Local Utility Aware Content Replication*

Nikolaos Laoutaris, Orestis Telelis, Vassilios Zissimopoulos, and Ioannis Stavrakakis

Department of Informatics and Telecommunications,
University of Athens, 15784 Athens, Greece
{laoutaris,telelis,vassilis,ioannis}@di.uoa.gr

Abstract. A commonly employed abstraction for studying the object place-
ment problem for the purpose of Internet content distribution is that of a
distributed replication group. In this work the initial model of distributed
replication group of Leff, Wolf, and Yu (IEEE TPDS ’93) is extended to the
case that individual nodes act selfishly, i.e., cater to the optimization of their
individual local utilities. Our main contribution is the derivation of equilibrium
object placement strategies that: (a) can guarantee improved local utilities for
all nodes concurrently as compared to the corresponding local utilities under
greedy local object placement; (b) do not suffer from potential mistreatment
problems, inherent to centralized strategies that aim at optimizing the social
utility; (c) do not require the existence of complete information at all nodes.
We develop a baseline computationally efficient algorithm for obtaining the
aforementioned equilibrium strategies and then extend it to improve its per-
formance with respect to fairness. Both algorithms are realizable in practice
through a distributed protocol that requires only limited exchange of infor-
mation.

1 Introduction

A commonly employed abstraction for studying content distribution systems is that
of a distributed replication group [1]. Under this abstraction, nodes utilize their stor-
age capacity to replicate information objects in order to make them available to local
and remote users. A request issued by a local user and serviced locally (i.e., involv-
ing a locally replicated object), is served immediately, thus incurring a minimal cost.
Otherwise, the requested object is searched in other nodes of the group and if not
found, it is retrieved from the origin server; the access cost, however, increases with
the distance. Depending on the particular application, the search for objects at re-
mote nodes may be conducted through query protocols, succinct summaries, DNS
redirection or distributed hash tables.

Several placements problems can be defined regarding a distributed replication
group. The proxy (or cache, or mirror, or surrogate) placement problem refers to
the selection of appropriate physical network locations (routers) for installing con-
tent proxies [2, 3]. Another relevant problem is the object placement problem, which
refers to the selection of objects for the nodes, under given node locations and capac-
ities [1, 4, 5]. Joint formulations of the above mentioned problems have also appeared,
e.g. in [6, 7], where the proxy placement, proxy dimensioning, and object placement
problems are combined into a single problem.

* This work and its dissemination efforts have been supported in part by the IST Programs
of the European Union under contracts IST-6475 (ACCA) and FP6-506869 (E-NEXT).

All the aforementioned work has focused on the optimization of the so called so-
cial utility (sum of the individual local utilities of the nodes, defined as the delay and
bandwidth gains from employing replication). Optimizing the social utility is natu-
rally the objective in environments where a central authority dictates its replication
decisions to the nodes. It suits well applications such as web mirroring and CDNs,
which are operated centrally by a single authority (this being the content creator
or the content distributor). Applications that are run by multiple authorities, such
as web caching networks and P2P networks, may also seek to optimize the social
utility. This, however, requires some nodes to act in a spirit of voluntaryism, as the
optimization of the social utility is often harmful to several local utilities.

Consider as an example a group of nodes that collectively replicate content. If
one of the nodes generates the majority of the requests, then a socially optimal (SO)
object placement strategy will use the storage capacity of other nodes to replicate
objects that do not fit in the over-active node’s cache. Consequently, the users of
these other nodes will experience a service deterioration as a result of their storage
being hijacked by potentially irrelevant objects with regard to their local demand. In
fact, such nodes would be better served if they acted independently and employed a
greedy local (GL) object placement strategy (i.e., replicated the most popular objects
according to the local demand). A similar situation can arise if caching, rather that
replication, is in place: remote hits originating from other nodes may evict objects of
local interest in an LRU-operated cache that participates in a web caching network.
Concern for such exploitation can prevent rational nodes from participating in such
groups, and, instead, lead them to operating in isolation in a greedy local manner.
Such a behavior, however, is far from being desirable.

