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Abstract 

We study the problem of scheduling independent jobs in a hypercube where jobs are executed 
in subcubes of various dimensions. The problem being NP-complete, several approximation al- 
gorithms based on list scheduling have been proposed, having approximation ratio of order of 2. 
In this paper, a linear time &-approximation algorithm for the problem is provided when the size 
of the hypercube is fixed. We use a reduction to a special strip-packing (or two-dimensional 
packing) problem with bounded number of distinct pieces. Then, we transform the strip-packing 
solution into a feasible one for the initial scheduling problem with a small loss in performance. 
Finally, we provide an improvement which leads to significant reduction of the size of the 
strip-packing problem. 

1. Introduction 

We consider the problem of scheduling n independent jobs in an m-dimensional 

hypercube, where each job requires a set of processors which form a subcube of 

dimension at most m [lo]. Let T = { 5r;,, i = 1,. . . , n} a set of n tasks. Task Z’i may 

be executed in any subcube of the hypercube of dimension di, 0 <di <m, i.e., in a 

set of 2d1 processors where each processor communicates with di neighbors. Task Ti 

requires any di-cube in the hypercube for ti units of time. We are searching for a non- 

preemptive schedule with minimum finish time. The problem is NP-complete since 

the well-known NP-complete problem of multiprocessor scheduling [5] reduces to it. 

In fact, multiprocessor scheduling is the special case of hypercube scheduling where 

each job requires exactly one processor (K, di = 0). List-scheduling approximation 

algorithms have been proposed for the hypercube scheduling problem. In [I], Chen 

and Lai presented LDLPT (largest dimension largest processing time) with an absolute 
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bound 2 - ( 1/2m-’ ) and in [lo], Zhu and Ahuja proposed LDF (largest dimension first) 

with an absolute bound 2 - (l/2”). 

In this paper, we present a polynomial-time approximation scheme for the hyper- 

cube scheduling problem when the hypercube dimension is fixed. Let 9 be the set of 

instances of a NP-complete minimization problem. Let I E 9 and OPT(Z) the value of 

the optimal solution for I. We say that an algorithm A is a polynomial-time approxi- 

mation scheme for 4, if given any E > 0: A(I) < (1 + &)OPT(I), VZ E 9, where A(I) is 

the value of the solution for 1 returned by A in O(p(n)) time and p(n) a polynomial 

depending on IZ. In addition, if algorithm A runs in O(p(n,e)) time, where p(n,a) is 

a polynomial on both n and E, we say that algorithm A is a fully polynomial-time 

approximation scheme. 

The defined hypercube scheduling problem can be viewed as a strip-packing or 

a two-dimensional packing problem. Strip packing is a well known NP-complete prob- 

lem [5], where we search to place n rectangles in a single bin of width 1, so that the 

total height utilized is minimum. Let (hi, Zi) with li < 1, i= 1,. . . , n, represent the height 

and width of the ith piece, respectively. The hypercube scheduling problem reduces to 

strip-packing where pieces have dimensions: 

hi = ti, 

Clearly, 

(1) 

1 
-<li<l, 
2m 

(2) 

The above reduction makes use of a linear representation of the hypercube in 

a straight line, where subintervals correspond to nested subcubes [l]. Even though, this 

representation does not include all the possible subcubes, it guarantees the availability 

of an entire subcube of proper size, when allowed by the hypercube load. Related re- 

sults, along with a discussion on subcube allocation strategies in general, can be found 

in [2,8]. 

Using the strip-packing model, we will present a polynomial-time s-approximation al- 

gorithm for scheduling n jobs to an m-dimensional hypercube for fixed m. In Section 2, 

we claim that strip-packing with a finite number of piece-types can be solved within 

1 + E in constant time. In Section 3, we reduce the hypercube scheduling problem to 

this special strip-packing formulation and use linear grouping to obtain different piece- 

types. The s-approximation scheme is described in Section 4. Finally, in Section 5, we 

use geometric grouping, a more sophisticated grouping technique, in order to achieve 

an important reduction of the size of the strip-packing problem. 

2. Strip-packing with a finite number of types of rectangles 

In the present section, we claim that strip-packing can be almost optimally solved 

in constant time when rectangles belong to a set of finite piece-types. 



