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Abstract

An efficient heuristic for solving two-dimensional knapsack problems is proposed. The algorithm selects an
optimal subset of optimal generated strips by solving a sequence of one-dimensional knapsack problems. We show that
the number of these knapsacks can be reduced to only four knapsacks. The algorithm gives an excellent worst-case
experimental approximation ratio (0.98), and a high percentage of optimal solutions (91%). From this heuristic, we
derive an approximation algorithm for which we prove some refined bounds and we show that its approximation
ratio is 4. Our numerical study on large size instances shows the efficiency of these algorithms for solving real-world
problems which are hardly handled by other known methods, which are often limited by computer storage facilities.

Keywords: Two-dimensional knapsack; Two-space knapsack; Cutting stock problems; Knapsack; Approximation
algorithms

1. Introduction

Given quantities of goods of different shapes to be cut from a material that comes in various sizes,
such as lengths and heights, a number of possible efficient cutting patterns are considered. How much of
each pattern should be cut? The numbers of each pattern cut represent the decision variables. The
constraints are given by the required quantities and by the amount of available material of each size. The
objective may be to minimize the cost of the used material or the amount of produced waste. Such kind
of problems, known as Trim problems [16,14] or Cutting Stock problems [1,3,6,11,20,21] are very often
approached by Generalized Linear Programming methods or by tailored heuristics. Whatever the
approach, one has to confront the problem of cutting a stock unit with respect to the quantities
requirements of goods and the optimizing objective. In a linear programming approach this problem
appears when we generate the column vector which enters the basis each time we look for improving the
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current basic solution [12,10,13]. The cutting stock problem in a linear programming formulation is
defined as follows:

q
Min ) ¢;x,
i=1

q
subject to ) a;x;2b;, x;20, i=1,...,m,

j=1

where b; denotes the quantities requirements of goods, g is the number of feasible cutting patterns, x; is
the number of times the j-th cutting pattern is used, a,; is the number of good of type i cut in the pattern
J and ¢; is the cost of stock item j. The usually huge number of cutting patterns g constitutes a major
difficulty in solving this problem. This difficulty is circumvented by employing a column generation
scheme, where each column to enter the basis is generated by solving an auxiliary problem. In particular,
in order to produce the next column, we have to find that column whose scalar product with the current
linear programming dual evaluators is maximum. Since any set of nonnegative integers a;, i = 1,...,m, is
a column (or cutting pattern) provided that it presents a feasible cutting pattern, a column is generated
by solving a generalized knapsack problem [11].

Next, we deal with this problem which is NP-complete and we consider the case where goods and
material to be cut are rectangular forms and we refer to it as the Two-space Knapsack Problem [16), or as
the Two-dimensional Knapsack Problem (TDK) [11].

Cutting problems have been studied first by Kantorovich [17] and later by Gilmore and Gomory
[11,12] for industrial or commercial uses (textile, paper, sheet metal, or plastic industries). Later these
problems have been studied in multiprogrammed computer systems by Codd [5] and in multiprocessor
systems, by Garey and Graham [9]. Since these problems occur in a wide variety of domains there is a
large economic incentive to find more efficient solutions.

In this paper we propose a new efficient heuristic for solving the TDK problem. The algorithm uses a
serie of One-Dimensional Knapsack (ODK) problems for generating a set of optimal strips and then fills
them in the plate in an optimal way using still another ODK [2,7,8,19]. For reducing the number of
involved ODK problems we use dynamic programming methods and we show that only four knapsacks
are sufficient in our algorithm. Certainly, for solving exactly these problems by dynamic programming the
complexity is O(m - max(L, H)), where m is the number of pieces to cut and L, H the length and the
height respectively of the plate to cut. But, the values m, L and H, even for large size instances of the
TDK, are small in practice for the ODK and thus the dynamic programming methods turn out to be
quite efficient.

We show that the algorithm is very efficient in practice by giving a large number of experimental
results on randomly generated problem instances.

. Another particular feature of the algorithm is that it deals with different versions of the TDK
problem. In fact, it applies to versions with bounded variables [4,23] or unbounded variables [11,15], to
versions where the profit associated to each piece to cut is proportional to its surface [15,23] as well as to
versions with surface-independent profit [4,11,24,25]. When we deal with bounded variables each piece to
be cut can appear in the cutting pattern no more than a fixed number of times. Whereas, when
unbounded variables are assumed, each piece can appear any number of times in the pattern. If the profit
associated to each piece is proportional to its surface the objective is to minimize the waste, otherwise
the objective is to maximize a profit function associated with each cutting pattern.

