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Extended Hopfield Models for
Combinatorial Optimization

Armelle Le Gall and Vassilis Zissimopoulos

Abstract—The extended Hopfield neural network proposed
by Abe et al. for solving combinatorial optimization problems
with equality and/or inequality constraints has the drawback of
being frequently stabilized in states with neurons of ambiguous
classification as active or inactive. We introduce in the model a
competitive activation mechanism and we derive a new expression
of the penalty energy allowing us to reduce significantly the
number of neurons with intermediate level of activations. The
new version of the model is validated experimentally on the
set covering problem. Our results confirm the importance of
instituting competitive activation mechanisms in Hopfield neural-
network models.

Index Terms—Activation mechanism, combinatorial optimiza-
tion, competitive heuristic, Hopfield neural network, inequality
constraints, set covering problem.

I. INTRODUCTION

A BE et al. [2] have given an extension of the Hopfield
model [1], [5] in order to handle equality or/and in-

equality constraints. The extended Hopfield model (EHM)
introduces in the objective function some additional energy
terms which penalize any infeasible state. For determining an
appropriate expression for the penalty energy in the inequality
constraints case, each inequality constraint is converted to
an equality constraint. This is obtained by introducing an
additional variable which is managed by a new neuron. Each
new neuron is connected to the initial neurons where their
corresponding variables occur in its linear combination. The
disadvantage of the EHM is to produce in many cases uninter-
pretable stable solutions, that is, some neurons with activation
levels far from the suitable ones, i.e., zero and one. The aim
of this paper is to reduce such undesirable situations and
to improve EHM performance by introducing a competitive
activation mechanism in the model. In a relative work, to
handle inequality constraints, Ohlsonnet al. [9] have used
another expression for the additional energy term and in [10]
and [11] a Potts glass theory technique using mean field theory
has been developed and tested on the knapsack problem and
the assignment problem.

Here, we use an analogy between handling inequality con-
straints strategy and an allocation problem of limited resources.
For each constraint a fictional resource, the amount of which
represents the degree of constraint unsatisfaction, is attributed
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to the corresponding new neuron. At its present form, the EHM
takes as resource amounts the differences between the bounds
and the current values of the linear combinations. Then,
it distributes them proportionably to the receiving neuron
activations.

In order to reinforce in EHM neurons repartition into
two categories: active or inactive,we institute an inequitable
way to distribute the resources.Henceforth, in the lower-
bounded constraint case (positive resources) the most active
neurons are being in favor whereas in the upper-bounded
constraint case (negative resources) there are the most inactive
neurons that are favorized. These inequitable allocation rules
create inhibitory relationships between neurons which are in
competition to acquire the same limited resource. For the case
of positive resources Reggia has defined [12] the rules which
must govern resources allocation in order to select a limited
number of neurons as competition winners. This allocation
method, reported as competitive activation mechanism, is
well suited to resolve unexclusive in nature competitions,
that is, competitions eventually requiring some collaborations
between competitors for elaborating a global solution. The
competitions implemented to satisfy inequality constraints are
owned to this category.

Here, we extend this competitive activation mechanism for
dealing with negative resources and we deduce a new ex-
pression for the energy term which integrates the inequality
constraints in the Hopfield model.This energy generates acti-
vation rules ensuring a better neurons repartition to two sets.
The set including neurons with near to zero activation and
the set including neurons with near to one activation. We
show also how to evaluatethe integration weights of the new
penalty energyessentially based on the idea developed by Abé
[1] for dealing with the equality constraints on the traveling
salesman problem. We obtain in this way for a combinatorial
optimization problem that any infeasible solution located on
a vertex in the proximity of a feasible solution can not be a
local minimum of the network’s energy.

The new method for handling inequality constraints is val-
idated experimentally on the set covering problem (SCP) [6].
In the next section we describe briefly the EHM. In Section III
we discuss different competitive mechanisms and present
an extension of the EHM including competitive activation
mechanisms. We derive the new activation rules and we show
how to define the main involved parameters. In Section IV
we discuss the set covering problem and we adapt the neural
model for solving it. In Section V we present an extensive
experimental study which confirms the utility of the instituted
competitive activation mechanism.
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II. THE EXTENDED HOPFIELD MODEL

The original Hopfield model is a neural-network model
adequate for solving optimization problems which can be
expressed by a quadratic function of the form

minimize

with (1)

where is the vector of problem variables,
a th constant vector and a symmetric matrix with

[5].
The EHM proposed by Abeet al. [2] is able to handle the

following constraints.

