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Extended Hopfield Models for
Combinatorial Optimization

Armelle Le Gall and Vassilis Zissimopoulos

Abstract—The extended Hopfield neural network proposed to the corresponding new neuron. At its present form, the EHM
by Abe et al. for solving combinatorial optimization problems  takes as resource amounts the differences between the bounds
with equality and/or inequality constraints has the drawback of and the current values of the linear combinations. Then

being frequently stabilized in states with neurons of ambiguous it distributes th i blv to th o
classification as active or inactive. We introduce in the model a 't dISUIoUtes them proportionably 1o {he receiving neuron

competitive activation mechanism and we derive a new expression activations.
of the penalty energy allowing us to reduce significantly the  In order to reinforce in EHM neurons repartition into

number of neurons with intermediate level of activations. The two categories: active or inactiveye institute an inequitable
new version of the model is validated experimentally on the v 4 distribute the resourcesdenceforth, in the lower-
set covering problem. Our results confirm the importance of . - ’ .
instituting competitive activation mechanisms in Hopfield neural- Pounded constraint case (positive resources) the most active
network models. neurons are being in favor whereas in the upper-bounded
_ . . . - constraint case (negative resources) there are the most inactive
Index Terms—Activation mechanism, combinatorial optimiza- . k . .
tion, competitive heuristic, Hopfield neural network, inequality ~N€Urons that are favorized. These inequitable allocation rules
constraints, set covering problem. create inhibitory relationships between neurons which are in
competition to acquire the same limited resource. For the case
of positive resources Reggia has defined [12] the rules which
must govern resources allocation in order to select a limited
BE et al. [2] have given an extension of the Hopfieldhumber of neurons as competition winners. This allocation
model [1], [5] in order to handle equality or/and in-method, reported as competitive activation mechanism, is
equality constraints. The extended Hopfield model (EHMyell suited to resolve unexclusive in nature competitions,
introduces in the objective function some additional energpat is, competitions eventually requiring some collaborations
terms which penalize any infeasible state. For determining Bstween competitors for elaborating a global solution. The
appropriate expression for the penalty energy in the inequalggmpetitions implemented to satisfy inequality constraints are
constraints case, each inequality constraint is converted d@ned to this category.
an equality constraint. This is obtained by introducing an Here,we extend this competitive activation mechanism for
additional variable which is managed by a new neuron. Eagbaling with negative resources and we deduce a new ex-
new neuron is connected to the initial neurons where thgjfession for the energy term which integrates the inequality
corresponding variables occur in its linear combination. Thgnstraints in the Hopfield modéThis energy generates acti-
disadvantage of the EHM is to produce in many cases unintggtion rules ensuring a better neurons repartition to two sets.
pretable stable solutions, that is, some neurons with activatRe set including neurons with near to zero activation and
levels far from the suitable ones, i.e., zero and one. The ajfie set including neurons with near to one activation. We
of this paper is to reduce such undesirable situations agifow also how to evaluatie integration weights of the new
to improve EHM performance by introducing a competitivgenalty energessentially based on the idea developed bg Ab
activation mechanism in the model. In a relative work, tp1] for dealing with the equality constraints on the traveling
handle inequality constraints, Ohlsomt al. [9] have used salesman problem. We obtain in this way for a combinatorial
another expression for the additional energy term and in [1§ptimization problem that any infeasible solution located on
and [11] a Potts glass theory technique using mean field theeryertex in the proximity of a feasible solution can not be a
has been developed and tested on the knapsack problem [gagl minimum of the network’s energy.
the assignment problem. The new method for handling inequality constraints is val-
Here, we use an analogy between handling inequality caflated experimentally on the set covering problem (SCP) [6].
straints strategy and an allocation problem of limited resources.the next section we describe briefly the EHM. In Section I
For each constraint a fictional resource, the amount of whigfe discuss different competitive mechanisms and present
represents the degree of constraint unsatisfaction, is attribugef extension of the EHM including competitive activation
mechanisms. We derive the new activation rules and we show
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V. Zissimopoulos is with the LIPN, CNRS-URA 1507, Univegside Paris . . . . L.

Nord. 93430 Villetaneuse. Erance. experimental study which confirms the utility of the instituted
Publisher Item Identifier S 1045-9227(99)00939-X. competitive activation mechanism.

