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Abstract

The addition of storage capacity in network nodes for the caching or replication of popular

data objects results in reduced end-user delay, reduced network traffic, and improved scalability.

The problem of allocating an available storage budget to the nodes of a hierarchical content

distribution system is formulated; optimal algorithms, as well as fast/efficient heuristics, are

developed for its solution. An innovative aspect of the presented approach is that it combines all

relevant subproblems, concerning node locations, node sizes, and object placement, and solves

them jointly in a single optimization step. The developed algorithms may be utilized in content

distribution networks that employ either replication or caching/replacement. In addition to

reducing the average fetch distance for the requested content, they also cater to load balancing

and workload constraints on a given node. Strictly hierarchical, as well as hierarchical with

peering, request routing models are considered.

1 Introduction

Recent efforts to improve the service that is offered to the ever increasing internet population strive

to supplement the traditional bandwidth-centric internet with a rather non-traditional network re-

source – storage. This trend is evident in a number of new technologies and service paradigms.

End-users employ local caches at their Web browsers or participate in peer-to-peer networks to

share storage and content with other users. Organizations install dedicated proxy servers to cache

popular documents that are shared among their local populations. Clusters of networks cooper-

ate by allowing their proxy servers to communicate, forming large hierarchical caches such as the

NLANR cache. Similar steps are taken regarding content provision/distribution. Popular web-sites

employ reverse proxies for load balancing purposes or maintain multiple mirrors in geographically

dispersed locations. Content Distribution Networks (CDNs) operate large numbers of servers that

“push” the content of their subscribed clients close to the end-users. In all aforementioned cases,

storage capacity (or memory) is employed to bring valuable information in close proximity to the

end-users. The benefits of this tactic are quite diverse: end-users experience smaller delays, the

load imposed on the network and on web-servers is reduced, the scalability of the entire content

provisioning/distribution chain in the internet is improved.

∗This work and its dissemination efforts have been supported in part by the IST Program of the European Union

under contract IST-2001-32686 (Broadway). The authors are with the Department of Informatics and Telecommunica-

tions, University of Athens, 15784 Athens, Greece (email: laoutaris@di.uoa.gr; vassilis@di.uoa.gr; istavrak@di.uoa.gr).
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In most cases the engagement of the memory resource has been done in an ad hoc manner.

Organizations select the location and capacity of their dedicated proxy servers with little or no

coordination with other organizations, even in the case that their proxies connect to the same

hierarchical cache. Similarly, web-servers are replicated based on geographical criteria alone (e.g.,

US, Europe, Asia site) or on crude statistics (total number of requests coming from a certain

network/region). The uncoordinated deployment of memory can seriously impair its effectiveness.

This paper attempts to answer the question of how to allocate a given storage capacity budget

to the nodes of a generic hierarchical content distribution system. Such a system can materialize

as any one of the following: a hierarchical cache comprising cooperating proxies from different

organizations; a content distribution network offering hosting services or leasing storage to others

that may implement hosting services on top of it; a dedicated electronic media system that has a

hierarchical structure (e.g., video on demand distribution). The dimensioning of web caches and

content distribution nodes has received a rather limited attention as compared to other related issues

such as replacement policies [1, 2], proxy placement algorithms [3, 4, 5, 6] and request redirection

mechanisms [7]. This observation seems to have been made by other researchers too in very recent

publications [8]. In fact, the only published paper on the dimensioning of web proxies that we are

aware of is due to Kelly and Reeves [9] whereas the majority of related works in the field have

disregarded storage dimensioning issues by assuming the existence of infinite storage capacity [10,

11].

The limited attention paid to this problem probably owes to the fact that the rapidly decreasing

cost of storage combined with the small size of typical web objects (html pages, images), make in-

finitely large caches for web objects realizable in practice, thus potentially obliterating the need

for storage allocation algorithms. Although we support that storage allocation algorithms are

marginally useful when considering typical web objects – which have a median size of just 4KB

– we feel that recent changes in the internet traffic mix prompt for the development of such algo-

rithms. A recent large scale characterization of http traffic from Saroiu et al. [12] has shown that

more than 75% of internet traffic is generated by P2P applications that employ the http protocol,

such as KaZaa and Gnutella. The median object size of these P2P systems is 4MB which represents

a thousand-fold increase over the 4KB median size of typical web objects. Furthermore, the access

to these objects is highly repetitive and skewed towards the most popular ones thus making them

highly amenable to caching as demonstrated by the authors of [12].

Similar is the case with stored audio and video files distributed by either standard web servers

or dedicated video on demand (VoD) servers. Such object are usually short videos (advertisements

or news) and amount to around 1 MB [13]. Although a 1997 study [14] found that such traffic

represents a rather limited percentage of the total aggregate traffic in the internet, the percentage

was shown to have been increased significantly by a follow-up measurement study just a few years

later [15]. This trend seems to have persisted, as recent studies (2001) have shown that stored video

and audio files have by now become almost pervasive [13].

Such objects can exhaust the capacity of a cache or a CDN node, even under a low price of

storage. Probably is just a matter of time before caching systems move on to accommodate P2P

traffic as well as video traffic (either over http or dedicated protocols used by VoD servers) to reap

the same benefits as with web objects, for the new class of applications that dominate the traffic.

This has already been a reality in the case of CDNs and stored video files. Given the traffic /
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storage requirements of such content it is highly doubtful that the “infinitely large cache” will be

realizable, thus storage allocation algorithms such as the ones developed here might prove useful.

Finally, another application of storage capacity allocation algorithms would be a wireless caching

system, possibly employing some hierarchical structure (e.g., employing cluster head nodes which

are given increased capacity as compared to ordinary nodes), where storage capacity would be a

scarce resource even under typical web content.

2 Our approach towards storage capacity allocation

The current work addresses the problem of allocating a storage resource differently than previous

attempts, taking into consideration related resource allocation subproblems that affect it. Previous

attempts have broken the problem of designing a content distribution network into a number of

subproblems consisted of: (1) deciding where to install proxies (and possibly their number too);

(2) deciding how much storage capacity to allocate to each installed proxy; (3) deciding on which

objects to place in each proxy. Solving each one of the problems independently (by assuming a

given solution for the others) is bound to lead to a suboptimal solution, due to the dependencies

among them. For instance, a different storage allocation may be obtained by assuming different

object placement policies and vice versa.

The dependencies among the subproblems are not neglected under the current approach and,

thus, an optimal solution for all the subproblems is concurrently derived, guaranteeing optimal

overall performance. The current approach considers memory as a fluid commodity and decides

how much of the “fluid” to allocate to each node of the system. When placing a fluid unit it

also decides on its “kind”, i.e., on the identity of the object that it will hold, thus combining the

resource allocation decisions (where to place storage and how much) with the object placement

decisions (more on this issue in Sect. 3.1).

Treating storage capacity as a fluid that can be provisioned using a very small granule serves

both as a paradigm for the optimization of existing systems (e.g. to re-organize more effectively the

allocation of storage in a hierarchical cache) but hopefully will be the approach to be followed in

developing future systems. Indeed, if the provisioning of memory continues to materialize as it has

in the recent past, then in the very near future memory pools (CDN nodes, or local proxy servers)

will be in place in most systems that constitute the internet [16]. Building adaptive overlay content

distribution systems on top of the underlaying memory pools can become a significant alternative

to the static provisioning of memory as materialized with the current replication schemes that

employ very large granules of memory (e.g., entire mirror site). Should memory pools exist and be

marketed, content creators (or intermediaries) can build distribution systems on them by leasing

storage capacity dynamically, as dictated by their needs. The main advantage of such a scenario

is that memory will be utilized more efficiently, and at a finer granularity, as each potential user

or application will be able to use it on-demand and release it when no longer necessary making it

available to other users that may request and pay for it (protocols and e-currencies for such resource

trade paradigms have been proposed recently [17]). Re-organizing the memory is not possible with

the current instalment of dedicated mirrors and proxies in fixed locations and with fixed capacities.