• The equality constraints: , , where
.

• The inequality constraints: or
where and ,

.

We describe the EHM with a slight modification allowing
us to handle also inequality constraints with . This
case will be useful later (Sections IV and V) and it affects the
definition domain of the introduced new variables.

Handling constraints implies the weighted insertion of two
energy terms into the initial objective function . The first
term, denoted by , is related to the equality constraints and
the second term, denoted by , is related to the inequality
constraints. The minimizing by the network function is given
by where , , and are strictly
positive weights.

Let us first consider the equality constraints. We are looking
for a function of whom the minimum is obtained only
when every equality constraint , , is
satisfied. It is defined as follows:

(2)

By denoting and can
been written in a matricial form: . Let

and . Then, the function
is a quadratic function and so,

the initial Hopfield model can be used for handling equality
constraints.

For handling the inequality constraints we convert them
into equality constraints by introducing new variables,
for , brought together into the vector

. Then, it is easy to prove the following lemma.
Lemma 1: For varying from one to , the inequality

constraint or with nonnegative bound
is equivalent to the equality constraint with

if
otherwise

and
if

if

if

if

This preliminary step allows us to use the same schema
as the one used for the equality constraints. So, the energy
function is given by

(3)

With the notations

matrix

matrix

diagonal matrix

can be written as follows:

By putting and
, the global energy that

the model must to minimize is written

(4)

We obtain for the EHM the following result handling also
inequality constraints with .

Proposition 2: A two layers connectionist model whom the
behavior is controlled by the dynamic system

(5)

with and the vectors of internal
and coming-out variables for the first layer

with

and and the vectors of internal and
coming-out variables for the second layer

if
if (with
if
if

(6)

converges to a local minimum of the function.
The convergence proof consists to establish that the function
is a Lyapunov function for the dynamic system defined by

(5). In [1] and [2], the conditions for the system to converge
to a vertex, a point on the surface or an interior point in the

-dimensional hypercube have been studied by an eigenvalue
analysis of the linearized system.

In summary, the EHM has two layers. The first layer in-
cludes neurons , interconnected following
the matrix . Each such neuron is associated to a variable

. The second layer includes neurons ,
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each one corresponding to the new variable. A neuron
is linked to the neuron with a synaptic weight

which is exactly the coefficient of the variable in the linear
combination . The model operates in a synchronous mode
alternatively on the two layers until reaching a stable state.
The rules which govern the evolution of neurons and
are, respectively,

(7)

with
if
if
if
if .

(8)

III. COMPETITIVE ACTIVATION MECHANISMS

In order to estimate the capacity of the EHM to share out the
neurons in active and in inactive ones, we consider an analogy
between the inequality constraints and an allocation problem
of limited resources for .
Each neuron evaluates the amount of its resource which is
interpreted as a constraint unsatisfaction measure. An analysis
of the EHM dynamic shows that, for a satisfied constraint, the
unsatisfaction degree tends to zero because converges
asymptotically to . For an unsatisfied constraint,
converges asymptotically to , and so, converges to

. By distributing its resource to the neighbors, a neuron
influences the evolution of the network toward to a state

which should satisfy its corresponding constraint. Resources
distribution is realized by sending out flows, , which
are proportional to the amount and to the activation level

of the receiving neuron

out (9)

Notice that a such distribution does not produce the desir-
able neurons sharing out. Indeed, when (positive
resource) the advantage offered to a strongly activated re-
ceiving neuron is almost eliminated by the inhibition term

which is also proportional to its self activation
level . Therefore, the activations of the less active neurons
progress as far as the ones of the more active neurons. So,
many neurons after networks stability will have activation
values which are far from both one and zero. Also, when

(negative resource) the neurons which must receive
large negative flows are the neurons with weak activations
in order to ensure their activation decreament and let the
neurons with strong activations near the bound one. However,
the model in its present form tends to decrease the activation
of the strongly activated neurons by sending to them large
negative flows. As a consequence, a stable state will still
include neurons with uninterpretable activations.