In a natural way we derive from this algorithm an approximation algorithm which still uses the ODK
problem. In this new algorithm the ODK problems are solved by a polynomial algorithm within 1 — ¢, for
every real number £ > 0.
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We study several performance bounds for the approximation algorithm and we prove that in the case of
unbounded variables and profit proportional to the pieces surface the approximation ratio  fraction obtained
solution /optimal solution) is 5, which is the first known approximation result for this problem.

The paper is organized as follows: In the next section we define the problem and its different versions.
In Section 3 we describe the procedures that generate the optimal strips and a procedure which fills
these strips in a plate. We show how to reduce the number of ODK problems and we present the main
steps of our algorithm. In Section 4 we discuss the complexity of the algorithm. In Section 5 we present
the derived approximation algorithm. Next, we study performance bounds for the approximation
algorithm and finally, we report on several numerical experiments on large size instances which are
solved efficiently by the algorithms with solutions very close to the optimal ones.

2. The Unconstrained Two-Dimensional Knapsack Problem

An instance of the Unconstrained Two-Dimensional Knapsack Problem (UTDK) consists of a finite
set of rectangular pieces of given dimensions: S = {({;, k), (/;, h,),...,(l,,, h,)} and a rectangular initial
plate of length L and height H. With each piece is associated a profit =;. The objective is to find a
cutting pattern of the plate without limits on the number of repetitions of each type of piece and
maximizing the profit function:

m
F(L,H)= Y am,

i=1
where a; (to be determined) denotes the number of times that the piece i appears in the pattern and m
is the number of pieces in S. If the number of appearances of each type of piece is not allowed to exceed
a fixed number in the cutting pattern then the problem is known as the Constrained Two-Space Knapsack
problem or Constrained Two-Dimensional Cutting problem. Furthermore, for each type of the problem,
two versions are considered depending on the values 7r; attributed to each piece. If =; is the area of the
i-th piece the problem consists in minimizing the total waste. If the values 7, are attributed following
criteria which take into account other characteristics than pieces surface the problem consists in
maximizing the total profit given by the cutting pattern. For example the value may reflect, the
desirability that the next cutting pattern in a sequence should include pieces of a size appeared in the
previous cutting pattern. A full cutting, i.e. without any wastage, is not necessarily in this case an optimal
cutting pattern.

Next, we make two assumptions which reflect frequent real-world situations. The cutting tool is of

guillotine type (each cut is made orthogonally from one edge to the parallel one of the plate or of some
sub-plate produced by previous cuts) and all pieces to cut are of fixed orientation ((I;, h;) # (h;, 1,)).

3. The algorithm

The algorithm we propose, called the Best Strips Cutting Algorithm (BSC), is derived from the
analysis of the structure of the optimal cutting patterns. In general, these patterns are composed by some
vertical and (or) horizontal strips cut either in the initial plate or in a few sub-plates produced by previous
cuts made on the initial plate. Furthermore, an optimal pattern is very often equivalent to another one
which has a such structure. Fig. 1 illustrates two optimal cutting patterns for a set of three pieces,
p,=@,3), p,=@4,3), p; =, 4) with 7, =1h;, cut into a plate of dimensions (L, H)=(9, 11). One
observes a strips composition structure of the second cutting pattern. It can be also seen that the
equivalent optimal pattern (a) is composed by two sub-plates (3, 11) and (6, 11) each one having a strips
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Fig. 1. (a) An optimal cutting pattern of the oriented pieces p;. (b) An equivalent strips structure cutting pattern. The optimal
cutting pattern in (a) is composed by two sub-plates (3, 11) and (6, 11), each one optimal dissected and having a strips structure.
Dimensions for pieces p; =(l, h;), 1 <i <3: 3X3, 4X3, 2X 4. Values for p;: 9, 12, 8.

structure. The first sub-plate includes a vertical strip whereas the second one three horizontal strips.
Intuitively, one expects that a method which creates optimal strips and fill them into the initial plate or
into some sub-plates, should be able to produce satisfactory solutions.

Next we discuss what kind of sub-plates to consider, how we can create a set of optimal strips and
then, how we can efficiently fill strips in a given sub-plate.