Y. Kopidakis. V. Zissimopoulosi Theoretical Computer Science I78 (1997) 265-273 261 

Proposition 1. Given any ~1 > 0, there is an algorithm that packs in constant time 
within 1 + ~1 of the optimal height in a bin of width 1, n rectangles with dimensions 
(hi, Zi), when hi E H and li EL and (HI <a and IL1 6 b, where a and b are constants. 

Proof. The proposition is proved in [4]. The proof is based on a reduction of the strip- 

packing formulation into a two-dimensional bin-packing formulation. The corresponding 

optimal solutions differ at most by a factor of 1 + ~1. Furthermore, the two-dimensional 

bin-packing problem can be optimally solved in constant time when the number of 

distinct piece-types is bounded. Essentially, for a constant number of distinct pieces, 

we can enumerate all possible bin-types [3,7]. However, the constant time of the 

enumeration has an exponential dependence on the number of piece types. 0 

3. Reduction to strip-packing 

In order to reduce the initial scheduling problem to a strip-packing with a bounded 

number of distinct rectangles, we consider tmax = max{ti, i = 1,. . . ,n} and we first 

divide each ti by tmax in order to normalize piece heights into the interval (0, 11. Then, 

we apply transformation (1) of Section 1. 

Let I the strip-packing formulation produced: 

I: strip pack (hi, Zi), i = l,.. .,n, hi = +, 
max 

Zi = g. 

Next, we use a grouping technique, called linear grouping (see [3,7]), in order to 

deal with a finite number of piece types. We distribute normalized piece heights in a 

constant number of types of heights. Let k an integer constant. We partition the height 

interval into k equal subintervals and we define hj as follows: 

hj=f ifJT ’ <hide, j=l,..., k, i=l,..., n. (3) 

Clearly, 

O<hj-hi < $ i = l,...,n. (4) 

Let 

I’: strip pack (hj, Zi), i = 1,. . . ,n, hi E 
1’ 

i, j = 1,. . . ,k . 

Proposition 2. When the hypercube dimension is jixed, I’ can be solved within 1 + ~1 

in constant time, for any &I > 0. 

Proof. InZ’, h:EH={l/k,2/k ,..., k-l/k,l} and ZiEL={1/2” ,..., 2dg/2m ,..., 1). 

Obviously, IHI 6 k and IL1 dm where k and m are constants. So I’, is a strip-packing 
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problem where the number of distinct types of rectangles is bounded. From Proposi- 

tion 1, it follows that I’ can be almost optimally solved in constant time. 0 

In addition, we will prove that the optimal cost of the transformed problem is very 

close to the optimal cost for the initial one. 

Proposition 3. For the optimal solutions of I and I’, OPT(I) and OPT(I’), res- 

pectively, we have: OPT(I) d OPT(I’) 6 OPT(I) + n/k. 

Proof. The inequality OPT(I)< OPT(Y) is straightforward, since hi < hi, Vi = 

1,. . . ,n. To prove the second one, in solution OPT(I), we transform each hi into 

hj. As h[ - hi < l/k (from (4)), we have added at OPT(I) at most n times i. How- 

ever, the new packing obtained corresponds to a feasible solution of I’, say FEAS(I’). 

Thus 

FEAS(I’) 6 OPT(I) + ;. 

Obviously, any feasible solution of Z’ has a total height superior to OPT(I’): 

OPT(I’) < FEAS(I’) 

From the above inequality the proposition is proved. 0 

4. The approximation scheme 

In this section, we describe the a-approximation algorithm for the problem of schedul- 

ing n jobs each requiring a subcube of dimension di for ti units of time in order to 

minimize completion time: 

1. Transform the hypercube scheduling instance into a strip-packing instance I: (hi, Zi), 

i=l , . . . ,n, hi = tiltmax, li = 2d8/2m. 
2. For fixed k, get I’: (hi, li), i = 1,. . . , n, hi E {j/k, j = 1,. . . , k} by grouping 

piece heights into k distinct types as indicated by transformation (3) (linear grouping). 

3. Using Proposition 2, find a solution of I’ within 1 + ~1 of the optimal, where 

&I < E. 

4. Transform the determined solution into a feasible one for I by changing hi into 

initial hi and return total height. 

