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Abstract

We deal here, with a real-world problem, called ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT problem. We first show how it can be

modeled as a particular kind of circular cutting problem. Next, we develop a simulated annealing heuristic solving it

with good performance. Our method is based upon the definition of an energy function reflecting the objective to be

optimized; small values of this function correspond to local optima of good quality for our problem.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we deal with the following problem. We wish to build antennas in order that they cover a given land-

area. We assume that the antennas coverage is a circle of a certain radius and that the area to be covered is rectangular.

We also assume that the technical characteristics of all antennas are identical except of their surface-coverage abilities

that can differ the ones from the others. Since land-area is still under construction and/or internal transformation, we

cannot have, at the initial stage, a complete knowledge of the places where antennas must be stalled, but one has an

a priori knowledge of the types of antennas needed. On the other hand, coverage of the area dealt is relatively urgent in

such a way that one cannot wait that all constructions and transformations planned are accomplished before ordering

antennas (given that ordering and fabrication delays of such components is rather long). Hence, one needs that a certain

quantity of antennas is available once area is ready for coverage, even if the total quantity of them is not sufficient to

cover the whole area. A way to tackle fuzziness occurred is the following:

We are given a certain number of types of circular-coverage antennas and a rectangular area to be covered by

them; the objective is to place antennas in such a way that

1. coverage areas of antennas do not mutually intersect and

2. the total coverage of rectangular area is maximized.

This is what we call ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT problem. Obviously, its solution does not constitute a feasible

solution for the initial problem; however, it represents a feasible estimation of the lower bound on the number of

antennas needed to be ordered so that coverage works are not delayed (even if additional components will have to be

ordered during works).

ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT turns out to be a member of a well-known family of combinatorial problems, called

circular cutting problems. Our problem can be formally expressed in the following way:
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Instance. A rectangle R of length L and width W (this is the area to be covered) and ‘ types of cycles, type i 2 f1; . . . ; ‘g,
been characterized by its surface si (that models, in a proper way, the surface-coverage ability of an antenna of type i;
observe that once si is given, radius ri is also fully determined). We suppose that the number ni of antennas of type i,
i ¼ 1; . . . ; ‘, is at least bL� W =sic, i.e., that the number of antennas of any type i is sufficient that R is covered without

surface-coverage overlapping exclusively by antennas of type i.

Objective. A placement of circles in R in such a way that no two of them have non-empty intersection and that the

maximum of the surface of R is covered. We assume that the coverage of R is the sum of the surfaces of the circles placed

by the solution.

Obviously, the problem at hand is NP-hard, since it is an immediate generalization of KNAPSACKKNAPSACK [3]. We propose in

this paper an algorithm based upon simulated annealing (see [1,2,6] for details) that approximately solves ANTENNASANTENNAS

PREASSIGNMENTPREASSIGNMENT. We first model feasible solutions of the problem in terms of an energy function to be minimized. We

then propose an algorithm that searches for local optima energy function. These local optima correspond to solutions

for ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT.

Let us note that this paper is simultaneously new, as it models and solves a real-world problem, and a kind of

continuation and extension of [5], where a simulated annealing method has been proposed for an analogous version of

circular cutting problem. The energy model and the perturbation-mechanism in [5] were less exhaustive and fine than

here. Despite, results obtained there are very interesting. This, together with the fact that we have tackled almost the same

problem working on an industrial contract, has motivated us in solving it by extending and refining the work in [5].
2. The simulated annealing model

Denote by S0 the surface of R, by Sr the set fðx; yÞ : xP L and 06 y6W g, and by S the set R2 n ðS0 [ SrÞ; finally,
denote by Si the surface of piece i.

The general idea of our method is the following:

• we first place circles in R2 without overlappings;

• next, suitably defining an energy function that describes feasible solutions of ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT and their

values:

� we first force circles to be concentrated in the strip S0 [ Sr even if this concentration produces overlappings in

both S0 and Sr;
� finally, we eliminate overlappings from S0 by moving, in a proper way, circles out from S0.