1045-9227/99%$10.001 1999 IEEE



LEGALL AND ZISSIMOPOULOS: EXTENDED HOPFIELD MODELS 73

Il. THE EXTENDED HOPFIELD MODEL This preliminary step allows us to use the same schema

The original Hopfield model is a neural-network modefS the one used for the equality constraints. So, the energy

adequate for solving optimization problems which can HENCtion £ is given by
expressed by a quadratic function of the form k
(whz — dy;)*. 3)
=1

E3(x7 y) = %

K2

minimize E;(z) = $ 2' Pz + ¢'

with = € {0, 1} @) With the notations
wherex = (xy, - -+, x,)" is the vector of problem variables,
q anth constant vector ané® a symmetricn x n matrix with
P;,=0,i=1,---,n[5]

The EHM proposed by Abet al. [2] is able to handle the

V' =—(djws, - -, diwy): n x k matrix
k
W' = Z wiwt: n x n matrix

following constraints. iz%Q
 The! equality constraintsifxr = s;, i =1, ---, [, where D = <d6 d(')Q ): k x k diagonal matrix
rt= (r1g, o) i) k
* The k inequality constraintswiz < d; or wiz > d; Es can be written as follows:
whered; > 0 andw! = (w4, -+, Wps), wj; € R, j = o W VN [
1, n,i=1,---, k. Ei(z,y) =5y )<Vrt D’)(y)'

We describe the EHM with a slight modification allowing .
us to handle also inequality constraints with = 0. This By putting W = CW',V = CV', D = CD" and T =
case will be useful later (Sections IV and V) and it affects the’ + W, the global energyt’ = AE; + BE, + CEj3 that

definition domain of the introduced new variables. the model must to minimize is written
Handling constraints_im.plies Fhe .weighteq insertion _of two Bl y) = Lz, o) T V\/z Ly @)
energy terms into the initial objective functiai,. The first LY =Yyt p Iy L

term, denoted by,, is related to the equality constraints and _ ) _
the second term, denoted H, is related to the inequality W& obtain for the EHM the following result handling also
constraints. The minimizing by the network function is givefl€duality constraints withl; = 0.

by E = AE, + BE, + CE, where A, B, andC are strictly Proposiltion 2: Atwo layers connec_tionist model whom the
positive weights. behavior is controlled by the dynamic system

Let us first consider the equality constraints. We are looking du/dt OE /0x
for a function £, of x whom the minimum is obtained only dv/dt =" OF oy
when every equality constraintz = s;, ¢ = 1,---, 1, is T V\/x b
satisfied. It is defmedl as follows: :_<Vt D) <u> — <0> (5)
E, = Z [5 (riz)? — s;rix]. (2) with u € (—oo, +00)™ andz € (0, 1) the vectors of internal
i=1 and coming-out variables for the first layer

By denotingR = Y'_, 7l ands = —S\_, s;7;, E» can
been written in a matricial formE, = 1/2z'Rx + s'z. Let
T = AP 4+ BR andb = Ag + Bs. Then, the function X )
AE, + BE, = 1/2z'T"z + b'x is a quadratic function and SO!and v € (—oo,_ +00)® and y the vectors of internal and
the initial Hopfield model can be used for handling equalitf®Ming-out variables for the second layer

J

constraints. Vi=1, .-,k
For handling thek inequality constraints we convert them —exp(—vi/pi), i1y <0
into equality constraints by introducing new variablgs exp(vi/pi), if 4, >0 (with
for ¢ = 1,---, k, brought together into the vectey = ¥i=93y1_ exp(—v; /p;), if 5 <1 p; > 0) (6)
(y1, -+, u)". Then, it is easy to prove the following lemma. 1+exp(vi/ps), ifwy>1

Lemma 1: For ¢ varying from one tok, the inequality

constraintw!z < d; or wiz > d; with nonnegative bound Converges to a local minimum of the functidn _
d; is equivalent to the equality constraidfty; — w!z = 0 with The convergence proof consists to establish that the function
< [3

FE is a Lyapunov function for the dynamic system defined by

d = { di, if d; 7é_0 (5). In [1] and [2], the conditions for the system to converge
‘ 1, otherwise to a vertex, a point on the surface or an interior point in the
and n-dimensional hypercube have been studied by an eigenvalue
yi <0, if wiz <0 analysis of the linearized system.
v >0, if wix >0 In summary, the EHM has two layers. The first layer in-
+ cludesn neuronsz;, j =1, ---, n, interconnected following

vi sl ifwir < d; (di 70 the matrix 7. Eacé such neuron is associated to a variable
yi 21, ifwlx>d  (d; #0). ;. The second layer includes neuronsY;, i = 1, ---, k,
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each one corresponding to the new variaple A neuron An inequitable allocation of resources achievable by insti-

T, is linked to theZ=; neuron with a synaptic weight;; tuting competitions between &l; neurons owning a common

which is exactly the coefficient of the variable in the linear resource aims to remedy this drawback.

combinationw!z. The model operates in a synchronous mode Definition 1: Two neurons are said to be competitors if

alternatively on the two layers until reaching a stable statae gain of one occurs at the expense of the other, i.e., their

