individuals as the initial population. Next, the 1tness
of each individual i is calculated as

∑n
j=1 cjbij, where bij is the value of jth bit (column) in the

string corresponding to the ith chromosome (child) and cj is the cost of bit (column) j.
The crossover mechanism used in the Beasley and Chu (1996) algorithm is the generalized

1tness-based crossover, which produces only one child, by taking into account the structures and
the relative 1tnesses of the two parent solutions. The selection of the two parents is performed
according to binary tournament selection. The child that is produced is made feasible according to
a heuristic feasibility operator, which initially identi1es all uncovered rows and then incorporates
additional columns so that all rows are covered. The (feasible) child generated by this mechanism,
replaces a randomly chosen member of the population (provided that it is not identical to any other
member in it).

In a previous work (Tsitmidelis et al., 2002), a variation of Beasley and Chu’s GA has been
developed, leading to better results for set covering instances when used for reliability optimization
problems. This algorithm has been employed in the present paper as well for carrying out our
numerical calculations. The main di;erences of the modi1ed algorithm (as compared to the original
one) may be summarized as follows:

• The crossover mechanism we use to produce two children instead of one. The 1rst child is given
birth by the aid of the crossover mechanism of Beasley and Chu according to the relative 1tnesses
of the two parents. The second one is generated by applying a logical AND function on both
parents. The best of the two children is incorporated in the new generation.

• The child that is produced from the crossover mechanism replaces the worst solution in the
population at use (instead of the randomly chosen solution used in the original algorithm).
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1     2  3  4    5  6   

source sink 

Fig. 2. Example of consecutively connected system with six components.

5. Numerical results

In our numerical studies, we commence each time with an initial population of 100 chromosomes
(solutions), and the GA is terminated when 1000 nonduplicate children are produced. The mutation
procedure selects (at random) 1ve bits and Uips their value. For our experiment we used a Pentium
III=600 MHz.

Two types of problems were treated. In the 1rst we considered the class of consecutively connected
systems and performed repeated calculations selecting several system sizes, component reliabilities
and transmission capabilities. In the second we generated the system structure at random by selecting
the cut sets among the power set of I so that the resulting structure consists a coherent (monotone)
system.

The consecutively connected systems were introduced by Shanthikumar (1987) and can be used
to model spacecraft relay stations, telecommunication and oil pipeline systems, vacuum systems
in accelerators, etc. Such a system consists of a source (0), n components {1; : : : ; n} and a sink
(n + 1). The source is connected to {1; : : : ; k0} and the component j (16 j6 n) is connected to
{j + 1; : : : ; j + kj} by arcs (integers kj¿ 1; 06 j6 n, are called transmission capabilities). The
source, sink, and arcs are perfect and the n components are failure prone with failure probabilities
qi=1−pi; i=1; 2; : : : ; n. The system functions if there is a path from the source to the sink through
functioning components. In the special case kj =min(k; n+1− j); 06 j6 n, the system reduces to
the well-known consecutive-k-out-of-n: F system (for a review see Chao et al., 1995). Shanthikumar
(1987) gave also a recursive scheme for evaluating the exact system reliability.

An example of consecutively connected systems is shown in Fig. 2. In this case we have n =
6; k0 = k5 = 2; k1 = 4; k2 = k3 = k6 = 1; k4 = 3, while the family of minimal cut sets is C =
{(1; 2); (1; 3); (1; 4); (1; 5)}. If the survival probabilities are given by p1 = p2 = p3 = 0:98,
p4 = p5 = p6 = 0:99, then the exact reliability R can be evaluated by the Shanthikumar’s algo-
rithm as R = 0:99891792. The lower bound LEP and upper bound UFK calculated by our genetic
algorithm approach were 0.9989004 and 0.9989183, respectively.

Our numerical experimentation with consecutively connected systems is displayed in Table 1.
Several system sizes n, component reliabilities pi and transmission capabilities ki were treated. In
Table 1, we have registered the values of n, the range of the pi’s and the total number N of cut
sets contained in the resulting system. Besides the Esary and Proschan lower bound LEP and the Fu
and Koutras upper bound UFK, we have also included (to facilitate the comparison of the provided
approximation) the reliability estimate RE =(UFK +LEP)=2 and the exact reliability value R. A direct
inspection of the relative error column (which was computed as (UFK −LEP)=2LEP) reveals that, our
algorithm leads to quite tight intervals for system’s reliability at very reasonable computer times.

The same remarks apply for Table 2, where the system structure was randomly generated; note
though that for these cases the exact reliability value cannot be evaluated unless a complete search
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Table 1
Genetic algorithm-based reliability bounds for consecutively connected systems

P N n LEP UFK RE R Computer time (s) Relative error

0.85–0.95 26 50 0,8443318 0,8449217 0,8446268 0,8443938 22,07 3; 49E− 04
0.85–0.95 40 100 0,8476565 0,8476698 0,8476632 0,8476566 102,93 7; 85E− 06
0.80–0.90 52 100 0,7854174 0,7864784 0,7859479 0,7854555 129,73 6; 75E− 04
0.60–0.70 80 150 0,5329428 0,5400552 0,5364990 0,5332648 417,89 6; 67E− 03
0.80–0.90 80 150 0,7905573 0,7908107 0,7906840 0,7905586 404,61 1; 60E− 04
0.90–0.95 80 150 0,8975495 0,8975580 0,8975538 0,8975495 432,63 4; 74E− 06
0.60–0.70 36 200 0,5457909 0,5459874 0,5458892 0,5458336 174,19 1; 80E− 04
0.80–0.90 36 200 0,7915937 0,7915940 0,7915939 0,7915937 176,25 1; 89E− 07
0.90–0.95 36 200 0,8976591 0,8976591 0,8976591 0,8976591 176,41 0; 00E + 00
0.60–0.70 99 200 0,5454149 0,5455745 0,5454947 0,5454165 855,13 1; 46E− 04
0.80–0.90 99 200 0,7918385 0,7918386 0,7918386 0,7918385 867,25 6; 31E− 08
0.60–0.70 252 500 0,5449945 0,5453491 0,5451718 0,5449953 13751,72 3; 25E− 04
0.80–0.90 252 500 0,7917534 0,7917546 0,7917540 0,7917534 19961,66 7; 58E− 07