It is believed that the ability to reorganize the existing resources will be central to future intelligent

information systems (see IBM’s autonomic computing initiative [18]). In such environments, the
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proposed algorithms would be useful to regulate the utilization of storage in each memory pool,

and do so fast enough that they may execute as frequently as required to address sudden changes

of demand (transient “hot spot” demand).

The current work makes the following distinct contributions towards the realization of the above

mentioned objectives:

• Introduces the idea of provisioning memory using a very small granule as an alternative

to/extension of known paradigms (mirror placement, proxy placement) and formulates an

optimal solution to this problem. The derived solution provides for a joint optimization of

storage capacity allocation and object placement and can be exploited in systems that perform

replication, as well as in those that perform caching.

• Develops fast efficient heuristic algorithms that approximate closely the optimal performance

but can execute very fast, as required by self organizing systems (and as opposed to plan-

ning/dimentioning processes that can employ slow algorithms). Moreover these algorithms

may be executed incrementally, thus obliterating the need for re-optimization from scratch.

• Supplements the algorithms for the optimization of storage capacity allocation with the ability

to take into consideration load balancing and load constraints on the maximum demand that

may be serviced by a node. Load balancing is an important issue in its own right [19, 20] and

is jointly addressed here. The presented techniques may be used to avoid overloading some

nodes while at the same time underutilizing others, as done by the well known “filtering”

effect [20] in hierarchical caches. The filtering effect is addressed by allocating the storage, as

well as the most popular objects, more evenly to the nodes of the hierarchy.

• Models and studies the effect of request peering, i.e., of the ability to forward request to peer

nodes at the same level of the hierarchy, as opposed to pure hierarchical systems that only

forward requests to upstream ancestor nodes.

The work focuses on hierarchical topologies. There are several reasons for this: (1) many infor-

mation distribution systems have an inherent hierarchical structure owing to administrative and/or

scalability reasons (examples include hierarchical web caching [21], hierarchical data storage in Grid

computing [22], hierarchical peer-to-peer networks [23]); (2) although the internet is not a perfect

tree as it contains multiple routes and cycles, parts of it are trees (due to the actual physical struc-

ture, or as a consequence of routing rules) and what’s more, overlay networks on top of it have no

reason not to take the form of a tree if this is called for; (3) it is known that once good algorithms

exist for a tree they may be applied appropriately to handle general graph topologies [24]. Figure 1

gives an example of how can a hierarchical content distribution overlay network be built upon a flat

network of clients by using proximity/administration based clustering. Client nodes are depicted

with solid black squares while storage nodes of the overlay content distribution infrastructure are de-

picted with empty squares. The left figure of Fig. 1 shows a possible proximity/administration-based

clustering on the physical topology, and the right one the resulting three-level content distribution

overlay (institution, ISP, and national levels). Such an hierarchical overlay may benefit by the

algorithms developed here, despite the fact that the underlaying physical topology is not a tree.

The remainder of the article is organized as follows. Section 3 formally defines the storage

capacity allocation problem and presents exact and approximate solutions for it. The same sec-

tion contains a number of numerical results and a discussion concerning implementation issues. In
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Figure 1: A three level hierarchical content distribution overlay built upon of a set of client nodes using proxim-

ity/administration based clustering.

Section 4 the algorithms (exact and approximate) are modified in order to be able to handle load

balancing and request peering. A second set of numerical results, pertaining to the modified algo-

rithms, is included. Related work in the field is presented in Sect. 5. Finally, Sect. 6 concludes the

article.

3 The Storage Capacity Allocation Problem

3.1 Problem statement

The storage capacity allocation problem is defined here as that of the distribution of an available

storage capacity budget to the nodes of a hierarchical content distribution system, given known

access costs and client demand patterns. Since users request specific objects and not abstract

storage units, a solution to the storage capacity allocation problem must include a solution to a

related object placement problem. The coupling of the two makes this a challenging problem.

Related works have overcome this difficulty by either provisioning entire web-server replicas [4], or

by assuming that the hit rate of each installed proxy is a priori known [25]. In the first case each node

holds all the content thus no object placement problem needs to be solved, nor there is cooperation

between nodes (as in the case that nodes with potentially different content cooperate to handle local

misses). This reduces to the well studied k-median problem in a tree graph [26, 27] for which exact

solutions exist. The second case (known hit ratio) also leads to a k-median problem where only

the locations for the proxies are required; the object set of each proxy is implicitly modeled by the

known hit ratio. This solution, however, is an approximate one since the exact hit ratio of a proxy

depends on several parameters including the actual content of the proxy, the demand, the existence

of other proxies in the path to the clients and, thus, the use of known “typical” values for the hit

ratio may introduce a significant error factor.

The algorithms proposed here allocate storage units that may contain any object from a set

of distinct objects (thus this is a multi-commodity problem as opposed to the single commodity

k-median) and use objective functions that are representative of the exact content of each node.

Additionally, it is not assumed that a node can hold the entire set of available objects; in fact,

this set need not contain objects from a single web-server, but it potentially includes object from

different web-servers outside the hierarchy. As compared to works that study the object placement

problem [28] where each proxy has a known capacity, the current approach adds an additional degree

of freedom by performing the dimensioning of the proxies along with the object placement. Note

that this may lead to a significant improvement in performance because even an optimal object

placement policy will perform poorly if poor storage capacity allocation decisions have preceded
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(e.g., a large amount of storage has been allocated to proxies that receive only a few requests,

whereas proxies that service a lot of requests have been allocated a limited storage capacity).

The input to the problem consists of the following: a set of N distinct unit-sized objects1, O;

an available storage capacity budget of S storage units; a set of m clients, J , each client j having

a distinct request rate λj and a distinct object demand distribution pj : O → [0, 1]; a tree graph T

with a node set of n nodes, V, and a distance function dj,v : J × V → R+ associated with the jth

leaf node and node v; this distance captures the cost paid when client j retrieves an object from

node v. In the remainder of the work it is assumed that N > S, i.e., the total number of objects

exceeds the available storage budget2. Each client is co-located with a leaf node and represents a

local user population (with size proportional to λj). A client issues a request for an object and this

request must be serviced by either an ancestor node that holds the requested object or by the origin

server. In any case, a client always receives a given object from the same unique node. The storage

capacity allocation problem amounts to identifying a set A ⊆ A with no more than S elements

(node-object pairs) (v, k), v ∈ V, k ∈ O; A is the set that contains all node-object pairs. A must
be chosen so as to minimize the following expression of cost:

min
A⊆A:|A|≤S

∑

j∈J

λj
∑

k∈O

pj(k) · d
min
j,v where dminj,v = min{dj,os, dj,v} : v ∈ ancestors(j), (v, k) ∈ A

(1)

where dj,os is the distance between the jth client (co-located with the jth leaf node) and the origin

server, while dj,v is the distance between the jth leaf node and an ancestor node v. The function

in (1) captures the mean cost per unit time. It is a non-linear cost function since it involves the non-

linear operator min{} in the definition of dminj,v . Also, note this cost models only “read” operations

from clients. Adding “write” (update) operations from content creators is possible but as stated

in [29] the frequency of writes is negligible compared to the frequency of reads and, thus, it does

not seriously affect the placement decisions.

The output of the storage capacity allocation problem prescribes which objects to place in each

node so as to achieve a minimal cost (in terms of fetch distance) subject to a capacity constraint.

This solution can be implemented directly in a real world content distribution system that performs

replication of content. Notice that the exact specification of objects for a node also produces the

storage capacity that must be allocated to this node. Thus, an alternative strategy is to disregard

the exact object placement plan and just use the derived per-node capacity allocation in order to

dimension the nodes of a hierarchical cache that operates under a dynamic caching/replacement

algorithm (e.g., LRU, LFU and their variants). Recently there has been concern that current

hierarchical caches are not appropriately dimensioned [20] (e.g., too much storage has been given

to underutilized upper level caches). Thus, the produced results can be utilized by systems that

employ replication as well as by those that employ caching. Replication and caching offer different

advantages and are considered to be complementary technologies not rivals [29].