The rules which govern the evolution of neurdas and T; functional relationships are inhibitory in nature [4].

are, respectively, This definition of competition in neural networks, due to
Grossberg, indicates inhibitory interactions but it says nothing

de; 2 ) . ) about the underlying mechanisms involved in producing those
Fra = > wiiwidiyi — wie] = [Tjz +bjle; | inhibitory interactions. Thedirect or antagonistcompetition
=1,k is a well-known competition mechanism. It occurs when an
(1—x;) active entity directly interacts with rival entities by sending
dy; —_Cd Fy) (s — ) ) out negative floyv in order to suppress theirs activities. Sin_ce,
dt v AR e : all neurons having lost a competition can not become active.
with This mechanism generates a singlaner-takes-albehavior.
—vi/pi if 4; <0 But, in some applications, in order to produce a.global solut.i(.)n
) = v/ pi !f v >0 ®) some competitors must cooperate. For capturing competitive
(1—w)/ps (<1 but cooperative relationships between neighbors and producing
(yi — 1)/pi if y; > 1. so amultiple-winners-take-albehavior, the following mech-

anism, calledindirect competitionor competitive activation
mechanism (cam[8], [12], [13], could be more adapted. It
occurs when two rivals require and consume the same limited
In order to estimate the capacity of the EHM to share out thesource. Under the hypothesis that the connection weights and
neurons in active and in inactive ones, we consider an analag¥ resources are not negative, for sharing out the competitors

between the inequality constraints and an allocation problejatween the losers and the winners, the resources must respect
of limited resourceSRz = d/yz — w z for i = 1 ]ﬂ/ the fo”OW'ng pnnC'pleS

Each neurorl; evaluates the amount of its resource wh|ch IS . The activation flows should be representative of the

interpreted as a constraint unsatisfaction measure. An analysis way by which the emitting neuron wishes allocating its

of the_EHM dynamic shows that, for a satisfied constraint, the resource between its neighboring neurons. For this, the
unsat|sfa<_:t|on degree tends to zero_b_ecadg@g converges activation flows are positive and their amount is equal to
asymptotically tow!z. For an unsatisfied constrainty; the resource.

converges asymptotically ;, and so,%; converges tal; — ¢ An inhibition term in the activation rule should decrease

wlz. By distributing its resource to the neighb@&s, a neuron o .
v ; the activations of the neurons not acquiring enough re-
T, influences the evolution of the network toward to a state : ! X
sources. This term prevents network’s saturation. For

which shoul isfy i rr ndin nstraint. R r -
ch shoulld satisfy its corresponding constraint. Resources a neuronZ;, the activation rule looks asdz;/dt =

distribution is realized by sending out flowsyty, .=, which . . L
are proportional to the amourt; and to the activation level [Inj —1h;z;](1~x;) with In; the sum of input activation
flows andlh;z; its inhibition term. The factofl — x;)

z; Of the receiving neuron and the inhibition term, which is proportional to its self

activation z;, are used to prevent the activations from

overstepping their upper or lower bound.

Large activation flows should be sent to the stronger

I1l. COMPETITIVE ACTIVATION MECHANISMS

Vi=1,---,k Vj=1,---,n, OUty, .5, = wjz;R;. (9)

Notice that a such distribution does not produce the desir-" ; ) ) >
able neurons sharing out. Indeed, whefr > d; (positive gcuvgted neur.on's m .o.rder to they acquire the active level
resource) the advantage offered to a strongly activated re- in spite of their inhibition terms increament.
ceiving neurorg; is almost eliminated by the inhibition term  We return now in the combinatorial optimization problem
[T!x + b,]z; which is also proportional to its self activationand the EHM. In general, many variables equal to one are
level z; ;- Therefore, the activations of the less active neurofi¢eded to satisfy a lower-bounded inequality constraint. By
progress as far as the ones of the more active neurons. $ang the EHM this type of constraint is solved by generating
many neurons after networks stability will have activatiopositive resources. So, the competitive mechanism is well
values which are far from both one and zero. Also, whestited to use. But, for upper-bounded inequality constraints
wix < d; (negative resource) the neurons which must receitlee resources are negative and their satisfaction, in general,
large negative flows are the neurons with weak activationseds several variables equal to zero. So, it is worthful to
in order to ensure their activation decreament and let tegtend thecamfor handling also negative resources. This can
neurons with strong activations near the bound one. Howevbe, done by sending inhibitory flows tending to decrease the
the model in its present form tends to decrease the activat@gtivation of the receiving neurons preferably those having
of the strongly activated neurons by sending to them largeeak activations. In summary, ensuringmin the EHM the
negative flows. As a consequence, a stable state will sfilllowing conditions are required. These conditions reflect the
include neurons with uninterpretable activations. previously described principles efim but with positive and
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negative resources. bounded constraintsufz < d;) the linear combination is
1) upper estimated, i.eq!z® > wir since0 < «a; < 1.
Thereby, the inequality constraints satisfaction requires a large