Being GL is often ineffective in terms of performance, not only with respect to
the social utility, but with respect to the individual local utilities too. For example,
when the nodes have similar demand patterns and the inter-node distances are small,
then replicating multiple times the same most popular objects, as done by the same
repeated GL placement at all the nodes, is highly ineffective. Clearly, all the nodes
may gain substantially in this case, if they cooperate and replicate different objects.
In fact, it is even possible that an appropriate cooperation of the nodes can lead to a
simultaneous improvement of all local utilities as compared to the GL performance.
However, nodes cannot recognize such opportunities for mutually beneficial coopera-
tion, since they are generally unaware of the remote demand patterns. On the other
hand, they cannot know the impact (bad or good) that the SO object placement
strategy may have on their own local utility.

To address the above mentioned deadlock, we use as reference the object replica-
tion problem defined by Leff et al. [1], and extend it to account for the existence of
selfishly motivated nodes. We use a strategic game in normal form [8] to model the
contention between the selfish nodes and set out to identify pure Nash equilibrium ob-
ject placement strategies (henceforth abbreviated EQ). There are several advantages
in employing EQ strategies. First, by their definition, they can guarantee for each
and every node of the group that its local utility under EQ will be at least as good
as under GL, and possibly better. The first case (“at least as good”) precludes mis-
treatment problems such as those that can arise under the SO placement which cause
the nodes to leave the group in pursuit of GL placement. The second case (“possibly
better”) is the typical one, and points to the fact that implicit cooperation is induced
even by selfishly behaving nodes as they attempt to do better than GL. Consequently,

the EQ strategy is in position to break the above mentioned deadlock, as it forbids
the mistreatment of any one node, while it also guards against the disintegration of
the group, and the poor performance associated with the GL strategy.

Our main result is that such EQ object placement strategies can be obtained by
simple distributed algorithms that do not require the existence of complete informa-
tion at all the nodes. We describe a two-step local search (TSLS) algorithm for this
purpose. TSLS requires each node to know only its local demand pattern and the
objects selected for replication by remote nodes, but not the remote demand patterns
of other nodes (the demand pattern of a node defines explicitly its utility function,
thus in the presented framework it is not assumed that nodes know the utility func-
tions of other nodes). Knowing the remote demand patterns requires the transmission
of too much information and thus is seldom possible in large distributed replication
groups. On the other hand, knowing the objects selected for replication by remote
nodes requires the exchange of much less information, which can be reduced further
by employing simple encoding schemes such as Bloom filters [9] (see also [10] for
real distributed applications/protocols that utilize such information). Thus in terms
of the required information, the proposed EQ strategies fit between the GL strat-
egy that requires only local information, and the SO strategy that requires complete
information.

A recent work on game theoretic aspects of caching and replication that is relevant
to our work is due to Chun et al. [11]. However, this work does not consider storage
capacity limits on the nodes and, thus, differs substantially from our approach.

The remainder of the article is structured as follows. Section 2 describes formally
the distributed replication group and the distributed selfish replication (DSR) game.
Section 3 describes the baseline TSLS object placement algorithm. Section 4 estab-
lishes that the TSLS algorithm produces a pure Nash equilibrium object placement
strategy for the DSR game. Section 5 is devoted to the presentation of the TSLS(k)
algorithm, whose development is largely motivated by our desire to obtain EQ place-
ments without having to resort to the logical ordering of the nodes. Section 6 describes
a distributed protocol for implementing the two algorithms. Section 7 presents some
numerical examples. Finally, Section 8 concludes the article. The omitted proofs for
the presented Propositions, as well as implementation details and more numerical
results, can be found in a longer version of this article [12].

2 Definitions

Let 0;, 1 <i < N, and v;, 1 < j < n, denote the ith unit-sized object and jth node,
and let O = {o01,...,0n} and V = {v1,...,v,} denote the corresponding sets. Node
v; is assumed to have a storage capacity for C; unit-sized objects and a demand
described by a rate vector r; over O, r; = {ry;,...,rn;}, where r;; denotes the rate
(requests per second) at which node v; requests object o;; let also p; = > 74
denote the total request rate from v;. We follow the access cost model defined in [1]
and according to which, accessing an object from a node’s local cache costs t;, from a
remote node’s cache t,., and from the origin server ¢4, with t; < t, <t (Fig. 1 depicts
the envisaged distributed replication group).