1The unit-size assumption is merely to simplify the presentation. The proposed heuristic algorithms can be transformed

to handle non-unit sized objects.
2The case N ≤ S can be handled by the same algorithms. Only some minor technical changes are required, mostly in

the proof of Proposition 1.
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3.2 Integer linear programming formulation of an optimal solution

In this section the storage capacity allocation problem is modeled as an integer linear programming

(ILP) problem. Let Xj,v(k) denote a binary integer variable which is equal to one if client j gets

object k from node v where v is an ancestor of client j (including the co-located jth leaf node,

excluding the origin server), and zero otherwise. Also let δv(k) denote a binary integer variable

which is equal to one if object k is placed at the ancestor node v, and zero otherwise. The two types

of variables are related as follows:

δv(k) =











1 if
∑

j∈leaves(v)

Xj,v(k) > 0

0 otherwise

(2)

Equation (2) expresses the obvious requirement that an object must be placed at a node if some

clients are to access it from that node. The following ILP gives an optimal solution to the storage

capacity allocation problem.

Maximize:

z =
∑

j∈J

λj
∑

k∈O

pj(k) ·
∑

v∈ancestors(j)

(dj,os − dj,v) ·Xj,v(k) (3)

Subject to:

∑

v∈ancestors(j)

Xj,v(k) ≤ 1 j ∈ J , k ∈ O (4)

∑

j∈leaves(v)

Xj,v(k) ≤ U · δv(k) v ∈ V, k ∈ O, U ≥ |J | (5)

∑

v∈V

∑

k∈O

δv(k) ≤ S (6)

Xj,v(k), δv(k) binary decision variables v ∈ V, j ∈ J , k ∈ O

The maximization objective operates on the cumulative gain that is incurred from the placement of

the S storage units on the tree. This gain captures the difference in cost between accessing a cached

copy of an object from some ancestor node v (excluding the origin server) and accessing the original

object at the origin server (see the parenthesis in (3)). The maximization of (3) is equivalent to the

minimization of (1). The chosen definition of Xj,v(k) allows for the use of a linear (gain) function for

the exact modeling of the non-linear (cost) function (1). Notice that only the Xj,v(k)’s contribute

to the objective function and the δv(k)’s do not.

Constraint (4) enforces the requirement that a client fetches a given object always from the

same ancestor node. Constraint (6) guarantees that no more than S storage units will be allocated

(exactly S in an optimal solution). The adoption of the decision variables δv(k) – in addition to

Xj,v(k) – is to facilitate the formulation of this constraint. Notice that using only Xj,v(k) and

requiring that the sum of all Xj,v(k) be S could lead to the allocation of less than S storage units

since the placement of a single copy of an object, which consumes exactly one storage unit, permits

multiple clients to share the same copy, thus allowing for several variablesXj,v(k) to assume the value

one. The introduction of the auxiliary decision variables δv(k) allows for the correct formulation

of the storage capacity constraint but also produces a non-linearity in the form of the conditional

relationship (2) that relates the two types of variables. Constraint (5) guarantees that an object be
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placed at a node if some clients are to access it from there. U is an upper bound on the number of

clients that may be fetching an object from the same node; the smallest sufficient value for U is m,

the total number of clients. Constraint (5) combined with the objective function (3) enforce that

the conditional relationship (2) between Xj,v(k) and δv(k) holds under an optimal solution. This

permits the formulation of a non-linear relationship using only linear functions. The validity of this

linearization technique is established in the following proposition.

Proposition 1 Let (X∗, δ∗) be an optimal solution to the ILP (3), (4), (6), (5). Then δv(k) = 0

if and only if
∑

j∈leaves(v)Xj,v(k) = 0 for all Xj,v(k) and δv(k) in the optimal solution (X∗, δ∗).

Proof : If δv(k) = 0 then constraint (5) guarantees that
∑

j∈leavesvXj,v(k) = 0 since all Xj,v(k) are

non-negative numbers. For the proof of the inverse assume that for a given node v and object k the

optimal solution (X∗, δ∗) has
∑

j∈leaves(v)Xj,v(k) = 0 and δv(k) = 1. Now it is easy to see that by

removing k (flipping δv(k) from 1 to 0) and placing instead one of the objects that reside only at

the origin server (such an object k′ will exist since it has been assumed that N > S) a new solution

(X†, δ†) may be constructed that incurs a higher value of z. This holds true because flipping δv(k
′)

from 0 to 1 allows all Xj,v(k
′), j ∈ leaves(v) to flip from 0 to 1 thus increasing the value of z.

This contradicts the initial assumption that (X∗, δ∗) is optimal. The proof for the inverse can also

be given for N ≤ S. Instead of fetching an (unreplicated) object from the server, an object from

an ancestor node (higher in the hierarchy) can be replicated again at v (lower) thus improving the

solution. ¤

In the sequel, the above mentioned ILP will only be employed for the purpose of obtaining

a bound on the performance of an optimal storage capacity allocation. Such a bound is derived

by considering the LP-relaxation of the ILP (removing the requirement that the decision variables

assume integer values in the solution) which can be derived rapidly by a linear programming solver.

3.3 Complexity of an optimal solution

The ILP formulation of Sect. 3.2 is generally NP-hard thus cannot be used for practical purposes.

One of our recent findings is that the aforementioned storage capacity allocation problem can be

modeled as a special type of problem that belongs to a family of multicommodity resource allo-

cation problems that generalize the single-commodity k-median problem [26, 27]. We have shown

that these generalized problems can be solved in polynomial time for the case of tree graphs [30]

and have described a two-step algorithm that reaches an optimal solution to the multi-commodity

resource allocation problem (including the one presented here) in O(max{n4N,n2N2}). The solu-

tion is sought by first solving a series of k-medians for the different objects using known dynamic

programming techniques [31, 32] and then combining the solutions of the various k-medians in order

to solve a packing problem that is a modified version of the 0/1 Knapsack problem [33], using again

dynamic programming.

From a theoretical point of view, the O(max{n4N,n2N2}) result is rather attractive as it involves

small powers of the input. In practice, however, such a result might prove too difficult to apply.

The main complication owes to the N 2 term indicating a quadratic dependence of complexity on

the number of distinct objects N . In real applications N may assume very large values (as it

represents the number of distinct web pages or P2P files), typically much larger than the values

assumed by n (number of nodes in the content distribution infrastructure). Thus, the common case
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will be a complexity of O(n2N2) with n ranging from tens to hundreds and rarely few thousands

(large CDNs of Akamai’s size) and N in the order of multiple thousands to millions (depending on

the exact application). Quadratic complexities on such large inputs are generally treated as too

complicated for practical purposes [28] in systems that need to re-allocate storage frequently. Such

solutions are less possible to apply. Additionally, the aforementioned optimal algorithm cannot

jointly consider load balancing (Sect. 4.1) and request peering (Sect. 4.2). For these cases no exact

polynomial algorithm is known.

For all these reasons, this work is primarily focused on the development of efficient approximate

algorithms. We employ natural greedy heuristics to address the basic problem and its variations

(considering load balancing and request peering). The developed algorithms are easy to implement,

incur a complexity that is in the worst case linearly dependent on N , provide for a close approxima-

tion of the optimal, and lend themselves to incremental use under common circumstances involving

time varying input (such need arising when considering dynamic adaptive systems).

3.4 The Greedy heuristic

The Greedy heuristic begins with an empty hierarchy and enters a loop placing one object in each

iteration, thus, in exactly S iterations all the storage capacity has been allocated. Objects are

placed in a greedy fashion according to the gain that is produced with each placement and past

placement decisions are not subject to future placement decisions in subsequent iterations. The gain

of an object at a certain node depends on the location of the node, the popularity of the object,

the aggregate request rate for this object from all clients on the leaves of the subtree rooted at the

selected node, and on prior iterations that have placed the same object lower in the subtree. In

the first iteration the algorithm selects an node-object pair (v1, k1) that yields a maximal gain and

places k1 at v1. Subsequent decisions place an object k in node v such that the gainv(k) is maximal

among all (v, k) pairs that have not been selected yet; gainv(k) is given by:

gainv(k) =
∑

j∈leaves(v)
k/∈path(j,v)

(dj,os − dj,v) · pj(k) · λj (7)

Greedy is presented in detail in Table 1. Lines 1-6 describe the initialization of the algorithm.