>0, :2 tgfxcgnitra|nt (%Pi 0) number of variables to tend to an activation level sufficiently
VE;, outy, .=, = v = near to one or zero. Intuitively, these observations show that
i—=7 ) <0, if the constraint type L . L . ,
o the institutingcamcontributes significantly to direct network’s
convergence to a vertex of the hypercube.
2) outy, = E;;l outy, .=, = R;. Let now study the dynamics of the new extended Hopfield
3) If wj; = wp # 0 andx; > x, then model (EHMamwith the institutedcam. The normalization

outy, .z, [ >u,/z it B> 0 of the_z activation flows is obt_ained b_y applying the Iogarithm_

S N { At function on each term of the inequality constraints before their
Outr, —z, | <¥j/zp, if K <O. transformations into equality constraints.

It can be seen that in the EHM the row&tT =, =wjz;R; ~ Lemma3:Thek inequality constraintsyjz < d; or wjz >

which distribute the resourck; = d}y; — wixz do not respect i with boundsd #£0are equwalent to the equality constraints

the second and the third propertiescain. In fact, the sign of 4y — In(wfz*) =0fori=1, -, k provided that

the sent flows is identical to the one of the resoufgéut the , 1, if d; =1

global amount emitting by the neurdh, i.e., out, = wizR;, di = { In(d;), otherwise

is not equal to the resource value. For the third conditiog,q

let consider two competitor§; and =, requiring the same g <0, if wiz <1

t
resourceR; and havingw;; = wy,;. Clearly, they receive flows g >0, if wix >1
. . . . . . —_— ? P
with a ratio equal to the ratio of their activation levels g <1, if wia <d; (d; £ 1)
7 = 4 7 0
o OUIT;—>EJ- T y > 1, if wta: > d; (dZ 75 1).
\V/.:j,.:p, Wij; = Wpiy, ——— = . . .
Outr, =, p The corresponding to the inequality constraints new energy

Under only the influence of the neurd, if the two activation N the (EHM)xamis now written

levels z; and z;,, are almost identical, the two neurons are 1
. . . . ! 2
going to evolute identically, since we hade; /dt ~ dz,/dt. Ecams(z, y) = 5 Z - [In( (wiz®) — diy]®. (10)
In the next section, we show how to ensure in EHM the two =1 "
not respected conditions afm. The Proposition 2 can be stated as follows.

Proposition 4: A two layers connectionist model whom the
A. The Competitive Activation Extended Hopfield Model  behavior is controlled by the dynamic system

The second condition, requiring that neurdp sends out (du/dt
a global quantity of flows equal to its resource amo#it <dv/dt>
is simply obtained by normalization of the flows eut.z, dEcam /0
i.e., by sending flows proportional to the ratg;z, /wiz, i = = <8Ecam/au>

,k,j = 1,---,n. However, a such expression is T -1
partially correct; it still remains to favor the best competitors, [Tz + b] + Z C; % In(wiz®) — dy;]
that is, the most active (respectively, the less active) in the = — el WiLa;
lower bounded inequality constraints case (respectively, the ) Gi &[dy;
upper bounded inequality constraints). For this, before the %Y
normalization phase, we raise into the linear combinaiifn (11)
the variablesr; to a powiraZ tThis modificaﬁon generates, in < (=0, +00)® and z € (0,1)" the vectors of
flows proportional tow;x;" /wixz®' wherez*: denotes the jyiernal and coming-out variables for the first lay&rj =
vector (z{, -+, &)L The power «; is allowing us to 1,:--,n z; = L[1 + tanh(u;/7;)] (with 7, > 0) and
accentuate the existing gap between the activation levels o& —o0, _ﬁoo)k énduthe vect(;rs ;)finternal ;nd coming-out

~ In(uwle,,)]

neurons=;. Indeed vanables for the second layer:i = 1, -+, k
if wj; =wp; # 0andx; > x, then — exp(—vi/pi)s ?f v <0 _
Outy, .=, ;Y >z /xp, 0 a;>1 ) exp(vi/pi), if ;>0 (with 12
e - IR S vi= o, ez o @
OUtTg—>EP Tp <.’L’j/.’L’p, if 0 <oy <1. 1- eXP(—Uz/pz), ity <1 pi > 0)

1+ exp(vi/pi), if 4, >1

. L , fe s s o _
In this expression, if the type ath constraint isw;z > d; converges to a local minimum of the function