Proposition 4. For k> I[( 1 + a~)/(& - ~l)h~i,,Z,,,i,Jl, where hmin and Zmin denote the 

minimum piece height and width, the above algorithm is a polynomial time approxi- 

mation scheme for hypercube scheduling of jixed hypercube dimension. 

Proof. We will show that the above algorithm is an c-approximation scheme for the 

equivalent strip-packing problem. Let A be the height of the final solution for 1. From 
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(4), hi Bhi and thus total height is reduced from OPT(Z’) to A. Combining this with 

Propositions 2 and 3, we have 

A<(1 +&I) OPT(Z’)<(l +&I) (OPT(z)+ 5) (5) 

and also 

A n l-t&i 

OPT(Z) 
G 1 + El + i opT(z). (6) 

Let S(Z) = Cy=, Aili, the total surface of pieces of I. Clearly, the height of any solution 

of I is larger than S(Z) and, consequently, OPT(Z and from (6) 

A 
<l+a,+L 

1 +El 

OPT(Z) S(Z) k’ 

In order to get an c-approximation, we want 

n 1 +&I 

E’+S(I) k 

n 1+&l 
<E @ k>--- 

s(Z) E - El 

However, S(Z) an&i, Imin, where Amin and Zmin are the minimum piece height and 

width, respectively. Thus, the quantity n/S(Z) is bounded above by l/h,i,Zmin and 

consequently, since k is an integer, (8) is equivalent to 

k3 

1 

1 +El 

(8 - El Y&n lmin 1 ’ 
(9) 

which proves that the algorithm provides a solution within 1 + E of the optimal. 0 

In Proposition 4, k grows with the decrease of hmin and Zmin. Since the hypercube 

dimension is fixed, Zmin is bounded below by the quantity l/2”‘. By the normaliza- 

tion procedure hmin = tmin/tm,, and the above ratio could take arbitrarily small values. 

However, even though the number of jobs n grows to infinity, we consider that the 

execution time of each job is bounded for the scheduling problem. Thus, the increase 

of k cannot be arbitrarily large. 

The above algorithm runs in linear time on it, since step 1 can be executed in O(n) 

time, step 2 in O(n log k) = O(n log [( 1 + ~1 )/(E - ~1 )hminZmin]) time, step 3 in constant 

time (exponential on k) and step 4 in O(n) time. 

5. Scheme improvement 

In the s-approximation algorithm presented in the previous section, the number of 

different types of piece height using linear grouping (k of Proposition 4) increases 

linearly with the decrement of E. In order to improve the rate of increment of k and 

consequently reduce the size of the corresponding strip-packing problem, we propose 

the application of a slightly more sophisticated grouping technique, called geometric 

grouping, exploited in a similar way in [4,9]. 
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Consider the initial strip-packing formulation: 

1: strip pack (hi, Zi), i = 1,. . . ,TZ, hi = $, 
max 

Instead of distributing piece heights into equal subintervals, we consider intervals of 

the form ((1 + EL)-q,(l + cl)-(q-‘)I, q integer. Thus, we partition [h,in, l] into k 

subintervals: 

[hmin =(l +&l)-k,(l+El)-‘k-“], ((l+E1)-(k-‘),(l +ci)-(k-2)],...9 

((1 +&I)-4,(1 +E,)+-‘)] )..., ((1 +E,)-‘Jl. 

Clearly, 

k = [l;l;;z;)l . 

We define h; as follows: 

hjr = (1 + El)-(q-1) if (1 +&I)-q<hi<(l +&I)--(q-l), 

(10) 

(11) 

Let 

I*: strip pack (h,*,li), i = l,.. .,n 

Working in exactly the same way as in Proposition 2, we can trivially prove the 

following: 

Proposition 5. When the hypercube dimension is fixed, I* can be solved within 1 + ~2 

in constant time, for any ~2 > 0. 

The geometric grouping used to produce I* guarantees that the optimal costs for the 

initial and the transformed problem can differ by a factor of 1 + ~1 at most: 

Proposition 6. For the optimal solutions of I and I*, OPT(I) and OPT(I*), res- 
pectively, we have OPT(Z) < OPT(I*) < (1 + ~1) OPT(I). 