For each node v the gain of placing object k in v is computed and these values are inserted in a

max-heap [34] data structure g(v, ·) (n max-heaps, one for its node v). In the S iterations of the

algorithm the following two steps are executed: (1) (v∗, k∗), the node-object pair that produces the

maximum gain among the node-object pairs that have not been placed, P, is selected, removed from

P, and the max-heap g(v∗, ·) is re-organized (lines 9-10); (2) for each ancestor u of v∗ that does not

hold k∗ the (potential) gain incurred if k∗ is selected for u at a later iteration is updated and the

corresponding max-heap is re-organized (lines 11-14). The update of the potential gain g(u, k∗) is

necessary because the clients belonging to the subtree below v∗ will not be fetching k∗ from u but

from v∗ or its subtree, thus effectively reducing its previous potential gain at u. A max-heap needs

to be re-organized when one of its elements changes value in order to be able to guarantee that the

maximum value is always at the root of the heap.

The initial creation of the n max-heaps can be done in O(nN) time (each max-heap containing

N values). The first step of each iteration requires that the highest value in all n max-heaps be

selected. Finding the largest value in a max-heap requires o(1) time thus the largest value in all
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1: for each v ∈ V

2: for each k ∈ O

3: g(v, k) = gainv(k)

4: insert g(v, k) in max-heap g(v, ·)

5: end for

6: end for

7: i = 1,P = {(v, k) : v ∈ V, k ∈ O

8: while i ≤ S

9: select (v∗, k∗) ∈ P : g(v∗, k∗) ≥ g(v, k)∀(v, k) ∈ P

10: P = P − {(v∗, k∗)}, re-organize max-heap g(v∗, ·)

11: for each ancestor u of v∗ not caching k∗

12: g(u, k∗) = gainu(k
∗)

13: re-organize max-heap g(u, ·)

14: end for

15: i = i+ 1

16: end while

Table 1: The Greedy algorithm.

n max-heaps can be identified in O(n) by a simple linear search or in O(log n) if an additional

max-heap is maintained, containing the highest value from each of the n max-heaps g(v, ·) (the

latter might be unnecessary since n is typically rather small). The second step in the worst case

requires the update of L − 1 ancestors that do not cache k∗. The potential value of k∗ for these

nodes must be reduced and the corresponding max-heap must be re-organized in order to maintain

the heap property; this can be done in O(logN) for a heap with N objects. As a result the S

iterations of the algorithm require O(S · (n + L logN)) time, which simplifies to O(S · n logN) by

noting that L is at most n. Thus the overall complexity of Greedy (initialization + iterations) is

O(max{nN, Sn logN}) which is linear in either N or S.

A salient feature of Greedy is that it can be executed incrementally, i.e., if the available storage

budget changes from S to S′ (e.g., because more storage has become available) and the user access

patterns have not changed significantly then no re-optimization from scratch is required; it suffices

to continue Greedy from its last iteration and add (or remove) |S ′ − S| objects. This can present a

significant advantage when the algorithm must be executed frequently for different S.

3.5 The improved Greedy heuristic (iGreedy)

In the previous Greedy algorithm one can make the following simple observation. If an object is

placed at all children of a node u it is meaningless to also store it in u since no request will reach it

there. This situation leads to the “waste” of storage units in “stale” objects. The Greedy algorithm

often introduces stale objects as a result of its greedy mode of operation; an object is at some point

placed at the father u while at that time not all children store it but with subsequent iterations

it is also placed at all children thus rendering stale the copy at the father. This situation is not

an occasional one but it is repeated quite frequently, resulting in wasting a substantial amount of

the storage budget. The situation may be resolved by executing an additional check when placing
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10.1: allpeers=1

10.2: for each v ∈ peers(v∗)

10.3: if k∗ not cached in v

10.4: allpeers = 0

10.5: break

10.6: end if

10.7: end for

10.8: if k∗ cached in u=father(v∗) AND allpeers==1

10.9: remove k∗ from u and set i = i− 1

10.10:end if

Table 2: Additional step of the iGreedy algorithm. It is executed between lines 10 and 11 of the basic Greedy algorithm.

an object k∗ at a node v∗. The improved algorithm checks all peer nodes of v∗ (at the same level,

belonging to the same father) and if it finds that all store k∗ then it also check whether their father

u also stores it. In such a case it removes it from u freeing one storage unit. The resulting algorithm

is called improved Greedy (iGreedy) and outperforms the basic Greedy algorithm. The additional

step of iGreedy is given in Table 2 and is executed between lines 10 and 11 of the basic Greedy

algorithm.

iGreedy performs slightly more processing as compared to Greedy due to the following two

additional actions: (1) in each iteration a maximum of Q peers need to be examined against k∗,

Q denoting the maximum node degree of the tree; (2) each eviction of a stale object increases

the number of iterations by one by freeing one storage unit which will have to be allocated in a

subsequent iteration. Searching the Q peers does not affect the asymptotic per-iteration complexity

of Greedy which is O(n logN). The increase in the number of iteration has a somewhat larger

impact on the required processing. The following proposition establishes an exact upper bound on

the number of iterations performed by iGreedy.

Proposition 2 The maximum number of iterations performed by iGreedy cannot exceed T (S) =

2 · S − 1.

Proof : Note that in the worst case an additional iteration may be introduced after at least q+1 new

objects have been placed, q denoting the minimum node degree in the hierarchy. This corresponds

to the case that an object is placed at the node with the minimal outdegree and at all its children,

thus, freeing the stale object at the father which in turn increases the number of iterations by

one. Let T (S) denote the maximum number of iterations that may be performed when iGreedy

starts with S available storage units. Using the previous observation it is easy to see that: T (S) =

q+1+T (S− (q+1)+1) = q+1+T (S− q). In the worst case that q = 1 the recursive relationship

becomes: T (S) = 2 + T (S − 1), with T (1) = 1, which leads to T (S) = 2 · S − 1. ¤

Thus in the worst case iGreedy will perform 2 ·S−1 iterations, with each iteration incurring the

same complexity as with the basic Greedy. This means that the asymptotic complexity of iGreedy

is identical to that of Greedy.
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3.6 Numerical results under iGreedy

In this section the presented numerical results attempt to accomplish the following: (1) demon-

strate the effectiveness of iGreedy in approximating the optimal performance; (2) present possible

applications of the developed algorithms. When not stated otherwise, the clients are assumed to

be sharing a common Zipf-like demand distribution pj over O with a typical skewness parameter

a = 0.9 and equal request rates λj = 1,∀j ∈ J . A Zipf-like distribution is a power-law dictating

that the ith most popular object is requested with a probability C/ia, where C = (
∑N

j=1
1
ja )

−1.

The skewness parameter a captures the degree of concentration of requests; values approaching 1

mean that few distinct objects receive the vast majority of requests, while small values indicate

progressively uniform popularity. The Zipf-like distribution is generally recognized as a good model

for characterizing the popularity of various types of measured workloads, such as web objects [35]

and multimedia clips [13]. The popularity of P2P [12] and CDN content has also been shown to be

quite skewed towards the most popular documents, thus approaching a Zipf-like behavior. Recently,

evidence of Zipf-like behavior has been observed in the distribution of Gnutella queries [36].

As far as the topology of the experiments is concerned, regular Q-ary trees are used in all exam-

ples. Regular Q-ary trees are commonly used for the derivation of numerical results for algorithms

operating on trees [37, 10]; it has also be seen that numerical results from regular tree topologies are

in good accordance with experimental results from actual internet tree topologies [38]. The entire

set of parameters (demand and topology) for each experiment is indicated in the title of the corre-

sponding graph. For the purpose of the numerical study we let the distance function dj,v capture

the number of hops between client j (co-located with the jth leaf thus dj,j = 0) and node v. The

distance of the origin server is dj,os = L for an L level hierarchy. Notice that the hop count metric

is merely used to simplify the presentation of the numerical results. It is by no means necessary in

order to apply the algorithms (which allow for arbitrary weights to be associated with each link).