(wiz < d;) the conditiona; > 1 (respectively0 < «o; < 1)

ensures the third condition afam. Ecam(x, y) = AE1(z) + BEs(z) + Fcams(z, y)
Notice that the contribution of the variable; is always 1 15 o
bounded by the weights;;. So, for the lower bounded =2 Tz +bz+ = Z —
. 4 . . . . 2 2 < (67
constraints @}z > d;) the linear combination is lower es- i=1

timated, i.e.,w!z® < wix since«; > 1. For the upper [n(wiz®) — diy]*. (13)
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The convergence proof is similar to this one in [1] and [2Fcam(c). That is

and the activation rules for the neuroBs and Y; have as
follows:

dxj = 2 4wjl$?i ! by
dt 7 z:lz: k < whr (diyi — In(w;x™)]
@i = & 4 Ny to o

Then, the new expressions of the resourBgs attributed to
the neuronsr’; and the activation flowsuty, .=, spread from
T; to neuronsZE; are equal to

Ry =dy; — In(wfz™), (16)

a;

outy, .=, = # [diy; — In(wlz®)]
i
a;
wixrd

=’ (17)

whxe

By checking the three conditions it can easily be seen that theams

(EHM)cam incorporates thecam.

B. Weights Determination

Following the idea of Ak™[1] for defining the value of
the weightB in relation to A for the equality constraints on

e
the traveling salesman problem, we prove the following res@;

for the weightsA, B, andC;, ¢ = 1, -- -, k, which is valid
for a combinatorial optimization problem with equality an
inequality constraints. Let us consider two adjacent vert:tce
and c¢(y) in the hypercubd0, 1]™ which differ only on their
jth component.

Theorem 5:If the coefficientsw;; andd; are nonnegative
integers and the weight$, B, andC; are defined with respect
to

E1(c(7)))

max max (0, E1(c) —
B>24 izl

Vi=1, -, (18)
max _I{laX n[El(C) — E1(c(4))]
C; >24 SELI=L (19)
L (in(dsopid) — In(d)}?

%

wherel is the set of feasible solutions anrg; an addition
if the constraint is of the types!z < d; or subtraction if the

AlE1 (c(5)) — Er(c)] + BlEx(c(4)) — Ex(c)]
+ [Fecams(c(j)) — Ecams(c)] > 0.
On the vertex(j) violating thepth equality constraint the

term Ex(c(4)) is increased with regard t&»(c) by at least a
cost P, equal to

(20)

P,

e, =5 [1pc( N = sp % rhe(d) — 5 [7’;0]2 + 5 X ThC
=[rpe+rp(c(i); — ¢5)]

[5 ¢

x [5 (rpe+riple(i); — e]) = 5p] + 5 55
(since,r/c = sp)
=[sp +7jp[1 — 2¢5]] % [% sp+7ip[l = 2¢4]) — SP]
+3s2  (since,c(s); = 1—cj)
=[sp +rjp[l = 2¢]]1 X [3rpll — 2] = §sp] + 3 312>

=1
2

2

ap

So, we haveF;(c(j)) — Ex(c) > 573, and Ecams(c(4))

Ecamg( ) = 0. If the weightB is such that3 > 2A[F(c)
Eq(c(4))]/73, then (20) is always verified.

On ¢(y) violating the gth inequality constraint the energy

(c(4)) is at least equal to

L Gt e()e) — (i)l

2 aq
A study of the (EHMram dynamics (15) gives that
dyy(j)q converges asymptotically tdu(d,). So, when the
twork reaches convergencg;, can be approximated by:
3 (Ca/og) In(whe(5)" ")~ In(d ). Sincewgc(j)™ is

r (since,(1 — 2cj) =1).

2

P,

Zq_

(21)

=~
g

é)ounded below byl, + 1 if w z < dg and upper bounded by

1if w x> d, (we recaII thatqu andd, are integers),
We obtain that

(1C,
3 a—q [n(d, + 1) — In(d,)]?,
[ if the type of the constraint is}z < d,
=) 10,
5 % In(d; = 1) = In(d,),

q
| if the type of the constraint ia;;x >dy.

Sincec € I', we haveEcamsz(c) = 0 and Ex(c(j)) > Ea(c).