3.1. Dealing with a finite number of sub-plates

In an attempt to fill efficiently the initial plate by strips, we cut it in a finite number of couples of
sub-plates. Then, each sub-plate is filled by horizontal or vertical sub-strips. In this way, the obtained
structures including combinations of horizontal-vertical sub-strips give efficient solutions for the initial
plate. However, the division of the plate into sub-plates should be made only on abscissas which enable
our algorithm to provide better solutions. We consider two sets of abscissas. One for the horizontal size
denoted by P,, and another one for the vertical size of the initial plate, denoted by P;,. These sets,
slightly modified, have been used also by Christofides and Whitlock [4] in order to define normalized
guillotine patterns.

The precise definition of the sets P, and P, is as follows:

m
P, = {xlx =Yzl <3iL,z20,z integer},

i=1
m
Py= {x lx=Y z;h;<3H, 2,20, z; integer}.
i=1
The set P, (and similarly P,) can be generated as follows: Consider the function
0 fi=0Ax=0,

w if i=0Ax#0,
g8(x¥)=({g,_(x) ifx<l, i€l

min{g,_,(x), max{1, min,{g,_(x —kl,), 1<k <|x/l;), keN}}}, i€l, xeX,
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where 1={1,2,...,m}and X={0, 1, 2,...,|3LJ}. Hence, a point x is in P, if g,(x) =1 and it does not
if g,(x)=co.

We show later that we can take into account only the elements of these sets for plate’s dissection,
since only these elements can improve our solution.

3.2. Strips generation

We propose now a procedure which creates either horizontal or vertical (sub-)strips which are optimal
with respect to a given length and height. We call these strips general type of strips. Let a be the length
and B the height of a (sub-)plate.

a) Horizontal strips. Let S ={(l,, h}), (I, h,),...,(l,,, h,)} be the set of rectangular pieces to cut. We
reorder the elements of the set S in an order of non-decreasing heights such that &, <h,< -+ <h,,.
Let r denote the number of distinct heights. Let k; denote the greatest index of a piece of height 4,
i=1,...,r,and

Se,={L: (L, h) €S, hj<h,}.
Obviously, we have
Skl CSkZC cer CSk,'

For each Sk,- we associate an One-Dimensional Knapsack Problem defined as follows:

(ODK())

Max ) X,
I,€S,,

subjectto Y, l,x, <@, x,20, x, integer,
1, €S,

where « is the length of the plate to be cut, m, is the profit associated to the piece (/,, &,) (here the
surface) and x,, is the number of times the piece (/,, /,) appears into the i-th strip.

By solving the ODK(i), i=1, 2,...,r, we create r horlzontal strips with length «, height A k; and value
F,(a) (here the occupied surface 1n51de the rectangle (a, h, ). In the sequel, for purposes of simplicity
we replace A x, by B;

This procedure is easily generalized to create also uniform strips consisting each one of pieces with
the same height.

Also it is able to construct almost uniform strips consisting of all type of pieces with heights 4, in the
interval (h, — 8, h; + 8) where & a ‘convenient’ real parameter. Notice that the proposed general strips are
better than the uniform or almost uniform strips, since within a given strip’s height the value Fy(a) of the
corresponding knapsack is always at least equal to the value of the knapsack corresponding to a uniform
or almost uniform strip.

b) Vertical strips. By the same process we can construct vertical strips. We simply reverse the roles of
the lengths and the heights in the previous procedure. The pieces of the set S are reorganized in
non-decreasing lengths. We denote by v the number of different lengths and the sub-sets Sk ,
i=1,...,v, include the heights of the pieces with lengths bounded by [/ K, (next replaced by «;,). By solvmg
v knapsack problems we create a set of optimal vertical strips, which have values F, (B and lengths «;.
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3.3. Filling the plate

We have shown that we can generate a number of optimal horizontal or vertical strips. Each such strip
is characterized by its profit value F(a) and its height B, (for horizontal strips), and F,(8) and its length
a; (for vertical strips). We shall fill the best of them in the plate (a, B) with respect to the height
(respectively to the length for vertical strips) of the disposed plate, by solving another knapsack problem.
For the horizontal strips this knapsack is defined as follows:

(ODK(r + 1))

F..(B) =Max ¥ F(a)y,

i=1

,
subject to Z B.v;<B, y;=0, vy, integer,
i=1
where B is the height of the plate to be cut and y;, i =1,...,r, denotes the number of repetitions of the
i-th strip. For filling the plate with vertical strips just define the ODK(v + 1) problems as previously and
replace a by B, B by «, B, by «; and r by v. Therefore, two cutting patterns are generated having values
vhr=F , (B)and V' =F,, (a).