Let R; = {0, € O : r;; > 0} denote the request set of node v;. Let P; denote
the placement of node v, that is the set of objects replicated at this node; P; C O

Step 0 (initialization): P} = Greedy;(d), 1 < j <n.
Step 1 (improvement): P} = Greedy](Pl;-), 1<j<n,
where, PX; =Pl U...UP} {UP},,U...UP}

Fig. 1. A distributed replication group. Table 1. The TSLS algorithm.

and |Pj| = C;. Let P = {Py, P,...,P,} be referred to as a global placement and let
P_;=PU...UP;_1UPj;1U...UP, denote the set of objects collectively held by
nodes other than v; under the global placement P. The gain for node v; under P is
defined as follows:

G;(P) = Z rij - (ts —t1) + Z rij - (ts —tr) (1)
0,€P; 0; & P;j
oiEP_j

Such a gain definition captures the distance savings when accessing objects from
nodes in the group (either the local node or remote ones) instead of the origin server,
assumed to be the furthest away.

In the sequel, we define a game that captures the dynamics of distributed object
replication under selfishly behaving nodes.

Definition 1 (DSR game) The distributed selfish replication game is defined by the
tuple (V,{P;},{G;}), where:

— V is the set of n players, which in this case are the nodes.
— {P;} is the set of strategies available to player vj. As the strategies correspond to
placements, player v; has (gi) possible strategies.

— {G;} is the set of utilities for the individual players. The utility of player v; under
the outcome P, which in this case is a global placement, is G;(P).

DSR is a n-player, non-cooperative, non-zerosum game [8]. For this game, we seek
equilibrium strategies, and in particular, pure Nash equilibrium strategies.

Definition 2 (pure Nash equilibrium for DSR) A pure Nash equilibrium for DSR is
a global placement P*, such that for every node v; € V':

G](P*) > GJ((Pl*, e ’P;—17Pj’Pf+l7 . ,P;{)) fO’f‘ all Pj € {P]}
That is, under such a placement P*, nodes cannot modify their individual placements
unilaterally and benefit. In the sequel, we develop polynomial time algorithms that,

given an instance of the DSR game, can produce several Nash equilibrium placement
strategies for it.

3 A Two-Step Local Search Algorithm

In this section we present a two-step local search algorithm that computes a placement
for each one of the nodes. In Section 4 we show that these placements correspond to
a Nash equilibrium global placement, that is they are EQ strategies. In Section 5, we
modify the two-step local search algorithm in order to overcome some of its limita-
tions.

Let P and P} denote the GL placement strategy and the placement strategy
identified by TSLS for node v;, respectively. Let also Greedy,;(P) denote a function
that computes the optimal placement for node v;, given the set P of distinct objects
collectively held by other nodes; we elaborate on this function later on in the section.
Table 1 outlines the proposed TSLS algorithm.

At the initialization step (Step 0) nodes compute their GL placements PJQ. This is
done by evaluating Greedy;(0) for each v;, capturing the case in which nodes operate
in isolation (P =).

At the improvement step (Step 1) nodes observe the placements of other nodes
and, based on this information, proceed to improve their own. The order in which
nodes take turn in improving their initial placements is determined based on their
ids (increasing order). Thus at v;’s turn to improve its initial placement, nodes
v1,...,v;—1 have already improved their own, while nodes v;j41,...,v,, have not as
yet done so. Node v; obtains its improved placement le by evaluating Greedy; (Pi;),

where P!, = Pl U...UP} ; UP),, U...UP) denotes the set of distinct objects
collectively held by other nodes (hence the —j subscript) at the time prior to v;’s
turn at Step 1 (hence the 1~ superscript).

We return now to describe how to compute the optimal placement for node v;,
when the set of distinct objects collectively held by other nodes is P; such an op-
timization is employed twice by the TSLS algorithm: at Step 0 where P =), and
at Step 1 where P = P}; To carry it out, one has to select objects according to
their relative excess gain, up to the limit set by the storage capacity of the node.
Let gfj denote the excess gain incurred by node v; from replicating object o; at step
k € {0,1} of TSLS; gfj depends on v;’s demand for o; and also on whether o; is
replicated elsewhere in the group.

rij - (ts —t) ,if k=0 or k:1,0i¢P]O,oi¢Pi;
gfj: ’I’ij~(tr—tl)7if k:1,0i¢P]Q,Oi€PE; (2)
0 if k=10 € P

T - (ts — ;) is the excess gain for v; from choosing to replicate object o; that is
currently not replicated at any node in V. If o; is replicated at some other node(s),
then v;’s excess gain of replicating it locally is lower, and equal to r;; - (¢, — ;).
Finally, there is no excess gain from choosing to replicate an object that is already
replicated locally. Such excess gains are determined by the request frequency for an
object, multiplied by the reduction in access cost achieved by fetching the object
locally instead from the closest node that currently replicates it (either some other
node in V' or the origin server).