An inequitable allocation of resources achievable by insti-
tuting competitions between all neurons owning a common
resource aims to remedy this drawback.

Definition 1: Two neurons are said to be competitors if
the gain of one occurs at the expense of the other, i.e., their
functional relationships are inhibitory in nature [4].

This definition of competition in neural networks, due to
Grossberg, indicates inhibitory interactions but it says nothing
about the underlying mechanisms involved in producing those
inhibitory interactions. Thedirect or antagonistcompetition
is a well-known competition mechanism. It occurs when an
active entity directly interacts with rival entities by sending
out negative flow in order to suppress theirs activities. Since,
all neurons having lost a competition can not become active.
This mechanism generates a singlewinner-takes-allbehavior.
But, in some applications, in order to produce a global solution
some competitors must cooperate. For capturing competitive
but cooperative relationships between neighbors and producing
so amultiple-winners-take-allbehavior, the following mech-
anism, calledindirect competitionor competitive activation
mechanism (cam)[8], [12], [13], could be more adapted. It
occurs when two rivals require and consume the same limited
resource. Under the hypothesis that the connection weights and
the resources are not negative, for sharing out the competitors
between the losers and the winners, the resources must respect
the following principles.

• The activation flows should be representative of the
way by which the emitting neuron wishes allocating its
resource between its neighboring neurons. For this, the
activation flows are positive and their amount is equal to
the resource.

• An inhibition term in the activation rule should decrease
the activations of the neurons not acquiring enough re-
sources. This term prevents network’s saturation. For
a neuron , the activation rule looks as:

with the sum of input activation
flows and its inhibition term. The factor
and the inhibition term, which is proportional to its self
activation , are used to prevent the activations from
overstepping their upper or lower bound.

• Large activation flows should be sent to the stronger
activated neurons in order to they acquire the active level
in spite of their inhibition terms increament.

We return now in the combinatorial optimization problem
and the EHM. In general, many variables equal to one are
needed to satisfy a lower-bounded inequality constraint. By
using the EHM this type of constraint is solved by generating
positive resources. So, the competitive mechanism is well
suited to use. But, for upper-bounded inequality constraints
the resources are negative and their satisfaction, in general,
needs several variables equal to zero. So, it is worthful to
extend thecam for handling also negative resources. This can
be done by sending inhibitory flows tending to decrease the
activation of the receiving neurons preferably those having
weak activations. In summary, ensuringcam in the EHM the
following conditions are required. These conditions reflect the
previously described principles ofcam but with positive and
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negative resources.

1)

out

if the constraint type
is
if the constraint type
is

2) out out .
3) If and then

out

out
if
if .

It can be seen that in the EHM the flows
which distribute the resource do not respect
the second and the third properties ofcam.In fact, the sign of
the sent flows is identical to the one of the resourcebut the
global amount emitting by the neuron, i.e., out ,
is not equal to the resource value. For the third condition,
let consider two competitors and requiring the same
resource and having . Clearly, they receive flows
with a ratio equal to the ratio of their activation levels

out

out

Under only the influence of the neuron, if the two activation
levels and are almost identical, the two neurons are
going to evolute identically, since we have .
In the next section, we show how to ensure in EHM the two
not respected conditions ofcam.

A. The Competitive Activation Extended Hopfield Model

The second condition, requiring that neuron sends out
a global quantity of flows equal to its resource amount,
is simply obtained by normalization of the flows out ,
i.e., by sending flows proportional to the rate

. However, a such expression is
partially correct; it still remains to favor the best competitors,
that is, the most active (respectively, the less active) in the
lower bounded inequality constraints case (respectively, the
upper bounded inequality constraints). For this, before the
normalization phase, we raise into the linear combination
the variables to a power . This modification generates
flows proportional to where denotes the
vector . The power is allowing us to
accentuate the existing gap between the activation levels of
neurons . Indeed

if and then
out

out
if
if .

In this expression, if the type ofth constraint is
( ) the condition (respectively, )
ensures the third condition ofcam.