So, by taking the weightsl and C; as indicated in (19), (20)

is verified. [ |
Notice that the weight”; must be chosen at least equal to

the inverse of the minimal cost

1
Fi, =5 — [In(dgop,l) — 111(dq)]27 g=1 -k
¢ 2 a

constraint is of the typeviz > d;, then any vertex of the So, its value depends on the bounfisand the type of the
hypercube violating at least one constraint and including in ieonstraints which fix the operatotg,.
neighborhood a feasible solution can not be a local minimumLet us see the casé, = 1. If the constraint is lower
for Ecam. bounded, i.e. w z > 1, then the operatasp, is a subtraction.
Proof: Let ¢ € I" and c¢(j) ¢ I' violating at least an Since the costP tends to infinity, the weight”; can take
equality constraint, say, or an inequality constraint, sayany positive value If the constraint is upper bounded, i.e.,
g. Obviously, the vertex(;j) is not a local minimum if the w/z < 1, the operatorop, is an addition and the cost
weights A, B, and C; take values such that'cam(c(j)) > F;, becomes equal td’, $1/a,[In(2)]%. It is clearly
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possible to find a value for the weight, that satisfies unweighted instances. We use a such instance for evaluating
condition (19). For the case, > 1, for satisfying the the performance of EHM and (EHMam neural networks.
condition (19), the weight’;, must take large values since In the EHM, the covering constraints are introduced by the
whatever the constraint type the quantitie&, +1) —In(d,) penalty function

or In(d, — 1) — In(d,) are small. Obviously, the network X

dynamic will be prmcuc_)ally con_trolled by the const_re_unts By = % Z [wiz — yi]? Withy; > 1,i=1, -, k.

and less by the objective function. Consequently, fixing a P
value for the weightC, is possible only when the global ) o

amounty_; outr, .z, of flows emitting by the neurof(, is The derived activation rules [(7) and (8)] are
sufficiently large as long as its associated constraint remaing> for the setss;

unsatisfied. The neperien logarithm function is well adapted k

when the (EHMgam must handle inequality constraint of dx;/dt = <C Z wjiw;(y; — wiw) — chx]) (1-— )
type wizx > 1. For the constraintawiz < 1, it would im1

be necessary in practice to use a logarithm with a smaller
base in order to reduce the weight. On the other hand,
for the inequality constraints with large boumfl the alone
introduction of the logarithm function is rather unadvisedﬁ
We can use it, for example, with a hyperbolic tangent. ThiYY

for the elements;: dy; /dt = —C(y; — 1)(y; — wiz), with

C > Amaxj_; ... » Cj.

In the (EHM)cam the covering constraints are introduced
the function

function preserves around the boufida sufficient emitting of k )
flows. Nevertheless, the choice of any other function different Eecams = 5 > a—z [n(wfa®) - yi]®
to the logarithm will imply the lost of the equality between the i=1 '
global quantity of flows emitting by a neuron and the amoufith «, > 1 andy;, > 0,i =1, ---, k.
of its resource. However, a such choice must preserve the tWxzg the & constraints are the same, we take = C and
other principles ofcam. a;=aVi=1 -, k(with C >0 anda > 1). The derived
activation rules [(14) and (15)] are
IV. THE SET COVERING PROBLEM & for the setssS;

We consider a s& with £ elements and a collectiak of n b o
weighted subsets @. Forj = 1, - --, n the jth set is labeled dx;/dt = | C Z wt’xl (y: — In(w!z®)) — Acjz;
S;, and its weight;;. Each elemeny; of @ is supposed being — wiz”

included to at least one set of the collectiéh The exact x (1 —x;)

composition of each set is given by the< n matrix W: w;;

is equal to one if theth element belongs to thgh set, and < for the elementsy;

zero otherwise. t o
A coveris a subcollectiors of sets fromR not necessarily dyi/dt = =Cfeyiyi — Inwiz®)).

disjoint which covers all elements @}, i.e., such that every By (19), the weightC can take any positive value antlcan

element of @ belongs to, at least, one member 8f The pe fixed to one.

weighted minimum set covering problem (WSCP) consists in

finding a cover minimizing the total weight;5 . ¢; for a V. EXPERIMENTAL RESULTS

given instancd = (R, ). This problem is known to be NP-

hard [7] and it can be formulated as an integer linear programIn order to extract the cover from the gtate of the netvyork
at convergence we consider two experimentally established

as follows: ; . >
thresholdsL™ and L** fixed, respectively, to the values
minimize c'z 0.3 and 0.7. The first one is the threshold below which the
subject tozwiz > 1 Vi=1, -, k neuron is considered as inactive. The second is the threshold

up which the neuron is active. Any activation level located
(22) : . . .
between these two thresholds is considered as intermediate
In order to evaluate the quality of neural solutions we us&d so, it is ambiguous to interpret.
the greedy algorithm due to Johnson [6] as a comparisonTo break the symmetry and thus prevent the system from
measure. This algorithm chooses at each step th&,sefth settling down into an unstable equilibrium state, the initial
the larger ratio|S;|/c; to put in the solution as long as allactivation levels are randomly attributed in a fixed interval.
elements ofQ are not covered. Next, the introduced set an®l weak width for this interval gives equivalent chances for
their elements are removed frafhand (@ and the cardinalities any set to belong to the cover. The interval chosen has a
of the other sets are updated. With such an algorithm solutionglth equal to 0.1 centered around 0.5. In our experiments we
minimality and sets irredundance are not always guarantebdve considered that the model reaches convergence when two
A worst case tight bound has been established by Johnsmmsecutive states are almost identical. Their differences are
[6] and Chwatal [3] equal toZZLl(l /4) times the weight of measured by the evolution rate [9):= (1/n) > 7_, [x;(t +
an optimal cover, wherd is the size of the largest sé;. At) — z;(¢)]*>. We have fixed the limit forA equal to10~1°,
This approximation ratio is reachable for a series of particulahe time stepA¢ was equal toAt = 0.01. This large time