Finding the optimal placement for v; given the objects replicated at other nodes
(P) amounts to solving a special case of the 0/1 Knapsack problem, in which object

values are given by Eq. (2), object weights are unit, and the Knapsack capacity is
equal to an integer value C;. The optimal solution to this problem is obtained by
the function Greedy;(P). This function first orders the N objects in a decreasing
order according to gfj (k = 0 at Step 0 and 1 at Step 1), and then it selects for
replication at v; the C; most valuable ones.! As the objects are of unit size and the
capacity is integral, this greedy solution is guaranteed to be an optimal solution to
the aforementioned 0/1 Knapsack problem.

We now proceed to connect the 0/1 Knapsack problem under the gfj’s, with the
gain G;(-) for v; under a global placement. We will show that solving the 0/1 Knap-
sack for v; under given P!; is equivalent to maximizing G;(-), given the current
placements of nodes other than v;.

Proposition 1 The placement le = Greedy; (Pi;) produced by the TSLS algorithm
for node v;, 1 < j < n, satisfies:

Gj(Pl,...,Pl_{,P}, PO\, ..., P)) > Gy(P},...,P}_, P, P% ..., PO),YP; € {P;}.

The proof for Proposition 1 and subsequent ones can be found in a longer version of
this article [12].

An important observation is that at the improvement step, a node is allowed to
retain its initial GL placement, if this is the placement that maximizes its gain given
the placements of other nodes. Thus, the final gain of a node will be at least as high as
its GL one, irrespectively of the demand characteristics of other nodes; this eliminates
the possibility of mistreatment due to the existence of overactive nodes. Regarding
the complexity of TSLS, we show in [12] that it is O(nN log N).

4 Existence of a Pure Nash Equilibrium for DSR

In this section it is shown that the global placement (P!, P,. .., P!) produced by the
TSLS algorithm is a pure Nash equilibrium of the distributed replication game. To
prove this result we introduce the following additional definitions. Let EJ1 ={0,€0:
0; € PJQ7 0; ¢ le} denote the eviction set of v; at Step 1; it is a subset of the initial
placement, comprising objects that are evicted in favor of new ones during v;’s turn
to improve its initial placement. Similarly, I Jl ={0,€0:0; ¢ PJQ7 0; € le} denotes
the insertion set, i.e., the set of new objects that take the place of the objects that
belong to E71 At any point of TSLS an object is dubbed a multiple, if it is replicated
in more than one nodes, and an unrepresented one (represented one), if there is no
(some) node replicating it. Regarding these categories of objects, we can prove the
following:

Proposition 2 (only multiples are evicted) The TSLS algorithm guarantees that the
eviction set of node v; is such that EJ1 C (PJO N Pl;)

Proposition 3 (only unrepresented ones are inserted) The TSLS algorithm guaran-
tees that the insertion set of node v is such that I} C (R;/(PU P!})).

1 Ties are solved arbitrarily at Step 0 and not re-examined at Step 1, i.e., an object that yields the same
gain as other objects and is selected at Step 0, is not replaced in favor of any one of these equally
valuable objects, later on at Step 1. Thus at Step 1, new objects are selected only if they yield a gain
that is strictly higher than that of already selected ones.

The previous two propositions enable us to prove that TSLS finds a pure Nash
equilibrium for DSR.

Proposition 4 The global placement P* = (P}, P}, ..., P}) produced at the end of
Step 1 of the TSLS algorithm is a pure Nash equilibrium for the distributed replication
game.

Assuming that no two gfj are the same, then the maximum number of differ-
ent equilibria that may be identified by the TSLS algorithm is n!, i.e., a different
equilibrium for each possible ordering (permutation) of the n nodes.

At this point we would like to discuss the subtle difference between the DSR
game and the TSLS algorithm, which is just a solution for the DSR game, and not
an augmented game that also models the ordering of nodes. The DSR game is a well
defined game as it is, i.e., without reference to node ordering, or any other concept
utilized by the particular TSLS solution. The ordering of nodes is hence just a device
for deriving equilibrium placements, and not a concept of the DSR game itself. The
ordering of nodes is not required for defining the DSR game.