Table 2
Genetic algorithm-based reliability bounds for random systems

P N n LEP UFK RE Computer time (s) Relative error

0.80–0.90 98 50 0,9626803 0,9637253 0,9632028 36,83 5; 43E− 04
0.60–0.70 50 100 0,9952515 0,9977028 0,9964772 55,81 1; 23E− 03
0.80–0.90 50 100 0,9971187 0,9971570 0,9971379 38,45 1; 92E− 05
0.80–0.90 49 100 0,9422784 0,9422919 0,9422852 19,26 7; 16E− 06
0.80–0.90 100 200 0,9997982 0,9998102 0,9998042 149,61 6; 00E− 06
0.80–0.90 100 200 0,9479110 0,9479530 0,9479320 140,08 2; 22E− 05
0.50–0.60 100 500 0,9999994 0,9999995 0,9999995 833,87 5; 00E− 08
0.50–0.60 100 500 0,9991869 0,9994975 0,9993422 578,79 1; 55E− 04
0.80–0.90 100 500 0,9980323 0,9980953 0,9980638 159,03 3; 16E− 05
0.80–0.90 250 500 0,9630716 0,9630755 0,9630736 342,95 2; 02E− 06

is performed over the 2n con1gurations resulting from the states of the n components (something
that would require extraordinary computer times).

6. Conclusion

In this paper we presented a constructive approach for computing, by the aid of recently introduced
bounds, tight lower and upper estimates for the reliability of a general structure. Our modeling
through a series of set covering problems, which can be approximately solved by a genetic algorithm,
provides excellent estimates for system’s reliability at very reasonable computing times.

Two issues seem to be crucial and need further investigation in the future. The 1rst pertains to
whether one could exploit the interrelations between the cut sets of the system to avoid repeating
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the genetic algorithm from scratch each time; our impression is that there is a good chance that the
(optimal or almost optimal) solutions derived at a set covering instance may be fruitfully used at the
subsequent instances. The second issue is related to the problem of inventing an eLcient procedure
arriving at the most eLcient order of the cut sets so that better upper and lower bounds of system’s
reliability are obtained. It is clear that, succeeding in the 1rst task would give us the opportunity
to reduce considerably the required computational time, while an advance towards the second goal
would lead to higher quality estimates of system’s reliability.

References

A1f, M., Hi1, M., Paschos, V., Zissimopoulos, V., 1995. A new eLcient heuristic for minimum set covering problem.
J. Oper. Res. Soc. 46, 1260–1268.

Angel, E., Zissimopoulos, V., 2000. On the classi1cation of NP-complete problems in terms of their correlation coeLcient.
Discrete Appl. Math. 99, 261–277.

Balas, E., 1980. Cutting planes from conditional bounds: a new approach to set covering. Math. Program. Study 12,
19–36.

Barlow, R., Proschan, F., 1975. Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.
Beasley, J.E., 1990. A Lagrangian heuristic for set covering problems. Naval Res. Logist. 37, 151–164.
Beasley, J.E., Chu, P.C., 1996. A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 94, 392–404.
Boutsikas, M.V., Koutras, M.V., 2000. Generalized reliability bounds for coherent structures. J. Appl. Probab. 37,

778–794.
Chao, M.T., Fu, J.C., Koutras, M.V., 1995. Survey of the reliability studies of consecutive-k-out-of-n: F and related

systems. IEEE Trans. Reliab. 44, 120–127.
Esary, J.D., Proschan, F., 1963. Coherent structures of non-identical components. Technometrics 5, 191–209.
Fischer, M.L., Kedia, P., 1990. Optimal solutions of set covering/partitioning problems. Manage. Sci. 36, 674–688.
Fu, J.C., Koutras, M.V., 1995. Reliability bounds for coherent structures with independent components. Statist. Probab.

Lett. 22, 137–148.
Hordijk, W., Stadler, P., 1998. Amplitude spectra of 1tness landscapes. J. Complex System 1, 39–66.
Johnson, D.S., 1974. Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278.
LovPasz, L., 1975. On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390.
Lund, C., Yannakakis, M., 1994. On the hardness of approximating minimization problems. J. ACM 41, 960–981.
Paschos, V., 1997. A survey of approximately optimal solutions to some covering and packing problems. ACM Comput.

Surveys 29, 171–209.
Ross, S.M., 1985. Introduction to Probability Models, 3rd Edition. Academic Press, New York.
Shanthikumar, J.G., 1987. Reliability of systems with consecutive minimal cut sets. IEEE Trans. Reliab. 36, 546–549.
Tsitmidelis, S., Zissimopoulos, V., Koutras, M.V., 2002. Fault tree analysis via set cover model. Evolutionary Methods

for Design, Optimization and Control, CIMNE, Barcelona, Spain, pp. 179–183.


	Evaluation of reliability bounds by set covering models
	Introduction
	Cut set-based reliability bounds
	The algorithm
	Genetic algorithms for the SC
	Numerical results
	Conclusion
	References