We have shown how to fill a (sub-)plate with horizontal or vertical strips. The procedure we use and
this one which creates the strips require to solve r + v + 2 (r, v < m) knapsack problems when all pieces
of the set S enter to the (sub-)plate. However, using dynamic programming methods [22], for solving the
involved knapsack problems this number can be reduced dramatically.

In fact, let (a, B) be the initial plate (L, H). When we solve the largest knapsack r, we create the
highest horizontal strip. Then, the solutions of the other knapsacks 1, 2,...,r — 1 are available and thus,
all the strips of intermediate height. Clearly, one only knapsack provides all the horizontal strips. Next,
all values required by the filling procedure for formulating the (r + 1)-th knapsack which selects strips for
filling in the plate are available. Similarly, the v-th knapsack creates the longest vertical strip, and thus
all strips of intermediate length. Finally, the r + v + 2 knapsacks required to fill the plate by horizontal or
vertical strips are reduced to four.

Furthermore, all the optimal sub-strips for the sub-plates generated after dissections on the points of the
sets P, and Py are also available. The only requirement when we deal with each sub-plate is to solve two
knapsacks which select the best sub-strips for filling the sub-plate.

The main steps of the algorithm are:

Step 1.  Discretize the length 1L and the height ;H of the initial plate into two sets P, and Py
respectively, where P, denotes the set of linear combinations with non negative integer
coefficients of the lengths and Py denotes the set of linear combinations with non negative
integer coefficients of heights of the pieces to cut.

Step 2. Generate the highest horizontal strip and the longest vertical strip.

Step 3. At each element x; € P, U Py make a vertical guillotine cut if x; € P; or a horizontal guillotine
cut if x;€Py. Let Py=(x;, H)and P,=(L —x;, H ) denote the produced sub-plates, when
x;€P, and P, =(L, x;) and P,=(L, H—x;) when x; € P,,.

Step 3.1. Fill horizontal strips in the sub-plates P, i =1, 2. Let V" denote the two corresponding
values of the generated patterns.

Step 3.2. Repeat the step 3.1 for filling vertical strips in the sub-plates. Let V;**, i = 1, 2 denote the values
of the new patterns.
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Fig. 2. A cutting pattern generated by the BSC algorithm. Horizontal strips of heights 4,, A, h
and vertical strips of lengths /,,, {,,... are filled into the right sub-plate.

g>--- are filled into the left sub-plate

Step 3.3. Record for each sub-plate P;, i =1, 2 the better pattern. Let V; = max{(V;"", V,*"} denote the
value of the chosen pattern.

Step 3.4. Record the produced cutting pattern of the plate and let V*i =V, + V, denote its value.

Step 4. Choose the cutting pattern having the maximum value V% for all x; € P, U Py,.

Fig. 2 depicts a possible cutting pattern generated by the algorithm.
3.4. The 0-cut phase

When dealing with the zero element of the set P,, the second sub-plate is exactly the initial plate
(L, H). In the sequel we shall refer to this case as the 0-cut phase of the algorithm. This phase includes
the Steps 2 and 3 in the algorithm and only for x;= 0. It provides the solution V0 = max{Vfor, V,er)
which is obtained by solving only four knapsacks.

4. On the complexity of algorithm BSC

By considering only the elements of the sets P, and Py for making dissections on the initial plate,
obviously the computational effort is significantly reduced. Moreover, solutions improvement is not
possible from other dissections which are not included in the sets P, and Py. In fact, it is easy to prove
the following result: There is a solution V* for some x € P, or some x € Py, which is not worse than any
solution V? with p € P, and p & Py.

As we have already mentioned, the 0-cut phase of the algorithm requires only four knapsacks.
Additionally, for each generated sub-plate we require to solve two knapsacks. Thereby, the BSC
algorithm executed over all elements of the sets P, and P, requires for each element four knapsacks.
The total required number of knapsacks for the BSC algorithm being 4(] P, U Py )).

Among these knapsacks the larger ones are those solved at Step 2. The first one with size m (number
of pieces to cut), and second member L, and the second one with sizes m and second member H. To
solve, however, these problems exactly using dynamic programming, the complexity is O(m - max(L, H))
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which is not polynomial in the size of the problem. But, in our case large size instances of the TDK in
practice have values m, L and H which are rather small for the one-dimensional knapsack and the
dynamic programming algorithms turn out to be quite efficient.