3.6.1 Quality of the approximation

Figure 2 shows the average cost per request for Greedy and iGreedy (expressed in number of hops

to reach an object). The performance of the heuristic algorithms is plotted against the bound of the

corresponding optimal performance obtained from the LP-relaxation of the ILP of Sect.3.2. The

x-axis indicates the number of available storage units in the hierarchy (S) with each storage unit

being able to host a single object (e.g., an mp3 file or a video file). From the graph it may be seen

that iGreedy is no more than 2% away from the optimal while Greedy may deviate as much as 25%

in the presented results. The performance gap between the two owes to the waste of a significant

amount of storage in stale objects under Greedy.

The asymptotic performance of the best performing iGreedy – although not rigorously proved

here – is claimed to be at a constant distance away from the optimal under typical workloads as S

and N approach infinity. This can be intuitively argued by noting that the value of objects that

belong to the tail of the popularity distribution tends to be insignificant and, thus, from a point

onwards adding more capacity does not reduce the cost. This in effect means that suboptimal

placement decisions involving invaluable objects – which are cached only when there is abundant

storage capacity – cannot increase the performance gap created by the suboptimal decisions in the

placement of the initial most valuable objects.
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3.6.2 The effects of skewness and non-homogeneous demand

The following two figures focus on the vertical allocation of storage under iGreedy, attempting

to provide new insights into the effect of user access patterns in the dimensioning of hierarchical

distribution systems. Figure 3 shows the effect of the skewness of the demand distribution on the

per-level allocation of storage. Highly skewed distributions (the skewness parameter a approaching

1) lead to the allocation of more storage to the lower levels while less skewed distributions lead

to the allocation of more storage to the higher levels. This effect is explained as follows. Under

a highly skewed distribution a small number of popular objects attracts the majority of requests

and, thus, these objects are intensively replicated at the lower levels, leading to the allocation of

most of the storage to the lower levels. When the distribution tends to be “flat” it is better to limit

the number of replicas per object and instead increase the number of distinct objects that can be

replicated. This is achieved by sharing objects, i.e., by placing them higher in the hierarchy that

leads to the allocation of more storage to the higher levels. An equal request rate (λj = 1,∀j) for

all clients leads to an equal allocation of storage in each node of the same level. This horizontal

symmetry is disturbed when unequal client request rates are employed (such results not shown at

this point).

Figure 4 illustrates the effect of the degree of homogeneity in the access patterns of different

clients. Two clients are non-homogeneous if they employ different demand distributions. In the
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presented results each client j references N objects; βN objects are common to all clients while

the remaining (1 − β)N are only referenced by client j. A Zipf-like distribution is created for

each client by randomly choosing an object from its reference set and assigning it the next higher

value from a Zipf-like distribution and then repeating the same action until all objects have been

assigned probabilities. The parameter β will be referred to as the overlap degree; values of β

approaching 1 mean that most objects are common to all clients (although each client may request

a common object with a potentially different probability) while small values of β mean that each

client references a potentially different set of objects. Figure 4 shows that the upper levels of a

hierarchical system are assigned more storage when there is a substantial amount of overlap in

client reference patterns. Otherwise most of the storage goes to the lower levels. This behavior

is explained as follows. Storage is effectively utilized at the upper levels when each placed object

receives an aggregate request stream from several clients. Such an aggregation may only exist when

a substantial amount of objects are common to all clients; otherwise it is better to allocate all the

storage to the lower levels – thus sacrificing the (ineffective) aggregation effect – and instead reduce

the distance between clients and objects.

3.6.3 Using iGreedy with caching/replacement

The aforementioned results presented examples of how iGreedy would be useful in dimensioning a

distribution system that operates using replication of content. For such systems iGreedy prescribes

the amount of storage to be allocated to each node as well as the exact set of objects to be replicated.

There is a second interesting use of iGreedy however. As discussed in Sect. 3.1 one can choose to

retain only the node dimensioning from iGreedy, disregarding the object placement plan, and use it

to dimension a system that operates under request driven caching/replacement (e.g., a hierarchical

cache). Indeed, most caching/replacement strategies try to approximate the result of an optimal

replication plan, but achieve that on-line, without a priori knowledge of demand patterns. Thus,

using an optimized node dimensioning that originates from replication can also benefit the online

caching/replacement systems.

It is interesting to note that there have been some recent works that question the appropriateness

of the dimensioning of current operational hierarchical caches (e.g., noting that higher level caches

have been unnecessarily overdimensioned [20]). Our results tend to agree with these concerns,

indicating that an optimized storage allocation produces a gain as compared to two empirical storage

allocations plans: (1) equal-share, where each node gets an equal share of storage, i.e., approximately

dS/ne units; (2) big-top, where nodes tend to get bigger at the higher levels (as often done in practice,

and questioned in [20]). Under big-top, the S units are allocated as follows: each leaf node takes Y

units, each second level node takes 2 · Y units and, in general, each l level node takes l · Y units.

These empirical rules might sound over-simplistic but it seems that they have been employed in

practice (the aforementioned concern about overdimensioning higher level nodes points to that).

In any case, we are not aware of any other storage allocation method that can fit the described

problem statement thus be used for comparison.3

To examine the potential gain for caching/replacement systems it will be assumed that they

operate under the least recently used (LRU) replacement algorithm. Figure 5 demonstrates the

3The work of Kelly and Reeves [9] considers tradeoffs between communication costs and storage ownership costs thus

differing from the current setting where the amount of available storage is fixed. Also [9] assumes that all clients generate

identical request streams (homogeneous using our terminology).
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λ1 λ2 λ3 λ4
LRU iGreedy
avg. hit dist.

LRU equal-share
avg. hit dist.

LRU big-top
avg. hit dist.

1 1 2 7 0.63 1.06 1.11

9 1 6 1 0.63 1.07 1.10

4 1 8 6 0.81 1.05 1.10

4 2 3 3 0.88 1.04 1.11

Table 3: Simulated performance of LRU-iGreedy, LRU-equal-share and

LRU-big-top under unequal client request rates λj (N = 10000, S = 10000,

L = 3, Q = 2, a = 0.9).

server name Urbana-Champaign

type NLANR root

trace date 19/02/2003 - 24 hours

# requests 815194

# distinct objects 279375

Table 4: Properties of the NLANR
trace used in the simulations of

Sect. 3.6.4.

performance of LRU in a hierarchical cache that has been dimensioned under iGreedy and the two

empirical rules. The performance of static replication under iGreedy is also simulated and plotted.

Unlike all previous analytical results that refer to object replication, the results of Fig. 5, refer to

request-driven caching using LRU. They are produced using a simulation model with synthetically

generated i.i.d. requests following a Zipf-like distribution (see caption and title of Fig. 5 for param-

eters). The results show that when LRU operates on a hierarchy whose storage allocation has been

optimized using iGreedy, it achieves a 10% reduction of cost over equal-share and a 15% reduction

over big-top. These percentages become much larger under unequal client request rates λj . Table 3

presents some examples with λj ’s taken from a uniform distribution in [1, 10]. A reduction as large

as 40% over equal-share, and 42% over big-top, can be achieved by the allocation under iGreedy.

The performance gap widens with the degree of asymmetry in request rates. In effect, this perfor-

mance gap may grow arbitrarily under various demand distributions and request rates (e.g., when

there is small overlap in demand distributions and one of the clients has a dominantly larger request

rate).

Comparing the performance of LRU (irrespectively of capacity allocation method) to that under

static replication with iGreedy shows that replication – which has a priori knowledge of object

popularities – achieves a significantly better performance than the online algorithms that, however,

do not need object popularities and can adapt automatically to changes of demand patterns.

3.6.4 A trace-driven simulation study

One issue that has not been discussed so far is that of the temporal correlation that usually char-

acterizes actual measured workloads. The use of iGreedy under replication leads to a system that

is immune to temporal correlations. To see this, consider any request sequence and permute it

arbitrarily. The hit ratio (or average hit distance) will be unaffected since a replication strategy

does not permit nodes to change their content in response to the received input. Thus, the quality

of the replication provided by iGreedy depends only on the quality of the estimation of the request

frequencies of the individual objects, and is unaffected by temporal correlation.