2.1. The energy function

The energy function is based upon the following requirements:

1. situations where: two circles intersect mutually, or a circle intersects R, or, finally, a circle lies in the exterior of R,
have to be avoided in a feasible solution;

2. the greater the number of circles feasibly placed in R, the higher the usage (covering) of the surface of R.

We will describe in what follows, how to construct an energy function E, global or local optima of which correspond to

good ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT solutions. Set m ¼
Pl

i¼1 ni, and denote by AðiÞ the area covered by circle i.
In order to introduce a maximum number of circles in the rectangle, we ‘‘strain’’ them to be concentrated to the

bottom-left corner of R. By introducing a large number of circles in R we fulfill requirement 2 but this greedy policy may

introduce intersections between circles not only inside R, but also outside, therefore violation of requirement 1 may be

happened.

Because of this contradiction between requirements 1 and 2, a trade-off between them is performed by using penalty

parameters. We use four such parameters:

• p1 penalizing non-empty intersections between circles inside R,
• p2 penalizing intersections of the circles with S,
• p3 penalizing intersections of the circles with Sr, and
• p4 penalizing the distance from the point ð0; 0Þ (bottom-left corner of R).
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We split the expression for the energy into two parts: Eð1Þ and Eð2Þ. The first one will control whether our configuration

respects requirement 1. For any undesired position of a circle, the measure of ‘‘how much requirement 1 is violated’’ is

expressed by an area, which will take part in the expression of energy presented below.
Fig. 1. Case 1.

Fig. 2. Case 2.

Fig. 3. Case 3.
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All the possible undesirable positions of circles and their contribution to the first part of the energy are:

1. if a circle j intersects i and if both i and j lie in Sr, E
ð1Þ
ij ¼ p3jAðiÞ [ AðjÞj (Fig. 1);

2. if a circle j intersects i and if i lies in Sr and j intersects S, Eð1Þ
ij ¼ maxfp2; p3gjAðjÞj þ p3ðjAðiÞj � jAðiÞ [ AðjÞjÞ (Fig. 2);

3. if a circle j intersects i and if both i and j lie in the interior of R, Eð1Þ
ij ¼ p1jAðiÞ \ AðjÞj (Fig. 3);

4. if a circle j intersects i and if i lies in the interior of R and j intersects S, Eð1Þ
ij ¼ ðp1 þ p2ÞjAðjÞj (Fig. 4);

5. if a circle j intersects i and if both i and j also intersect S, Eð1Þ
ij ¼ ðp1 þ p2ÞjAðiÞ [ AðjÞj (Fig. 5);
Fig. 4. Case 4.

Fig. 5. Case 5.

Fig. 6. Case 6.



Fig. 7. Case 7.

Fig. 8. Case 8.

Fig. 9. Case 9.
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6. if a circle j intersects i and if i lies in the interior of R and j intersects Sr, E
ð1Þ
ij ¼ ðp1 þ p3ÞjAðjÞj (Fig. 6);

7. if a circle j intersects i and if i intersects R and j lies in S, Eð1Þ
ij ¼ p2jAðiÞj (Fig. 7);

8. if a circle j intersects i and if both i and j also intersect Sr, E
ð1Þ
ij ¼ ðp1 þ p3ÞjAðiÞ [ AðjÞj (Fig. 8);

9. if a circle j intersects i and if j intersects R and i lies in Sr, E
ð1Þ
ij ¼ p3jAðiÞj (Fig. 9);

10. if a circle j intersects i and if circle j intersects both S and Sr and if i lies in S or in Sr, then Eð1Þ
ij ¼ maxfp2; p3gjAðjÞj

(Fig. 10);



Fig. 10. Case 10.

Fig. 11. Case 11.
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11. if a circle j intersects i and if circle j intersects both S and Sr and if i lies in the interior of R, then

Eð1Þ
ij ¼ ðp1 þmaxfp2; p3gÞjAðjÞj (Fig. 11);

12. if a circle j lies in Sr without intersecting any other circle, Eð1Þ
j ¼ p3jAðjÞj;

13. if a circle j lies in S without intersecting any other circle, Eð1Þ
j ¼ p2jAðjÞj.