Proof. For the first part, notice that hi 6 h,*, Vi = 1,. . . , n. For the second part, in 

solution OPT(I), we transform each hi into h:. Let FEAS(I* ) be the corresponding 

solution for I*. By the grouping procedure, when hi* = (1 + El )-4, then hi > (1 + 

E I )--(q+‘). Consequently, 

A < (1 +El)-q h* 
hi (1 +E1)-_(q+l) Vi = “““’ 

and thus, 

h* <(l +El)hi Vi= l,...,n. 
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The above relation binds the size growth of each transformed piece height and conse- 

quently the size growth of the corresponding solution. Thus, 

FEAs(I*) < (1 + &l)OPT(I). 

For the optimal solution of I*, OPT(I* ), we have OPT(I*) <FEAS(I*) and, finally, 

OPT(I*)<FEAS(Z*) < (1 + Q)OPT(Z), 

which proves the second part and the proposition. 0 

The improved a-approximation algorithm differs from the algorithm of the previous 

section in the grouping technique used for the transformation of the strip-packing prob- 

lem to a formulation with a finite number of types of pieces. Its description follows: 

1. Transform the hypercube scheduling instance into a strip-packing instance I: (A;,&), 

i=l ,...,n, hi = tiltmax, li = 2di/2me 

2. For k=[-log h,i,/log(l +ai)l, get I*: (hF,Zi), i=l,...,n, hF=(l +ci)-(q-I), 

q=l , . . . , k by grouping piece heights into k distinct-types as indicated by Eq. (11) 

(geometric grouping). 

3. Find a solution of I* within 1 + ~2 (Proposition 5). 

4. Transform the determined solution into a feasible one for I by changing hi* into 

initial hi and return total height A. 

Since hi d h,*, A is no greater than its corresponding solution for I* and using Propo- 

sition 5, clearly, A<( 1 + &2)OPT(Z*). In addition, by Proposition 6 

A<(1 + ~1) (1 f&2) OPT(I) 

and 

A 
--1 +s1 +&2+&i&2. 
OPT 

In order to get an c-approximation scheme, VE > 0, it should be 

El +12 f&I&2<&. (12) 

But, for any E > 0, we can trivially choose EL, ~2 to satisfy (12). 

In the above algorithm, step 2 is executed in O(n log k) = O(n log(- log hmin/ 

log( 1 + ai ))). Thus the algorithm remains linear on n. 

6. Conclusions 

We have presented an approximation scheme for scheduling independent jobs on 

subcubes of a hypercube of fixed dimension. Initially, we have used a reduction to 

the well-known strip-packing problem. By performing linear grouping of piece height, 

we get a strip-packing formulation with a finite number of piece-types which can be 
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almost optimally solved. Furthermore, using geometric grouping, we have achieved an 

important reduction of the size of the strip-packing formulation. 

The above algorithm automatically provides an approximation scheme for the clas- 

sical multiprocessor scheduling problem (which is the special case with di = 0, Vi) 

when the number of processors is fixed. Even though approximation schemes al- 

ready exist for multiprocessor scheduling [6], the modelization of the problem through 

strip-packing provides a much simpler approximation algorithm which runs in linear 

time. 

It must be noted that the complexity of the approximation schemes presented in 

this work, depends on the minimum piece height hmin and, consequently, on the min- 

imum task processing time. This is due to the grouping technique used to distribute 

the tasks into a fixed number of task types. In the extreme case where we deal with 

very small processing times, the growth of the running time of the algorithm could be 

important. In order to avoid this growth, we could consider that processing times are 

bounded by constants, which is reasonable for any scheduling problem. However, if 

the restriction of processing times is not desired, very small tasks could be assigned 

separately after the application of the scheme, in order to preserve the load balance 

of the determined makespan. With the addition of a separate procedure for the al- 

location of small tasks, the complexity of the approximation schemes would be data 

independent. 

It would be very interesting to extend the techniques and results of this paper in 

the case of hypercube scheduling without fixing hypercube dimension. This would re- 

quire grouping of both height and width of the pieces and would lead to different 

strip-packing formulations. However, it must be pointed out that there exists no ap- 

proximation scheme for the general strip-packing problem, even though such a scheme 

is provided in [4] for the special case where piece dimensions are bounded from below. 

The probable nonapproximability of general strip-packing implies that the extension in 

question is a nontrivial task. 
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