Notice that the contribution of the variable is always
bounded by the weight . So, for the lower bounded
constraints ( ) the linear combination is lower es-
timated, i.e., since . For the upper

bounded constraints ( ) the linear combination is
upper estimated, i.e., since .
Thereby, the inequality constraints satisfaction requires a large
number of variables to tend to an activation level sufficiently
near to one or zero. Intuitively, these observations show that
the institutingcamcontributes significantly to direct network’s
convergence to a vertex of the hypercube.

Let now study the dynamics of the new extended Hopfield
model (EHM)camwith the institutedcam.The normalization
of the activation flows is obtained by applying the logarithm
function on each term of the inequality constraints before their
transformations into equality constraints.

Lemma 3: The inequality constraints or
with bounds are equivalent to the equality constraints

for provided that

if
otherwise

and
if
if
if
if .

The corresponding to the inequality constraints new energy
in the (EHM)cam is now written

(10)

The Proposition 2 can be stated as follows.
Proposition 4: A two layers connectionist model whom the

behavior is controlled by the dynamic system

(11)

with and the vectors of
internal and coming-out variables for the first layer:

(with ) and
and the vectors of internal and coming-out

variables for the second layer:

if
if with
if
if

(12)

converges to a local minimum of the function

(13)
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The convergence proof is similar to this one in [1] and [2]
and the activation rules for the neurons and have as
follows:

(14)

(15)

Then, the new expressions of the resources attributed to
the neurons and the activation flows spread from

to neurons are equal to

(16)

out

(17)

By checking the three conditions it can easily be seen that the
(EHM)cam incorporates thecam.

B. Weights Determination

Following the idea of Ab`e [1] for defining the value of
the weight in relation to for the equality constraints on
the traveling salesman problem, we prove the following result
for the weights , and , which is valid
for a combinatorial optimization problem with equality and
inequality constraints. Let us consider two adjacent vertices
and in the hypercube which differ only on their
th component.
Theorem 5: If the coefficients and are nonnegative

integers and the weights and are defined with respect
to

(18)

(19)

where is the set of feasible solutions and an addition
if the constraint is of the type or subtraction if the
constraint is of the type , then any vertex of the
hypercube violating at least one constraint and including in its
neighborhood a feasible solution can not be a local minimum
for .

Proof: Let and violating at least an
equality constraint, say , or an inequality constraint, say
. Obviously, the vertex is not a local minimum if the

weights and take values such that

. That is

(20)

On the vertex violating the th equality constraint the
term is increased with regard to by at least a
cost equal to

since,

since,

since,

So, we have and
. If the weight is such that

, then (20) is always verified.
On violating the th inequality constraint the energy

is at least equal to

(21)

A study of the (EHM)cam dynamics (15) gives that
converges asymptotically to . So, when the

network reaches convergence, can be approximated by:
. Since is

bounded below by if and upper bounded by
if (we recall that and are integers),

we obtain that

if the type of the constraint is

if the type of the constraint is

Since , we have and .
So, by taking the weights and as indicated in (19), (20)
is verified.

Notice that the weight must be chosen at least equal to
the inverse of the minimal cost

So, its value depends on the boundsand the type of the
constraints which fix the operators .

Let us see the case . If the constraint is lower
bounded, i.e., , then the operator is a subtraction.
Since the cost tends to infinity, the weight can take
any positive value. If the constraint is upper bounded, i.e.,

, the operator is an addition and the cost
becomes equal to . It is clearly
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possible to find a value for the weight that satisfies
condition (19). For the case , for satisfying the
condition (19), the weight must take large values since
whatever the constraint type the quantities
or are small. Obviously, the network
dynamic will be principally controlled by the constraints
and less by the objective function. Consequently, fixing a
value for the weight is possible only when the global
amount out of flows emitting by the neuron is
sufficiently large as long as its associated constraint remains
unsatisfied. The neperien logarithm function is well adapted
when the (EHM)cam must handle inequality constraint of
type . For the constraints , it would
be necessary in practice to use a logarithm with a smaller
base in order to reduce the weight . On the other hand,
for the inequality constraints with large bound the alone
introduction of the logarithm function is rather unadvised.
We can use it, for example, with a hyperbolic tangent. This
function preserves around the bounda sufficient emitting of
flows. Nevertheless, the choice of any other function different
to the logarithm will imply the lost of the equality between the
global quantity of flows emitting by a neuron and the amount
of its resource. However, a such choice must preserve the two
other principles ofcam.