In summary, the term of E dealing with requirement 1 is Eð1Þ ¼
Pm�1

i¼1

P
j>i E

ð1Þ
ij þ

Pm
j¼1 E

ð1Þ
j .

Let now Eð2Þ
i be the basic component of the term of E dealing with requirement 2. A measure of how close to the

bottom-left corner of R a circle i lies (and, consecutively, how many circles are placed inside R) is the value of the

expression Di ¼ riðjyi � rij þ jxi � rijÞ (where ðxi; yiÞ are the coordinates of the center of circle i), notice that if

ðxi; yiÞ ¼ ðri; riÞ, then Di ¼ 0, while if ðxi; yiÞ 6¼ ðri; riÞ, the non-zero value of ðjyi � rij þ jxi � rijÞ is amplified by its

multiplication by ri. In other words, informally, the fact that a circle i is far from the bottom-left corner of R induces a

large value for Di, and consequently, for the energy function. Therefore, we form the second part of the energy function

as:
Eð2Þ
i ¼ p4 ri jyiðð � rij þ jxi � rijÞÞ
and the term of E dealing with this requirement is Eð2Þ ¼
Pm

i¼1 E
ð2Þ
i . Finally,
E ¼ Eð1Þ þ Eð2Þ ¼
Xm�1

i¼1

X
j>i

Eð1Þ
ij

 
þ
Xm
j¼1

Eð1Þ
j

!
þ
Xm
i¼1

Eð2Þ
i ð1Þ
We now show how to adjust the penalty parameters p1, p2, p3, and p4 in order to obtain feasible configurations. As we

mentioned before, we first concentrate a maximum number of circles in the strip S0 [ Sr (in order to be introduced later

on in R) by allowing some overlapping. For this, we have to discourage the circles to take places in S. We therefore
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consider a large value for p2. In this way, since E (expression (1)) is to be minimized, the terms with factor p2 must be the

least possible in number or/and to have values close to 0. Since we have decided to allow some overlapping, we consider

p1 < p2.
In order to avoid overlapping inside R, we encourage a certain shifting to the right (even if this shifting will produce

the introduction of some circles from S0 to Sr); to achieve this we set p3 < p1. Thus, finally, p3 < p1 < p2, and the termPm�1

i¼1

P
j>i E

ð1Þ
ij þ

Pm
j¼1 E

ð1Þ
j encourages the introduction of circles in R, avoiding both overlapping between circles and

overflow of circles with respect to the edges of R.
We now complete the adjustment by trying to further strain the circles to be placed in the strip S0 [ Sr in order to

ensure that a maximum number of circles will finally be introduced in the strip without overlapping. This can be

obtained using parameter p4. At the initial step of the algorithm, we consider a value for p4 as large as the one for p2 (by
allowing high initial-energy values). In other words, we attribute the same importance to both the overlapping elimi-

nation and the concentration of the circles to the bottom-left corner of R. Progressively, the value of p4 will be reduced.
This means that we accept the shifting of some circles from S0 to Sr in order to avoid overlapping into S0. So, if p4
becomes close to 0 and if no overlapping is produced, then the value of the energy becomes small.

2.2. Initialization of the method and achievement of consecutive neighborhoods

The initial configuration is performed by placing inside the rectangle R as many circles as possible, taking care to the

feasibility of the configuration; in other words by fully obeying criterion 1. To achieve that we take randomly a circle

and we put it as near as possible to the lower left corner of the rectangle. As soon as a circle has been placed, we

‘‘subtract’’ from the rectangle R a square that enscripts exactly this circle. We continue this way horizontally until we

reach the rightmost edge. At this point a strip with height the maximum diameter between the (randomly) already

chosen circles has been extracted from the initial rectangle. We continue this way by placing randomly chosen circles

until available area of the rectangle is exhausted. The remaining cycles are placed around the three edges of the

rectangle in the S.
A placement of cycles around and inside R determines a configuration characterized by an energy value. Obviously

any configuration coincides with a solution (feasible or unfeasible) of ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT. The neighbor of a

configuration C is a new configuration C0 obtained by applying on C one of the transformations we will describe just

below. In what follows, the neighborhood of a circle i is the set of circles, the center of which lies into a cycle of center

ðxi; yiÞ and radius 2ri.