Temporal correlation becomes relevant to some extent when iGreedy is limited to storage di-

mensioning and the network operates under caching/replacement. As the dimensioning procedure

is immune to temporal characteristics, it is only the replacement algorithm that is affected in the

usual manner. In the case of LRU, a positively correlated request stream will lead to improved

performance as compared to a request stream composed of independent requests. Thus, the quality

of the dimensioning – and the gain as compared to an empirical rule – remains, and it is only a

matter of the replacement algorithm to best handle the correlation and produce a further gain.
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In order to substantiate the aforementioned observations we have conducted a simulation ex-

periment evaluating the performance of LRU-iGreedy, LRU-equal-share, LRU-big-top and iGreedy

(with replication) under a real workload that captures some of the characteristics (notably a degree

of temporal correlation) not present in a synthetically generated stream of i.i.d. requests. Due

to the lack of publicly available P2P workload traces, we employed a trace from a NLANR root

proxy server (Urbana-Champaign, abbreviated uc); the properties of the trace are summarized in

Table 4. The motivation for using this trace as an approximation of an actual P2P trace is: (1) the

trace captures properties not present in the synthetical workloads; (2) the popularity of objects in

this trace approximates satisfactorily the popularity of P2P objects that – according to some very

recent measurements studies – shows some deviation from the Zipf-like model (thus, our numerical

evaluation is enriched as wells as captures this new artifact).

Figure 6 depicts a log-log plot of the request probability against the object rank (according

to popularity) for the objects accessed in the trace. A visual inspection suffices to show that

this distribution partially deviates from the Zipf-like one, that appears as a straight line in log-

log scale. The divergence is towards the most popular objects (initial part), that appear to be

more uniformly requested here (observe the initial plateau on the plot) as compared to a Zipf-like

distribution. A very recent measurement study (Oct. 2003) from a research group in the University

of Washington [39] (the same group that has produced some of the previously cited measurement

studies [12, 13]) has reported that such a plateau appears consistently in all their measured P2P

traces. It has been attributed to the fact that unlike web objects, P2P objects are accessed at most

once by each client (a web user constantly downloads the same popular web pages (e.g., Google)

but rarely downloads more than once the same mp3 file). In the case of the NLANR trace the

plateau is due to a different reason, probably owing to the fact that the corresponding proxy server

is high in the NLANR hierarchy (root server), thus requests reaching it have been filtered at lower

levels. This means that many requests for popular objects have been serviced at the lower levels,

thus making the request distribution at the root more uniform in its initial part. We take advantage

of this coincidental fact in order to approximate a P2P trace.

Figure 7 shows the average hit distance in a hierarchy that operates under the optimized storage

capacity allocation and the empirical rules. Both LRU replacement (first three curves), as well as

replication (last curve), are depicted. The results are identical to the ones depicted in Fig. 5 that

have been produced using synthetical workload (the discussion on the achieved gain applying here
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also). They suggest once more – this time using a real workload – that an optimized storage capacity

allocation can result in a reduced average hit distance under both LRU replacement and replication.

We have obtained similar results under several other traces (from different NLANR servers and/or

time periods) and different topologies, which we do not report here due to length considerations.

3.7 Discussion and implementation

As discussed in the introduction, two possible applications of the presented storage allocation al-

gorithms are: (1) to re-organize current hierarchical caches; (2) to drive the operation of future

content distribution systems that dynamically lease memory. The case of (1) is an offline optimiza-

tion of a resource allocation problem. The required input (demand distributions and rates) can be

extracted from proxy log files. An interesting question is whether a useful solution can be derived

using historical data. Krishnan et al. [3] have answered this question for the related “cache location

problem”. They showed that their solutions were fairly stable across time and estimation deficien-

cies, despite that their optimization was carried-out based on input from a past “snapshot” of the

workload (including some estimation error). The stability of the derived solution owes much to the

fact that user access patterns seem to be fairly stable. In fact, a recently published measurement

study [40] reported that the top 10% most popular documents on one day make up for about 80% of

all requests for at least the following week. This allows for the possibility of using recent historical

data as input in making replication decisions.

The case of (2) is somewhat more challenging from the perspective of implementation. The main

difficulty is due to the need for online estimation of demand distributions (the aforementioned pj ’s).

There are various methods for doing that efficiently, i.e., without keeping track of all requested

objects but only a fraction of the most popular ones [41]. However, owing to the aforementioned

stability of demand distributions, it might not be necessary to keep re-estimating them frequently

but only occasionally. Should demand distributions change slowly, then it will be the request rates

(λj ’s) that will trigger changes in storage capacity allocation plans. Notice that under stable demand

distributions as the ones reported in [40], changes in the request rates will require re-optimization,

since the allocation of storage is sensitive to the request rates. Such changes can occur as users

activate and deactivate at the various access points. This also allows for accommodating the case

of mobile users that show up and access the resources through the leaf access points affecting the

request rate. From the perspective of implementation complexity, request rates may be obtained

easily by maintaining a counter in each node; a task much easier as compared to the frequent

estimation of request distributions.

The fact that iGreedy’s complexity is only linearly dependent on the input of the problem facil-

itates the frequent re-optimization, necessary for systems that re-organize to cope with changes in

request intensity (possible re-optimization intervals ranging from few minutes to some hours). Since

the optimization algorithm is centralized, it should be executed at some node with administrative

duties that overlooks the operation of the CDN. For that purpose, estimates of the demand distri-

butions should be communicated to the administrative node by all leaf nodes, which are the access

points to the hierarchical distribution infrastructure.

In order to reduce the bandwidth overhead from the reporting of the demand distributions

compact representations should be used to provide succinct “summaries” of the actual demand at

each leaf. Leafs can use simple techniques like sending a numerical value encoded with a few bytes
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(2-8) representing an estimate of the request probability for each one of the N distinct objects.

Alternatively, more advanced techniques could be employed to reduce the bandwidth overhead of

transmitting the relevant information. For example, Bloom filters [42], such as those used in ”Sum-

mary Cache” [2], could be employed to succinctly represent the set of distinct objects requested at a

given leaf and this information be accompanied by approximate representation of the corresponding

demand distribution (e.g., by exploiting its spectral representation).

Additionally, due to the aforementioned stability of demand distributions, it is possible to report

back the required information relatively infrequently (retransmissions every one or several days

would suffice), thus further limiting the bandwidth overhead. On the other hand, request rates may

be reported as frequently as needed since their overhead is negligible (only a single number from

each leaf must be sent). The frequent reporting of request rates (intensity) is however crucial in

adapting to changes of demand due to activation/deactivation of clients and mobile users.

Summing it up, it is possible to re-organize effectively the allocation of storage with the afore-

mentioned architecture, so as to accommodate possible changes in the request intensity at the access

points of the infrastructure, owing to the volatility of users.

4 Variations for load balancing and request peering

In the following two sections the iGreedy heuristic is modified to cater to load balancing and

request peering. An additional section presents some relevant numerical results. Load balancing

is a commonly sought ability in distributed systems and so is the case here where the system

should avoid overutilizing some nodes while underutilizing others. Request peering is employed by

hierarchical systems with positive effects in the user-perceived performance.

4.1 Load balancing: Optimal and the iGreedyLB heuristic

Let Wv denote the maximum number of requests per unit time that may be serviced by node v

– this metric captures the maximum load that can be assigned to a node and will be used for

load balancing and congestion avoidance at the caching nodes. The ILP model of Sect. 3.2 can be

modified to respect the maximum load of each node with the addition of the following constraint.

∑

j∈leaves(v)

∑

k∈O

λj · pj(k) ·Xj,v(k) ≤Wv v ∈ V (8)

Similarly, the iGreedy algorithm of Sect. 3.5 can be augmented to handle load constraints with the

addition of few extra steps. In brief, the algorithm maintains a load counter for each node and

selects node-objects pairs in decreasing order with respect to gain. Contrary to the basic iGreedy,

the load balancing version of the algorithm, iGreedyLB, considers only feasible node-object pairs

when placing objects, i.e., it selects objects that do not violate the load limit of their node if they

are selected for placement. The new algorithm is based on iGreedy and Greedy. Table 5 gives the

additional lines of pseudocode for iGreedyLB. Lines 5.1, 9.1 and 13.1-13.4 are new and should be

added to the pseudocode of Table 1 after lines 5, 9 and 13, while lines 7 and 10 are substitutes

for the corresponding lines of Table 1. Line 5.1 initializes to zero the load counter for each node.