IV. THE SET COVERING PROBLEM

We consider a set with elements and a collection of
weighted subsets of . For the th set is labeled

, and its weight . Each element of is supposed being
included to at least one set of the collection. The exact
composition of each set is given by the matrix
is equal to one if theth element belongs to theth set, and
zero otherwise.

A cover is a subcollection of sets from not necessarily
disjoint which covers all elements of, i.e., such that every
element of belongs to, at least, one member of. The
weighted minimum set covering problem (WSCP) consists in
finding a cover minimizing the total weight for a
given instance . This problem is known to be NP-
hard [7] and it can be formulated as an integer linear program
as follows:

minimize

subject to:

with (22)

In order to evaluate the quality of neural solutions we use
the greedy algorithm due to Johnson [6] as a comparison
measure. This algorithm chooses at each step the setwith
the larger ratio to put in the solution as long as all
elements of are not covered. Next, the introduced set and
their elements are removed fromand and the cardinalities
of the other sets are updated. With such an algorithm solutions
minimality and sets irredundance are not always guaranteed.
A worst case tight bound has been established by Johnson
[6] and Chv́atal [3] equal to times the weight of
an optimal cover, where is the size of the largest set .
This approximation ratio is reachable for a series of particular

unweighted instances. We use a such instance for evaluating
the performance of EHM and (EHM)camneural networks.

In the EHM, the covering constraints are introduced by the
penalty function

with

The derived activation rules [(7) and (8)] are
for the sets

for the elements , with
.

In the (EHM)cam, the covering constraints are introduced
by the function

with and .
As the constraints are the same, we take and

(with and ). The derived
activation rules [(14) and (15)] are

for the sets

for the elements

By (19), the weight can take any positive value andcan
be fixed to one.

V. EXPERIMENTAL RESULTS

In order to extract the cover from the state of the network
at convergence we consider two experimentally established
thresholds and fixed, respectively, to the values
0.3 and 0.7. The first one is the threshold below which the
neuron is considered as inactive. The second is the threshold
up which the neuron is active. Any activation level located
between these two thresholds is considered as intermediate
and so, it is ambiguous to interpret.

To break the symmetry and thus prevent the system from
settling down into an unstable equilibrium state, the initial
activation levels are randomly attributed in a fixed interval.
A weak width for this interval gives equivalent chances for
any set to belong to the cover. The interval chosen has a
width equal to 0.1 centered around 0.5. In our experiments we
have considered that the model reaches convergence when two
consecutive states are almost identical. Their differences are
measured by the evolution rate [9]:

. We have fixed the limit for equal to .
The time step was equal to . This large time
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step has sometimes as effect to violate the activation bounds.
In such cases, the activations are reset nearer the bounds zero
or one. The weights were fixed to and which
also are valid for the EHM (see Section IV).

The first objective of our experiments was to compare
the two versions of the extended Hopfield model on their
capacity to share out the neurons corresponding to the sets of
the collection . We have considered a randomly generated
instance containing 60 sets and 30 elements. The Fig. 1
reports, for the EHM and for the (EHM)cam, the evolution
of the activation levels . For the (EHM)cam
different values of the power were studied.

For the EHM, case , we observe the existence of a
large number of neurons with ambiguous interpretation. So,
a cover cannot be deduced from the final state. For the
(EHM)cam, cases , and , the repartition of the sets into
two active/inactive categories is realized as soon as .
For (case ), about a thousand iterations are needed.
For (case ), a hundred of iterations are sufficient to
yield a cover. But, the rapidity of convergence is achieved in
prejudice of the solution quality. Indeed, the cardinality of the
solution returned by the model for is more expensive
than the one obtained for (11 sets instead of nine). It is
clear that when the convergence is too fast, the favor conceded
by an element is so great for the most active neurons that
any weak difference generated during the initialization phase
affects the solution. Our study with different values ofhas
shown that the best experimental behavior is achieved for the
(EHM)cam when the parameter . The sets are clearly
shared out and the final solution is relatively not conditioned
by the initialization interval.