We point out that TDK problems of length and height equal to 150 and with 50 pieces to cut can be.
considered as medium or even large size instances. But, the generated one-dimensional knapsack
problems in our algorithm having sizes 50 and second member 150 are small size instances. Therefore,
the algorithm is able to deal efficiently with instances which are hardly handled by other known methods
[11,10,15].

5. The derived approximation algorithm

In this section we present a polynomial approximation algorithm which is naturally derived from the
0-cut phase of the BSC algorithm. This algorithm is shortly described in Fig. 3 by putting « =L and
B=H.

We assume here that the involved ODK problems are all separately solved by a polynomial
approximation algorithm. Obviously, the algorithm needs to solve r < m knapsacks with maximum size m
(number of pieces to cut) and second member the size of the initial plate L. Also it needs another
knapsack with size » (number of different heights) and second member the height of the initial plate H.
Moreover, it needs v <m knapsacks with maximum size m and second member H and one knapsack
with size v (number of different lengths) and second member L. Thereby, the algorithm needs to solve
r + v + 2 knapsacks. Of course, the ODK problem is NP-complete. However, it can be solved approxi-
mately using a polynomial approximation algorithm [18].

6. Performance bounds for the approximation algorithm

In this section we study performance bounds for the approximation algorithm which deals with
minimizing waste UTDK problem. In this case the value #; attributed to each piece is the surface /4,
and thereby maximizing the profit is equivalent to minimizing the waste.

Lemma 1. The waste in each strip generated by the strips generation procedure is less than (1/(k + 1))S,,
where S, is the surface of the strip, i = 1,...,r and k = | L /1| with | the length of the tallest piece that can be
fit in the strip for the horizontal strips and k = | H /h] with h the height of the longest piece that can be fit in
the strip for the vertical strips.

procedure Filling-plate (a, B, I;, h;, 7;)
procedure knapsack (weights, values)
begin
(strips generation)
knapsack (weights, values)
end
begin
sort(h;)
knapsack (weights, values)
{pattern generation)
Filling-plate (8, «, h;, I;, 7))
end

Fig. 3. An approximation algorithm which provides cutting patterns with a horizontal strips or vertical strips structure.
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Proof. We have L /(k + 1) <I<|L/k]and thus, k(L /(k + 1)) <kl <k|L/k|< L. The strip of height ;
has a value (or occupied area) V; which satisfies: V; > klh; since there is a construction which includes at
least k pieces of length /. Thus, V,; > k(L /(k + 1)h; = (k/(k + 1))S,. For the vertical strips the proof is
similar. O

Immediately from the lemma, we conclude that each created strip has a value (occupied area by the
included pieces) greater than the half of its area. As a consequence we have the following corollary.

Corollary 1. The approximation ratio of the algorithm is asymptotically equal to %

Proof. By the previous lemma we have for each strip that V,> 1S,. Moreover, we have V=71, _ .V,
where E is the set of indices of the selected strips by the last knapsack. Thereby, V> T,  ;1S,
= 3L, gh,. Since H—X,_h;<h*, where h* is the minimum height of the pieces, we obtain
V> 1L(H — h*). Also we have V* < LH. Consequently, V/V* > 1(1 — h*/H), and obviously, this ratio

tends to 3 for small values of A*. The same result can be obtained of course for small lengths. O

Lemma 2. (i) If,;>|3L] foralli=1,...,m, then the optimal solution is equivalent to a solution composed
by a vertical strip.
(i) If h,>|3H| foralli=1,...,m, then the optimal solution is composed by a horizontal strip.
Gil) If k =max{{L/L;), | H/h;), i=1,...,m} is equal to 1 or 2, then the optimal solution of the UTDK
is (or is equivalent to a solution) composed by horizontal or vertical strips.
(iv) The approximation algorithm finds these solutions with 1 — &, for every € > (.

Proof. (i): Obviously, no more than one piece can enter horizontally in the plate. Fig. 4a illustrates such
an instance.

(ii): Similarly, no more than one piece can enter vertically in the plate (Fig. 4b).