Line 7 creates the set P which comprises the node-object pairs which are eligible for placement; it

requires that the new load imposed by a node-object pair does not violate the maximum load of
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5.1: loadv = 0 ∀v ∈ V

7: i = 1,P = {(v, k) : loadv + newload(v, k) ≤ Wv , v ∈ V, k ∈ O}

9.1: loadv∗ = loadv∗ + newload(v∗, k∗)

10: P = P − {(v∗, k∗)} − {(v∗, k) ∈ P : loadv∗ + newload(v∗, k) > Wv∗}, re-organize g(v∗, ·)

13.1: find u ∈ V the closest ancestor of v∗ that caches k∗

13.2: loadu = loadu − newload(v∗, k∗)

13.3: P = P + {(u, k) : (u, k) /∈ P, k not cached in u, loadu + newload(u, k) ≤ Wu}

13.4: re-organize max-heap g(u, ·)

Table 5: Additional steps for the iGreedyLB algorithm.

the node. The function newload(v, k) is defined as follows: newload(v, k) =
∑

j∈leaves(v)
k/∈path(j,v)

λj · pj(k).

Line 9.1 updates the load of node v∗ once object k∗ has been chosen for placement at v∗. Line

10 updates P by removing (v∗, k∗) and all the node-object pairs (v∗, k) that become infeasible due

to the increment in the load of v∗; this necessitates the update of max-heap g(v∗, ·). Line 13.1

identifies u, the closest ancestor of v∗ that caches k∗ (excluding the origin server). The load of this

node is reduced because the leaves of v∗ do not any longer fetch k∗ from u but from v∗ (Line 13.2).

Finally, due to the reduction of loadu some objects that were not cached at u and were previously

infeasible due to the load constraint now become feasible and thus are added to P (Line 13.3) and

the corresponding max-heap is re-organized (Line 13.4).

Contrary to load-unaware practices, the load balancing ILP and the iGreedyLB heuristic not

only allocate the storage capacity more evenly among the nodes of the hierarchy, but also place

some popular objects at higher level nodes only, as opposed to the common intuition that popular

objects must be placed at the lower levels of the hierarchy. This must be done in order to preserve

the load constraints and to distributed the load more evenly in the hierarchy. Such a tactic results

in a worse performance in terms of the average distance or bandwidth consumption (such is the case

with the hop-count distance metric that is considered in the numerical results of Sect. 3.6). However,

this may not be the case for delay metrics. Placing memory and some popular objects higher in

the hierarchy admittedly increases the propagation delay of accessing them but this increment is

expected to be small compared to the delay reduction that is incurred by accessing non-congested

proxy servers. The end-system delay part dominates the propagation delay part in the overall delay

budgets of congested end-systems such as those that arise when load balancing is not considered.

4.2 Modeling request peering: Optimal and the iGreedyP heuristic

Some replication and caching [21] schemes permit peer nodes – i.e., nodes of the same level that

have the same father – to cooperate. A node that receives a request from a downward node, and

cannot service it locally from its own cache, forwards it to its upstream node as well as to its peer

nodes at the same level. In some occasions this may lead to a significant reduction in delay as

a peer node, which is usually “closer” than upstream nodes, might quickly return the requested

object. In general peering is meaningful when fast direct links exist between peer nodes and the

delay on those links is smaller than the delay on the links that lead to higher level nodes. In such

an environment, request peering leads to a higher utilization of each cached object, as this object

services a larger population, which in turn reduces the number of replicas that are necessary for this

object. Reducing the number of replicas of each object allows for the caching of a larger number

of distinct objects (a larger initial part of the tail of the object popularity distribution fits in the
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hierarchy) thus resulting in better performance in terms of cost (bandwidth/delay). This section

describes how to integrate request peering in the study of the storage capacity allocation problem.

The ILP formulation of Sect. 3.2 can be augmented to handle request peering. A larger number

of variables Xj,v(k) is required because – due to peering – client j may receive object k from a larger

set of nodes including not only the ancestors v, but their peers too. Also, the objective function (3)

must change to:

z =
∑

j∈J

λj
∑

k∈O

pj(k)
∑

v∈ancestors(j)

∑

u∈peers(v)

(dj,os − dj,v − peercost · I{u6=v})Xj,u(k) (9)

peers(v) denotes the set of nodes that are peers to v, including v itself. peercost is a fixed4 cost

that is paid when transmitting an object between any two peers; this cost is typically smaller than

the cost of accessing an ancestor at a higher level. I is an indicator function; it returns 1 when the

expression in brackets becomes true and 0 otherwise. Also constraint (5) must change to:

∑

u∈peers(v)

∑

j∈leaves(u)

Xj,v(k) ≤ U · δv(k) v ∈ V, k ∈ O (10)

Finally, constraint (4) must be re-written as:

∑

v∈ancestors(j)

∑

u∈peers(v)

Xj,u(k) ≤ 1 j ∈ J , k ∈ O (11)

Similarly the iGreedy algorithm of Sect. 3.5 can be converted to handle request peering; the resulting

algorithm will be referred to as iGreedyP. The introduction of request peering has two effects on

the basic iGreedy algorithm. First, the gain function (7) must be updated as follows:

gainv(k) =































∑

u∈peers(v)

∑

j∈leaves(u)
k/∈peers(w)
w∈path(j,u)

(dos,j − dj,u − peercost) · pj(k) · λj , if k /∈ u,∀u ∈ peers(v)

∑

j∈leaves(v)
k/∈peers(w)
w∈path(j,v)

peercost · pj(k) · λj , otherwise

(12)

The first expression in (12) corresponds to the case that no peer of v caches k thus placing k at v

will attract requests from the descendants of v as well as from the descendants, j, of all peer nodes

u, that do not fetch k from any node or peer in the path from j to u. The second line corresponds

to the case that k is already cached at some peer(s) u thus the gain of also caching it at v will be

equal to the extra distance peercost that will be “spared” (not have to be crossed) if an additional

copy of k is placed at v (otherwise the descendants of v would have to fetch k from a peer u that

caches it, incurring an additional cost peercost). The second modification refers to the removal of

“stale” objects from higher level nodes. In iGreedyP it suffices to have one copy of k at any child

u of a node v to remove k from v if already placed there. This is motivated by the fact that due

to request peering a single copy of k at any peer can service all other peers too, thus, immediately

rendering stale the copy of k at the father (without requiring that all children cache k as is the case

with iGreedy).

Table 6 contains the pseudocode for iGreedyP. Lines 1-7 initialize the algorithm by computing

the initial gains for each node-object pair and storing them in n max-heaps, one for each node. Each

4The communication cost between peers could depend on the exact two peers that communicate but since such a cost

is typically much smaller than the cost of going to a higher level, it is modeled by a constant in order to simplify the

presentation.
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1: for each v ∈ V

2: for each k ∈ O

3: g(v, k) = gainv(k)

4: insert g(v, k) in max-heap g(v, ·)

5: end for

6: end for

7: i = 1,P = {(v, k) : v ∈ V, k ∈ O}

8: while i ≤ S

9: select (v∗, k∗) ∈ P : g(v∗, k∗) ≥ g(v, k)∀(v, k) ∈ P

10: P = P − {(v∗, k∗)}, re-organize max-heap g(v∗, ·)

11: for each peer u of v∗ not caching k∗

12: g(u, k∗) = gainu(k
∗)

13: re-organize max-heap g(u, ·)

14: end for

15: for each w : w ∈ peers(u), u ∈ ancestors(v∗)

w not caching k∗

16: g(w, k∗) = gainw(k
∗)

17: re-organize max-heap g(w, ·)

18: end for

19: if k∗ cached at father(v∗)

20: remove k∗ from father(v∗)

21: i = i− 1

22: end if

23: i = i+ 1

24: end while

Table 6: The iGreedyP algorithm.

iteration of the algorithm executes the code in lines 9-23. First, the node-object pair that returns

the maximum gain in P, is selected, and then removed from P (lines 9-10). Then the potential

gain that would be incurred with the caching of the selected object k∗ is updated for all the nodes

that are affected from the selection of (v∗, k∗); these nodes are the peers of v∗ (lines 11-14) as well

as all its ancestors and their peers (lines 15-18). Finally, if the father of v∗ includes k∗ then it is

removed from there, thus freeing one storage unit (this increases the number of iterations by one,

lines 19-23).