The second part of our experimental study consists in
investigating the behavior of EHM and (EHM)cam for
on some particular instances of Johnson. We have observed
a clear repartition of the neurons into active and inactive
by both models. However, the (EHM)cam converges faster
than EHM. The final state for both models is composed
exclusively by neurons giving the optimal solution. We see that
such instances, which are difficult for the sequential heuristic,
become easy for the studied neural networks.

In the third part, we evaluate the (EHM)camon its capacity
of settling down into states without intermediate activations
and its solution quality in comparison with the greedy al-
gorithm. We do not report results on the EHM since, for
many treated instances, many neurons had involved with
ambiguous classification. By considering the same hard limits

(0.3) and (0.7) the produced solutions were not
enough interesting.

We have considered different groups of 50 randomly gen-
erated unweighted graphs. They are specified by giving (see
Table I).

• The size of the instance defined by the
number of sets composing the collection and the
number of elements included in the basic set.

• The number of sets containing an element of. An
interval of authorized values is given for this parameter.

• The maximum number of elements included into a set
of the collection . In order to make the competitions

Fig. 1. Activation level (AL) evolution in function of the number of itera-
tions (ITER) for the sets of a randomly generated instance.
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TABLE I
NEURAL NETWORK (NN) PERFORMANCE (SOLUTION QUALITY

AND AVERAGE CPU TIME IN SECONDS) IN COMPARISON TO A

HEURISTIC (H) FOR DIFFERENT INSTANCE SIZES AND DENSITIES

more uncertain this number was limited to seven for each
instance.

Table I gives the performance of the two methods from
solution quality point of view and CPU required time. For
each group of instances, the percentages of the cases where
the heuristic has given a better solution than the neural network
(column “H”), an equivalent solution (column “=”), and finally
a worst solution (column “NN”) are reported. Also the average
required CPU times (on a SPARC 10) for the heuristicand
the neural network are presented.

Even with the institutedcam in some cases the network
settles into a state with some neurons having intermediate
activations. The percentage of such solutions increases with the
average degree of the basic elements, but at average never it
exceeds 20%. More often the number of concerned neurons is
about three or five but never exceeds the eight. These neurons
with intermediate activations are considered as active and are
introduced into the solution. This has always given feasible
solutions but had introduced some redundant sets.

For a percentage of cases ranging between 50–66.5%, the
NN presents a strictly better performance than H. The most
favorable cases correspond to the groups of instances for
which few number of sets contain each element of, i.e.,

or . Two reasons explain the
excellent results of the NN for those groups of instances.
Firstly, because very few solutions (about 8% instead of
14–20% for other groups) contain neurons with intermediate
activations. The second reason is the low efficiency of H when

the instance is made up of some basic elements included only
in one set. Obviously, the insertion of these sets into the
cover is necessary and if they have a weak cardinality the
greedy algorithm introduces them only during the last steps.
It can be seen, in Table I, that for high densities, i.e.,

, or , the NN gives a
strictly better solution than H in a percentage of cases ranging
between 50–60%, and an equivalent solution in about 30% of
cases. A degradation of the NN performance is observed when
the density increases. However, the NN performs still better
than H. In the worst case ( ), a better cover
is given by the NN in 50% of cases, comparatively to only
18% for the H.

Notice that the NN requires larger CPU time than H but it
remains at average lower than one minute. This time would
sometimes be acceptable if solutions quality is the main
objective while a massively parallel implementation let us
expecting significant improvements.

VI. CONCLUSION

We have proposed a new expression for the penalty en-
ergy handling inequality constraints in Hopfield models. The
derived rules introduce competitions between the variables
involved into the same constraint and solve them with the
competitive activation mechanism. The treatment of the up-
per bounded inequality constraints generates competitions for
which the objective is negative resources acquisition. In con-
sequence, we have extended the competitive activation mech-
anism for dealing also with negative resources. The great
interest for this mechanism is its capacity to distribute the
neurons into two active/inactive categories. This point reme-
dies a drawback of the extended Hopfield models. Validation
was given through an extensive experimental study on the set
cover problem.
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