(iii): The case of k =1 is trivial. For k = 2 there exists an index w such that either

sL<l,<3L, 3L<l;<L Vi#w,and jH<h;,<H Vi=1,...,m

(at least one piece enters exactly two times in the length of the plate)
or

$H<h,<3iH, tH<h;<H Vi#w, and JL<l,<L Vi=1,...,m

(at least one piece enters exactly two times in the height of the plate).

H / / /

(a) (v) (c)

Fig. 4. Three instances for the two-dimensional cutting problem which are solved within 1 — ¢ by the approximation algorithm: a) a
vertical strip structure b) a horizontal strip structure and ¢) two vertical strips structure.
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Assume that k =2 is induced by a length /. Then, an optimal cutting pattern includes necessarily a
guillotine cut (say vertical cut), that divides the initial plate into two sub-plates which are also optimal
solved. But, it is obvious that each one of them does not contain more than one piece in its length.
Therefore, the optimal solution for each sub-plate is exactly a vertical strip. Consequently, the optimal.
solution of the initial plate is composed by two vertical strips (Fig. 4¢). If the guillotine cut is a horizontal
cut we conclude that the optimal solution is composed either by a horizontal strip or two horizontal
strips. The conclusion is similar when k = 2 is induced by a height £,,.

(iv): Just solve the ODK problems which create the horizontal strips of length L and the vertical
strips of height H by a polynomial algorithm within 1 — —21-3, and the two last ODK problems that select
the best of the strips to fill the plate, also within 1 — %5. O

Theorem 1. If V denotes the value of a solution provided by the approximation algorithm and V'* is the
value of an optimal solution then

|14 k V* here k L 7 1
> — = —Ll=1i=1,...,m}.
kD where maxi [+, | = [» m

Proof. Let w be a piece with k =max{|L //,|, | H/h;}, i = 1,..., m} and assume that k corresponds to the
length /. Let us consider the horizontal strip having height 4,,. By Lemma 1 the strip’s value is such that
V., > (k/(k + 1))Lh,. Consequently, the algorithm gives
V " k Lh A
=%, kr 1w,

w

v, >

and since V* < LH we obtain
14 k h, | H k |H/h, |

—_— e — | > (D)

V* k+1H]|h, k+1|H/h,|+1

and thus, V> (3k/(k + D)V*. If k corresponds to the height 4, the proof is similar by considering the
vertical strip of length /,. O

As discussed by Christofides and Whitlock [4], every guillotine pattern has an equivalent normalized
guillotine form in which all pieces are left-justified at the lowest possible position in the initial plate and
the cuts are made on elements belonging in the sets P, and Pj. Next, we consider optimal solutions
having this property. Eventually, the strips discussed below can be trivial strips including only one piece.
These strips are indifferrently referred as vertical or horizontal strips.

Theorem 2. The approximation ratio of the algorithm is 3.

Proof. By considering a normal optimal cutting pattern we prove that, for k > 3, either there exists a
piece w that can fit twice in the length of the plate and in the height of the plate or the optimal solution
is composed by only horizontal or only vertical strips.
Let us firstly consider the case where k =3 and assume that this value is induced by a length /.
Clearly, we have that
L <1, <3iL (2)
whereas

1L <l, <L Vi#w,and tH<h;,<H Vi=1,2,....,m
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(similarly if k = 3 is induced by a height £,). Let x; < sL, x; € P;, be the first guillotine cut, say vertical,
in an optimal pattern, that divides the 1mt1al plate into two sub plates each one of them being naturally
optimally dissected. The two sub-plates contain in their length only one piece or the former contains one
piece and the latter two pieces (or inversely).

In the first case the optimal solution is composed by two vertical strips (or it is equivalent to a such
solution). By applying Lemma 2 we conclude that the algorithm finds this solution within 1 — ¢, for every
€ > 0. In the second case we consider the following two sub-cases.

Firstly, suppose that

lH<h,<H Vi=1,2,...,m, (3)

i.e. there is no piece that can be fit vertically more than two times in the plate. Then, Lemma 2 implies
that the optimal solution of the second sub-plate is composed either by two vertical strips or two
horizontal strips (these are the more interesting cases). Thereby, the optimal solution of the initial plate
includes either one vertical strip (first sub-plate) and two horizontal strips (second sub-plate) or three
vertical strips. The last solution composed by three vertical strips is found within 1 — ¢ by the algorithm.
For the other solution the algorithm gives in the worst case approximation ratio 3. In fact, such a
solution will have a structure as in Fig. 5a. The optimal pattern includes three consecutive guillotine cuts
made at the point x; vertically, at the point y; horizontally, and at the point x, vertically. Since we
consider normal guillotine patterns with respect of the effects of symmetry, necessarily we have that

i<|3L),  yi=<[3H], x,<|3(L-x). (4)

The strips including pieces w and g can be eventually trivial strips. If A, > —H we have by Lemma 1
and considering the two horizontal strips generated by the pieces p and g that v,> 2Lh > 1LH Also
we have by using (3) that V, > jLh, > ¢LH.