4.3 Numerical results under iGreedyLB and iGreedyP

This section presents a number of numerical results pertaining to the variations of iGreedy for load

balancing and request peering. To examine the efficiency of the heuristic algorithms, their perfor-

mance is plotted against the bound of the corresponding optimal performance, thus: iGreedyLB is

compared against the LP-relaxation of the load-balancing ILP of Sect.4.1, and iGreedyP against

the LP-relaxation of the ILP with peering of Sect. 4.2.

Figure 8 shows the effect of different degrees of load balancing on iGreedyLB and on the optimal

solution with load balancing. In all cases iGreedyLB approximates very closely the optimal. A
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maximum load parameter (maxload) is used to capture the maximum amount of load a node may

service. Setting maxload = 1.0 means that a node is able to service up to a fraction
∑

j∈J λj/n of

the total load. This is the smallest fraction that, if used by all nodes in the selected setting, will

avoid request blocking due to load constraints. Larger values of maxload mean that a node may

service a fraction maxload ·
∑

j∈J λj/n of the total load, this fraction being more than an “equal

share” of load (in iGreedy a single node can potentially service the entire load). Figure 8 shows

that the plain iGreedy performs better in terms of average cost than the various load-constrained

iGreedyLB(maxload). Increasing maxload helps iGreedyLB(maxload) to approximate the best

performance without load balancing. The smallest value, maxload = 1.0, leads to the best load

balancing situation where all nodes get an approximately equal amount of load but also results is

an increased cost as the optimal allocation of storage deviates (due to load constraints) from the

optimal unconstrained one. The maximum average cost gap between the load-unaware iGreedy and

the most load-constrained iGreedyLB(1.0) is 10%.

The following two figures depict the positive effects of load balancing. Figure 9 shows that load

balancing is effective in suppressing the maximum load that may be imposed on any node. For

different values of maxload, the maximum load of a node is eventually stabilized to the highest

allowed value under iGreedyLB, while it increases continuously under iGreedy as more storage is
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added. Figure 10 shows the standard deviation of load computed over all the nodes in the hierarchy,

for different degrees of load balancing. Load balancing leads to smaller values of standard deviation,

thus most nodes have a load that is close to the mean load in the hierarchy. This means that the

load is evenly distributed and nodes are utilized better as opposed to the unconstrained case where

some nodes are congested while others are severely underutilized, especially those at higher levels.

Notice that by adding more storage, the most load constrained iGreedyLB(1.0) achieves almost

perfect load balancing (the total load is evenly shared among all nodes).

The presented load balancing techniques may help in addressing the well known underutilization

problem in the higher levels of hierarchical caches due to the “filtering” of most requests at the lower

levels [20]. Note that the 10% increase in the average cost (number of hops) between iGreedy and

iGreedyLB(1.0) results in a 25% reduction of maximum load and a 60% reduction in the standard

deviation of load in the hierarchy. These results may lead to a substantial reduction in the average

delay by noting that whereas the propagation delay increases linearly with the distance (number of

hops) the end system delay (I/O delay to fetch an object from the disk + transmission) increases

much more aggressively as the end system becomes congested (thrashing effect).

Figure 11 shows that iGreedyP approximates closely the optimal with request peering. By em-

ploying request peering, a significant reduction in the average cost may be achieved. This reduction

grows as peers become able to communicate more economically, i.e., when the cost of accessing a

peer reduces (i.e, with smaller values of peercost). Notice that for S = 10000 the cost incurred

under iGreedyP with peercost = 0 is half the corresponding cost of iGreedy, i.e., the direct links

between peers lead to a 50% reduction of cost when the communication over the peer links incurs

zero cost; this is frequently the actual case because peer links are usually local direct connections

between geographically neighboring networks, thus can be used at approximately no cost.

5 Related work

The placement of web-server replicas (mirrors) is a commonly employed way of adding storage

capacity to the internet. A number of recent works have addressed the fundamental questions of

how many mirrors are needed and where to place them [4, 5, 6]. Web-proxies, unlike mirrors5, store a

fraction of the content of a web-site and do that for multiple web-sites. The content can be statically

replicated on the proxy or it can be refreshed by dynamic request-driven caching/replacement

algorithms such as LRU, LFU and their variants. Web proxy placement has been studied in [3, 43]

– where it is assumed that all proxies replicate the same set of (most popular) objects and, thus,

no cooperation between different proxies exist (as allowed in our work) – and in [25] where it is

assumed that each proxy has a known hit ratio. The dimensioning of a two level hierarchical cache

that operates under LRU has been studied in [9] for the special case of homogeneous demands (i.e.,

all clients request objects at the same rate using a common popularity distribution over the entire

object universe). Other works on the performance of hierarchical caching assume that proxies have

infinite storage capacity [10, 11].

Much attention has been paid to the closely related object placement problem, under which

proxy locations and storage capacities are known and the challenge is to fill up each proxy with an

appropriate set of objects so as to optimize the overall performance (delay, bandwidth consumption).

5Some authors use the terms proxy and mirror interchangeably. Here we make a clear distinction between the two terms.
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The object placement has been studied in [28] for hierarchical caches. Compared to that work we

add an additional degree of freedom by deriving cache capacities as well, and avoid the use of

approximate distance metrics. Recently, the authors of [44] have combined the study of proxy and

object placement. Their work differs from ours in a number of ways, the most important being that

they do not guarantee the allocation of an exact amount of storage but constrain the allocation of

storage implicitly by considering write costs.

6 Conclusions and future work

This paper considers the problem of how to best allocate an available storage budget to the nodes

of a hierarchical content distribution system. The current work addresses the problem of allocating

a storage resource differently than previous attempts, taking into consideration related resource

allocation subproblems that affect it. The dependencies among the subproblems are not neglected

under the current approach and, thus, an optimal solution for all the subproblems is concurrently

derived, guaranteeing optimal overall performance. Since the complexity in deriving this optimal

solution is high, fast/efficient heuristic algorithms are derived as well. To this end, we have proposed

iGreedy, a linear time efficient heuristic algorithm. iGreedy and its variants (for workload balancing

and request peering) are shown to achieve a performance that is very close to the optimal.

iGreedy may be used for the derivation of a joint storage capacity allocation and object placement

plan to be employed in a system that performs replication, e.g., a CDN. Alternatively, just the

derived per node storage capacity allocation may be used for the dimensioning of a hierarchical

system that operates under a request driven caching/replacement algorithm. The provisioning of

storage under iGreedy is compared to that under two empirical methods and a gain is demonstrated.

Additionally, iGreedy is used for the derivation of numerical results that provide insight into the

effects of user request patterns (skewness of demand, homogeneity of demand) on the vertical

dimensioning of a hierarchical system.

iGreedy has been modified to cater to load balancing and request peering. Load balancing is

shown to be able to provide for an even spread of load in the hierarchy, at the cost of a small

increase in average distance between users and objects, which, however, may be compensated for a

substantial reduction in the delay as a result of accessing uncongested end-systems. Request peering

is shown to be able to provide for a significantly reduced cost. Request peering may even lead to

the halving of the overall cost, when utilizing inexpensive direct peer links.

An interesting line of future work would be to investigate mechanisms that can provide for

an efficient storage capacity allocation in a distributed manner. A distributed computation has

several advantages, including better scaling properties and reduced exchange of information and

would be particularly suitable for networks not operating under a central authority (as in a CDN)

but rather having to cater to multiple local utilities. Finally, although it has been shown that the

optimal storage capacity allocation in a tree can be derived in polynomial time, it remains to be

seen whether the same is possible when considering per-node load constraints (Sect. 4.1) or allowing

for cooperating peers (Sect. 4.2).
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