with = € {0, 1}".
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step has sometimes as effect to violate the activation bounds. HM
In such cases, the activations are reset nearer the bounds zero R R
or one. The weights were fixed t4 = 1 and C = 2 which 1 -
also are valid for the EHM (see Section IV). o
The first objective of our experiments was to compare <
the two versions of the extended Hopfield model on their
capacity to share out the neurons corresponding to the sets of
the collectionR. We have considered a randomly generated
instance containing 60 sets and 30 elements. The Fig. 1
reports, for the EHM and for the (EHM&m the evolution
of the activation levels;;, j =1, -+, n. For the (EHMEam
different values of the powet were studied. L il [ T e T T e e
For the EHM, casea, we observe the existence of a R T T
large number of neurons with ambiguous interpretation. So, 0 0 1000 1500 200 =% 0%
a cover cannot be deduced from the final state. For the (EHM)cam and o = 1
(EHM)cam cased, ¢, andd, the repartition of the sets into ————
two active/inactive categories is realized as soorvas 1. 1+ .
For o = 2 (casec), about a thousand iterations are needed. 1
For a = 3 (cased), a hundred of iterations are sufficient to
yield a cover. But, the rapidity of convergence is achieved in
prejudice of the solution quality. Indeed, the cardinality of the
solution returned by the model far = 3 is more expensive
than the one obtained fer = 2 (11 sets instead of nine). It is
clear that when the convergence is too fast, the favor conceded
by an element is so great for the most active neurons that
any weak difference generated during the initialization phase
affects the solution. Our study with different valuescohas

0.

ITER

FEY ) IO S U U I IS S S B S

U T USSR R . "
500 1000 1500 2000 2500 3000

shown that the best experimental behavior is achieved for the

(EHM)camwhen the parametex = 2. The sets are clearly (EHM)cam and o = 2 o

shared out and the final solution is relatively not conditioned L AL R o S S S S
by the initialization interval. B . W

The second part of our experimental study consists in =
investigating the behavior of EHM and (EHMgmfor o« = 2
on some particular instances of Johnson. We have observed
a clear repartition of the neurons into active and inactive
by both models. However, the (EH®BmM converges faster
than EHM. The final state for both models is composed
exclusively by neurons giving the optimal solution. We see that
such instances, which are difficult for the sequential heuristic,
become easy for the studied neural networks.
In the third part, we evaluate the (EHb§mon its capacity 0 e T T T T T T e T e 000
of settling down into states without intermediate activations
and its solution quality in comparison with the greedy al-  (EHM)cam and a =3
gorithm. We do not report results on the EHM since, for T T T T
many treated instances, many neurons had involved with
ambiguous classification. By considering the same hard limits =
Ln' (0.3) and L*** (0.7) the produced solutions were not
enough interesting. |
We have considered different groups of 50 randomly gen- .|
erated unweighted graphs. They are specified by giving (see B
Table I).
* The size of the instancé = (R, @}) defined by the
number|R| of sets composing the collectiaR and the
number|@| of elements included in the basic %@t
* The numbeirg;| of sets containing an element ¢f. An
interval of authorized values is given for this parameter. ITER
* The maXImum number of elements included into a‘%et Fig. 1. Activation level (AL) evolution in function of the number of itera-
of the collection. In order to make the competitionStons (1TER) for the sets of a randomly generated instance.

P P PR o
1000 1500 2000 2500 3000
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TABLE |
NeuraL NETWORK (NN) PERFORMANCE (SOLUTION QUALITY
AND AVERAGE CPU TIME IN SECONDS IN COMPARISON TO A
HeuRrisTIC (H) FOR DIFFERENT INSTANCE SIZES AND DENSITIES

the instance is made up of some basic elements included only
in one set. Obviously, the insertion of these sets into the
cover is necessary and if they have a weak cardinality the
greedy algorithm introduces them only during the last steps.