Consequently, our solutlon VCI'lflCS V> V,+V,> 1LH and thus, V> 11*.

If h, < 1H, then piece p can fit two tlmes in the length and 2 times m the height. Thus, by Lemma 1
and relation (1) we have V>V, > 3LH and so, V> 3V'*.

Secondly, suppose that there is a piece p such that

1 1
;H<hp5

i.e. there exists a piece of height 4, that can fit vertically in the plate three times. If p=w (where w is

the piece having the smallest length) then the algorithm shall give a solution greater than % of the

\ D A B D A B

P P
Y; Z, Y; Ty Y; Z,
w

1 \\ © ¢

Zj xj Z;
(a) (b) (c)

Fig. 5. Three optimal cutting patterns when a piece w having the smallest length /,, can fit into a horizontal strip exactly 3 times. (a)
The pattern is obtained by the BSC algorithm. (b) The region A is sufficient to produce two pieces. The pattern can not be

obtained by the BSC algorithm. (¢) The region B is sufficient to produce two pieces, whereas the region A produces only one piece.
The pattern can not be obtained by the BSC algorithm.
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optimal solution (using (1)). Otherwise, one of the two situations illustrated by Figs. Sb and 5c¢ will
appear. If one of the regions A or B produces two pieces, the induced structure can not be obtained
neither by the BSC algorithm. By (2) we conclude that region D is a vertical strip, and the region C is a
horizontal strip. Furthermore, we deduce that one of the two pieces produced in region A (Fig. 5b) or B
(Fig. 5¢) has dimensions /, and A psuchthat 2] <I,2h,<H. This is obvious for the situation illustrated
in Fig. 5b by (4), whereas for the situation in Fig. 5c we have §L </, and thus, /, <L — 2/, < 3L. By
considering the strip of height #, in Lemma 1 we have k = 2. By using the same strip in Theorem 1,
relation (1) gives V > §V*.

Hence, for k < 4 the algorithm always gives V' > $V*.

For k > 4 similarly we conclude that there exists a piece which fits in the plate horizontally and
vertically twice or trivially the optimal solution is equivalent to a horizontal (or vertical) strip.

The proof is concluded by applying relation (1) of Theorem 2 for the first case (putting k = 2 and
LH/h,]=2 or Lemma 2 for the second case. 0O

Corollary 1. The approximation ratio for the algorithm when the initial plate and the pieces to cut are
squares is .

Proof. Consider k as in Theorem 1. Then, the approximation ratio derived as in Theorem 1 for the
algorithm is k?/(k + 1)%. For k =1, 2 the algorithm provides a solution within 1 — ¢, for every £ > 0.
Thus, when we consider the worst-case, k = 3, the result is immediately obtained. O

Remark. If we introduce some restrictions on the pieces size then stronger results can be derived. For
example, it is easy to prove (as in Theorem 1), that if there exists a piece (I i h j) with H = ph; for some
integer p and /; <[ L /k] for some integer k then, we obtain the approximation ratio k/(k + 1). Thereby,
in ?mpractical application where k equals to 100 is not rare, we obtain almost optimal solutions (i.e. V
> WV*)

7. Computational results

We have shown that the 0O-cut phase from which the approximation algorithm is derived gives an
interesting theoretical approximation ratio. In this section, we shall see that gives also an excellent
experimental approximation ratio.

The BSC algorithm as well as the 0-cut phase of the algorithm were tested on up to 100 instances
randomly generated. We have considered two sets of instances. The first set included 50 moderate size
instances, with sizes L and H ranging between 50 and 100 and 10 to 30 pieces to cut. The second set
included also 50 instances but of large size: for example plates with sizes ranged between 100 and 200
and number of pieces to cut ranged between 30 and 60. The dimensions of the initial plates and the
number of pieces to cut were chosen uniformly on the fixed interval, whereas the dimensions of the

Table 1

The performance of the BSC algorithm for small and large instance sizes

Optimal sol. (%) 94 88 91
Exp. appr. ratio 0.98 0.99 0.98
Exp. av. appr. ratio 0.999 0.999 0.999

Instance sizes small large total
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Table 2

The performance of the 0-cut phase for small and large instance sizes

Optimal sol. (%) 76 74 75
Exp. appr. ratio 0.96 0.98 0.96
Exp. av. appr. ratio 0.996 0.998 0.997
Instance sizes small large total

pieces were picked up uniformly on the intervals (0, L) and (0, H). Next, the optimal solutions were
found by the first Gilmore and Gomory’s algorithm.