The use of a specific ordering of nodes in the improvement step of TSLS is central
to the algorithm’s ability to find equilibrium placements. It might be the case that
algorithms of complete information exist that can find equilibrium placements without
requiring the use of such a device. For the case of a distributed replication group,
however, it seems that some synchronization mechanism, like the ordering of nodes,
is required in order to be able to implement a solution algorithm in a distributed
manner without requiring complete information (remote utility functions). In [12] we
show that by permitting the nodes to improve their placements without coordination
with respect to order, they may never reach a stable placement, but instead loop
indefinitely through various transient placements.

5 TSLS(k): Improving on the TSLS Fairness

Consider the case of a homogeneous group, i.e., a group composed of nodes with iden-
tical characteristics in terms of capacity, total request rate, and demand distribution.
Since such nodes are identical, it is natural to expect that they will be treated equally
by a placement strategy. Under the TSLS algorithm, however, the amount of gain that
a node receives depends on the node’s turn during the improvement step. When the
different demand patterns are similar (which is the most interesting case because it
allows for higher mutual benefit), then the nodes with the higher turns have an ad-
vantage as they can fully utilize the replication decisions of previous nodes [12]2. This
allows for the possibility that small differences in the “merit quantity” of nodes, based
on which the turns are decided (to be defined later on in Sect. 6), will translate into
large differences in the assigned node turns. This can lead to an unequal treatment
of the individual homogeneous nodes.

To address this issue we propose the TSLS(k) algorithm, which is a variation
of the baseline TSLS algorithm. Under TSLS(k), each node may perform only up
to k changes during a round of the improvement step, i.e., evict up to k objects to

2 In the extended version we also show that a higher turn is not always better under arbitrary demand
patterns. This means that the nodes cannot generally act strategically and determine their optimal
turn.

insert an equal number of new ones. Note that under TSLS, any number of changes
are permitted during the single round of the improvement step. Under TSLS(k), the
improvement step might require multiple rounds to reach an equilibrium placement,
whereas under TSLS, an equilibrium placement is reached only after a single round.
Intuitively, TSLS(k) works in a round-robin fashion based on some node ordering, and
allows each node to perform up to k changes of its current placement during a given
round, even if the node would like to perform more changes; for additional changes, the
node has to wait for subsequent rounds. The effect of this round-robin, k-constrained
selection of objects, is that TSLS(k) is at least as and generally more fair than TSLS
with respect to the achieved individual gains. By selecting sufficiently small values of
k, e.g., k = 1, which is an extreme case, it is possible to almost eliminate the effect
of a node’s turn on the amount of gain that it receives under the final placement.
Essentially, when k is small, TSLS(k) is able to overcome the inherent limitations
with respect to fairness that arise when having to decide a specific node ordering in
order to produce an equilibrium placement. For k sufficiently large (approaching the
maximum node capacity C™%*), TSLS(k) reduces to the baseline TSLS. What the
TSLS(k) algorithm provides is essentially a tradeoff between an increased fairness
and an increased execution time due to the multiple rounds during the improvement
step. In [12] we present the full implementation details of TSLS(k) as well as proofs
for its convergence in a finite number of rounds upper bounded by [C™ /k].

6 A Protocol for Applying the Nash Equilibrium for DSR

In this section we outline a protocol for implementing TSLS or TSLS(k) in a dis-
tributed replication group.

6.1 Deciding Turns for the Improvement Step

First, we describe a simple way for deciding turns that can be used with both TSLS
and TSLS(k); for TSLS the ordering has an impact on the individual gains, whereas
for TSLS(k) under small k, the ordering has a diminishing effect on the gains. Consider
an arbitrary labelling of nodes, not related to the ordering in which nodes take turns.
Let T}, denote a “merit” quantity associated with node vy, 1 < h < n, based on which
vp’s turn is decided. Ty, will be defined in such a way that larger ids (turns) will be
assigned to nodes having larger values T}. At the end, a node whose T}, value is the
jth largest one, will be re-labelled v;, thus taking the jth turn. There are many ways
to define T}, for a node; among them the following three are of particular interest
because they can be naturally associated with a common case in which nodes have
similar demand patterns and where a higher turn is better (see Sect. 7):

Ch (proportional fairness)
Th =< pn (pro social benefit)
Ch * Ph (hybrid)

The first one caters to proportional fairness. It suggests that a node’s turn, or equiv-
alently its share of the extra gain produced through the cooperation, be proportional
to the amount of resource (storage capacity) that the node contributes. Under such
Th, vj is the jth largest node.