Transformation T1. This transformation is performed either horizontally or vertically (in both cases parallel either to

axis 0x
!
, or to axis 0y

�!
). We randomly choose a circle i; for a circle j neighbor of i, with yj ¼ yi we define

dxj ¼ jxi � xjj � ðri þ rjÞ, its horizontal distance from i. For a circle l neighbor of i, with xi ¼ xl, we define

dyl ¼ jyi � ylj � ðri þ rlÞ, its vertical distance from i. Transformation T1 consists of bringing circle

k 2 argmin16 j;l6mfdxj ; d
y
lg, k being a neighbor of i, closer to i.

Transformation T2. This transformation is performed diagonally with respect to axes 0x
!

and 0y
�!

. Given two pieces i and
j, we define their diagonal distance d ¼ ½ðxi � xjÞ2 þ ðyi � yjÞ2�1=2. As previously, we try to move piece j, lying on the

neighborhood of i, in such a way that the two pieces touch each other and, moreover, the center of j always lies on the

straight line defined by the points ðxi; yiÞ and ðxj; yjÞ. This movement can be seen as two simultaneous movements,

one parallel to axis 0x
!

by a distance dx, and the other parallel to axis 0y
�!

by a distance dy. These two distances are

defined by
ðdx; dyÞ ¼ Dx 1� riþrj
d

� �
;Dy 1� riþrj

d

� �� �
dP ri þ rj

Dx riþrj
d � 1

� �
;Dy riþrj

d � 1
� �� �

otherwise

�

where Dx ¼ jxi � xjj and Dy ¼ jyi � yjj.

Transformation T3. Let us consider two circular pieces i and j touching each other, and suppose that i lies on the left of

j. Let us denote by ðxt; ytÞ the coordinates of the point where a tangent of j, vertical to the axis 0x
!
, touches j. Trans-

formation T3 consists of performing a symmetric displacement of j with respect to the axis represented by the straight

line vertical to 0x
!

containing point ðxi; yiÞ, and then a right shifting of the two pieces by an horizontal distance

jxt � xi � rij. The meaning of this transformation is that if i has important overlapping surfaces on its left, and

moreover, rj < ri, by T3 we can reduce overlapping. On the other hand, if rj > ri, and there exist some ‘‘holes’’ (waste)

on the left of i, then T3 will reduce their surface.
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Transformation T4. Let us consider a piece j into S0 and tangent either (i) to straight line y ¼ W , or (ii) to straight line

x ¼ L. Let us also consider a piece i tangent to j and lying out of S0. Then, transformation T4 consists of a symmetric

displacement of i and j with respect to the straight line y ¼ W in case (i), or x ¼ L in case (ii). This transformation allows

new pieces to be introduced into S0.

Transformation T5. Consider a piece i lying on S0 and a piece j out of S0, the radii of which verify

0 < maxfri; rjg=jri � rjj6 b for a positive constant b > 1. Then, transformation T5 consists of an interchanging be-

tween i and j. The meaning of T5 is that if ri > rj, then, the performed interchanging will reduce the overlapping into S0,
while, in the opposite case, the waste will be reduced.

Transformations T1, T2 and T3 operate in the interior of S0 and perform a local rearrangement of pieces

already introduced. Transformations T4 and T5 are more ‘‘global’’ and interchange pieces inside S0 with pieces outside

it.
2.3. The overall algorithm

We now give an overall specification of the simulated annealing method devised, denoted by SA_ALG in what

follows:

1. begin with an initial configuration and an initial temperature Tk ¼ 10; define two thresholds: the first one being the

length of the Markovian chain for a given temperature (fixed to 3m, where m ¼
Pl

i¼1 ni), and the second one being a

fraction of the length of the chain (in our case this threshold is half the length of the Markovian chain, i.e., b3m=2c);
2. repeat the following steps:

(a) choose (randomly) a circle lying inside the rectangle; for any circle that belongs to the neighborhood of the cho-

sen circle, apply one of the transformations T1, T2, T3; for the new configuration calculate its energy E; if DE6 0

or if expð�DE=TkÞ > random½0; 1Þ, then keep the most recent configuration;

(b) for the piece chosen at the previous step (step 2a), apply one of the transformations T4, T5; for the new config-

uration obtained, calculate its energy E; if DE6 0 or if expð�DE=TkÞ > random½0; 1Þ, then keep the most recent

configuration;

until the number of transformations that do not produce a better configuration exceeds the small threshold or the

number of transformations performed so far for the current temperature exceeds the big threshold;

3. reduce temperature Tk by multiplying it by a constant smaller than 1 (in our case this constant has been fixed to

0.95);

4. repeat steps 2 and 3, until one of the exit criteria is satisfied.

In the simulated annealing algorithm sketched just above, we use the following two exit criteria:

(i) a threshold for the temperature (fixed for our algorithm to 10�3);

(ii) a threshold � for the quantity jE� � ð
Pq

k¼1 EðkÞ=qÞj where E� is the smallest energy achieved so far, EðkÞ is the en-

ergy for the last configuration produced for a temperature Tk , and q is the number of configurations tested for the

temperature Tk (here, we have taken � ¼ 10�3).
3. Some computational studies

As we have mentioned in the beginning of the paper, our initial purpose was to face ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT

problem as it has been posed to us by industrial decision makers. Solution computed was completely satisfactory for

them and fulfilled all of their requirements.

We then have performed a limited computational experience on instances which, even they did not correspond to

real-world configurations, they were validated by our partners. More precisely, we have generated 20 instances for

which optimal solutions have been computed by exhaustive search. Dimensions L and W for R are randomly drawn

from interval [25,300]. For any instance, we have assumed equal circles the radii of which have been randomly drown

from interval [0.5, 7.85]. For any test (using circles of radius r), the number of circles available was taken equal to

3bL� W =ð4r2Þc. Penalties values have been considered as follows:
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• p1 and p3 2 ½0:1; 1�;
• p2 ¼ 1;

• p4 has been initialized to 1 (as the tenth of the initial temperature); for any change for temperature Tk , p4 was set to
p4 ¼ Tk=10.

Even if algorithm SA_ALG, may produce a number of configurations corresponding to unfeasible solutions for

ANTENNAS PREASSIGNMENTANTENNAS PREASSIGNMENT, no such configurations have been observed in our tests (this, with respect to [5], maybe

due to a more exhaustive study of unfeasibility causes performed in the current paper, or to a different choice of the

several simulated annealing parameters). In all,

• the average differential ratio (i.e., the ratio of the total coverage produced by the circles placed by our algorithm to

the total coverage produced by the circles of the optimal solution) over the twenty instances tested and over all runs

for the different values of penalties p1, p2 and p3, is equal to 0.954 (this ratio varies from 0.78 to 1);

• the average ratio of the coverage produced by SA_ALG over the whole surface of the rectangle is equal to 0.89 and

varies from 0.72 to 0.95;

• the average CPU-time is equal 7 min on a Pentium 4 at 2.4 GHz with memory of 512 Mb.
4. Research in progress

Our first computational experiments are quite promising and represent an improvement (to be confirmed) with

respect to the results presented in [5]. However, more systematic experiments have to be performed in order to establish

the pertinence of our model. Our actual research carries over two directions already (partially) dealt in [5].

The first direction is in connexion with the very interesting strip-packing method of [7]. Strip-packing problem is a

kind of ‘‘dual’’ of circular cutting, where one is given a set of circular pieces and she/he wishes to place them, without

overlapping, in a rectangle of dimensions L and W , so that that either L, or W is minimized. We are working in testing

our method on data-sets kindly sent to us by the authors of [7].

The second direction deals with the work of [4] about strip-packing. There, authors consider a fixed number of disks

of the same radius and search to determine the side length of the smallest square that contains the disk centers. Testing

our method on results of [4] is our second short terms research direction.
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