In Table 1 we can see the performance of the BSC algorithm by referring to the percentage of optimal
solutions, the average approximation ratio and the minimum ratio. The knapsack problems were solved
exactly. by a dynamic programming algorithm. We see that 91% of the instances are optimally solved,
whereas the totality of the instances were solved very close to the optimum. The experimental
approximation ratio was found to be 0.98 and the average one 0.999. Some instances taken from the
literature [4,23] (we have relaxed the upper bounds on the variables), were solved exactly by our
algorithm.

As concerns the 0-cut phase, it provided also very good solutions. In Table 2, it can be seen that the
worst-case experimental approximation ratio is (.96, whereas the percentage of optimal solutions remains
still very interesting (75%). Consequently, in practical applications the BSC algorithm can be stopped at
this phase giving very good solutions with relatively small computational effort.

In Fig. 6 we give the solutions found by the BSC algorithm and the 0-cut phase for an example taken
from [15].

The dimensions of the initial plate are (L, H)=(127, 98) and the set of pieces p,=(l, h,) is
S ={(21, 13), (36, 17), (54, 20), (24, 27), (18, 65)} with 7, = ;h,. The solution obtained by filling the initial
plate by horizontal strips (0-cut phase) is given in Fig. 6a with a value F(L, H) = 12132. This solution
presents an approximation ratio equal to 0.982 and was found in 344 ms on a Univac 1100, whereas
Gilmore and Gomory’s algorithm provided the optimal solution in 34 823 ms. In Fig. 6b we can see an
improved solution obtained by the BSC algorithm. A vertical cut has been made at the point x; = 54 and
the two sub-plates are both composed by horizontal strips. The value for this solution is F(L, H)= 12192
and presents an approximation of 0.987, requiring only 2297 ms. For the second problem with dimensions
(L, H)= (40, 70) and 10 pieces to cut, given in [4], the O-cut phase needs only 314 ms for finding the
optimal solution. The exact algorithm gives this solution in 3962 ms.

NN\ s IEEEE
D4 P4 P4
Pz P2 p3
D | 2 | ] D Pa| P4a| P4 \
pa| Pa| P Q
. . 4 4 4
] P P1 S A \
141 P P P2 p2
Z;
(a) (b)

Fig. 6. (a) A cutting pattern of the initial plate (L, H)=(127, 98) composed by horizontal strips. Two kinds of strips are involved:
One homogeneous strip repeated 6 times and one general type strip. (b) A better cutting pattern composed also by horizontal
strips, but after a vertical cut has been made at a point x; = 54. The strips involved are all uniform strips.
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The third problem in [4] having dimensions (L, H) = (40, 70) and 20 pieces to cut was also solved to
the optimality within 506 ms by the 0-cut phase, whereas the exact algorithm needs 4512 ms. However,
for small problem sizes the algorithm has not the same time performance. For example the first problem
given by Christofides and Whitlock in [4] having sizes (L, H) = (15, 10) and 7 pieces to cut, needs 90 ms
by the O-cut phase for an approximation solution equal to 0.996. The optimal solution was found by the
BSC algorithm in 383 ms, but the exact algorithm needs only 100 ms.

It is obvious that the presented algorithms require far less computational efforts than other known
algorithms, particularly for large size instances and also considerably reduced memory. Thus, they can be
used to solve efficiently real-world problems of very large sizes.

8. Conclusions

In this paper we have described an efficient algorithm for solving two-space knapsack problems. From
this algorithm we have derived an approximation algorithm and we have shown that this algorithm has
approximation ratio equal to i. The algorithms deal efficiently with large size instances and they are
easily generalized to deal with other versions of the TDK, for example, profits no proportional to areas,
or number of appearances of each piece in the final solution bounded [25]). Finally, the algorithm can

easily be used for solving general Cutting Stock problems [24].
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