(gl [mmixjel | H [ = [ NN Ty [ Twn | It can be seen, in Table |, that for high densities, i@/, €
80 40 6 28 66 0.1 ] 153 B---7], @l €[3---10], 0or|g| €[5 --- 10], the NN gives a
10030 4 6 | 42 | 52 [ 0.09] 125 strictly better solution than H in a percentage of cases ranging
[1.5] 190 50 0 36 | 64 || 017 255 between 50-60%, and an equivalent solution in about 30% of
150 50 6 24 70 0.37 | 348 . .
average || 45 [ 325 [ 63.0 cases. A_degradatlon of the NN performance is obser\_/ed when
the density increases. However, the NN performs still better
80 40 4 28 68 0.09 | 21.3 -
10030 7} 56 T 70 000 15 Fhan_ H. In the worst casdgt| € [5--- 10]), a be.tter cover
3.5 [ 10050 || 14 | 38 | 48 | 0.16 | 324 is given by the NN in 50% of cases, comparatively to only
15050 || 2 | 18 | 80 || 0.95 | 41.7 18% for the H. _ . _
average || 6.0 | 27.5 | 66.5 Notice that the NN requires larger CPU time than H but it
30 40 12 34 54 11 0.091 25.1 remains at average lower than one minute. This time would
100 30 12 | 34 | 54 {]0.08] 164 sometimes be acceptable if solutions quality is the main
[3..7] | 100 50 16 | 34 | 50 [[015] 375 objective while a massively parallel implementation let us
15050 |} 4 | 12 | 84 | 0.25 | 443 expecting significant improvements.
average (| 11.0 | 28.5 | 60.5
80 40 18 34 48 0.09 { 23.3
10030 || 12 | 36 | 52 | 0.08 | 17.3 VI. CONCLUSION
(3..10] | 10050 || 12 | 18 | 70 ] 0.14 | 42.3 We have proposed a new expression for the penalty en-
15050 || 16 | 22 | 62 ] 0.22 | 571 ergy handling inequality constraints in Hopfield models. The
average || 14.5 | 27.5 | 58.0 derived rules introduce competitions between the variables
8040 ) 24 | 38 | 38 | 0.08 299 involved into the same constraint and solve them with the
5 10 188 gg ;g gi gi g'(l]i ég'g competitive activation mechanism. The treatment of the up-
[5..10] 5050 550 T 64 0'22 60‘8 per bounded inequality constraints generates competitions for
= : : which the objective is negative resources acquisition. In con-
average [ 18.0 y 32.0 | 50.0

sequence, we have extended the competitive activation mech-

anism for dealing also with negative resources. The great
more uncertain this number was limited to seven for eadpterest for this mechanism is its capacity to distribute the
instance. neurons into two active/inactive categories. This point reme-

Table | gives the performance of the two methods fror%'es a drawback of the extended Hopfield models. Validation

solution quality point of view and CPU required time. Folvas given through an extensive experimental study on the set

each group of instances, the percentages of the cases wii¥E" problem.

the heuristic has given a better solution than the neural network
(column “H"), an equivalent solution (column “="), and finally ACKNOWLEDGMENT
a worst solution (column “NN”) are reported. Also the average The authors would like to thank an anonymous referee for
required CPU times (on a SPARC 10) for the heuriglicand several valuable suggestions.
the neural networkl’y 5 are presented.
Even with the instituteccam in some cases the network
settles into a state with some neurons having intermediate
At ; ; ; S. Abe, “Theories on the Hopfield neural networks,”Hroc. Int. Joint
activations. The percentage_ of such solutions increases with tﬁé Conf. Neural NetworksWashington, D.C., 1989, vol. I. pp. 557564,
average degree of the basic elements, but at average nevepjts. Abe, J. Kawakami, and K. Hirasawa, “Solving inequality constrained
exceeds 20%. More often the number of concerned neurons is combinatorial optimization problems by the Hopfield neural networks,”
. - Neural Networksyol. 5, pp. 663-670, 1992.
at')ou.t three O': five bu_t ”?Ver exceeds Fhe eight. Th‘?se neuro[%F V. Chvatal, “A greedy heuristic for the set-covering problenvath.
with intermediate activations are considered as active and are oOperations Resyol. 4, no. 3, pp. 233-235, 1979.
introduced into the solution. This has always given feasiblé?l S. Gros_sbergStudles of Mind anq lBraln: Neural Principles of Learning,
. . Perception, Development, Cognition, and Motor ContradBoston, MA:
solutions but had introduced some redundant sets. Reidel. 1982,
For a percentage of cases ranging between 50-66.5%, tf% J. J. Hopfield and D. W. Tank, “Neural computation of decisions in

NN presents a strictly better performance than H. The most, OPtimization problems,Biol. Cyber.vol. 52, pp. 141-152, 1985,
. 9. Jonnson, "Approximation algorithms 1or compinatorial problems,
] D.S. Johnson, “A tion algorithms for combinatorial problems,”
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