The second definition is a socially inclining one. It favors nodes that generate more
requests, as these nodes have the largest influence on the social utility. Under such
Th, vj is the jth more active node. Notice that following such a criterion for deciding
turns is by no means equivalent to the SO strategy. An equilibrium placement under
the pro social benefit criterion favors active nodes by allocating them a bigger share
of the extra gain produced through the cooperation; this is to say that all other nodes
will have (at least) their GL gain intact, whereas under SO, the benefited nodes may
cause other nodes to fall below the GL level of gain.

The third expression for T}, is a hybrid way of splitting the gains of the cooperation;
it favors nodes that contribute more storage and also produce more requests. Having
defined the criterion based on which turns are decided, we move on to defining a
protocol for implementing the algorithms and obtaining the equilibrium placement
that corresponds to the decided ordering.

6.2 Distributed Protocol

A straightforward centralized implementation would require each node to report ;
and Cj; to a central node responsible for executing the TSLS algorithm and sending
back the placements P;. The problem with such a centralized architecture is that
it requires transmitting n rate vectors r;, with each one containing N (object id,
request probability) pairs; for large N this can lead to the consumption of too much
bandwidth. We, therefore, turn our attention to the development of the following
fully distributed protocol which involves three phases:
Phase DT: During this phase, turns are decided.

1. Each node vj, multicasts® to the group its value pair (Cy, ps,), while listening for,
and storing, such pairs from other nodes. The truthfulness of the transmitted pair
is crosschecked later on by other nodes during the operation of the distributed
group.

2. Having listened to m — 1 other value pairs, each node may compute its turn j
based on a pre-agreed definition of Tj,.

Phase 0: In this phase the initial placements according to TSLS are computed and
distributed.

1. Each node v; computes its initial placement PJQ and multicasts it to the group.
Taking turns is not required at this phase and nodes may transmit their informa-
tion concurrently.

2. Nodes listen and store the initial placements of other nodes.

Phase 1: In this phase, the initial placements of TSLS are improved.

1. Node v; waits for its turn (i.e., until v;_; completes its own turn and transmits)
and then computes its improved placement le as described by TSLS.

2. Following the computation of le, node v; transmits EJ1 and []1 to the group.

3. Nodes vjs, j < j' < n receive E]1 and I} and use them to produce le using also
P}, which they have from Phase 0.

3 Native, or end-system, multicast can be employed.

To implement the TSLS(k) algorithm, Phase 1 needs to be repeated until no node has
any more changes to perform. As was mentioned earlier, TSLS(k) provides a tradeoff
between the improved fairness and the increased time required to perform multiple
rounds at Phase 1. The volume of transmitted information, however, is essentially
the same as with the baseline TSLS.

The aforementioned protocol has several advantages. It achieves a degree of par-
allelism, by permitting nodes to compute their initial placements during Phase 0
independently and concurrently with other nodes. Phase 1 involves a distributed
computation too, albeit a sequential one. The major advantage, however, relates to
the reduction in the amount of transmitted information as compared to a centralized
computation which requires the transmission of O(nN) pairs (object id, request fre-
quency) towards the central point and then O(Zvjev C;) object ids sent back from

the central point to the nodes carrying the placements le. Our protocol limits* the
amount of transmitted information to O(Zvj cv Cj) object ids (initial placements plus
eviction and insertion sets). This represents a substantial reduction in the amount of
transmitted information, as typically the number of available objects is several orders
of magnitude larger than the aggregate storage capacity of the group. Furthermore,
lists of object ids can be represented succinctly by employing advanced compression
techniques such as Bloom filters [9], whereas rate vectors composed of (object id,
request frequency) elements, are much harder to represent and communicate.

With the above protocol, every node is aware of the placements of the other nodes.
This information can be used for request routing as well as a means to detect and
reveal untruthful nodes, i.e., nodes that try to exploit the group by declaring false
placements (see [12] for details).

7 Numerical Examples

In this section we present a simple numerical example for the purpose of demonstrat-
ing the operation of TSLS and TSLS(k). Assume there exist two nodes that generate
requests following the exact same Zipf-like distribution, i.e., 7;; = p; - K/i%, where

K = (Zf};l %)_1; the skewness parameter a captures the degree of concentration
of requests. The local access cost is, t; = 0, the remote one, t, = 1, and the cost
of accessing the origin server, t; = 2; this leads to a hop-count notion of distance.
Finally, there are N = 100 distinct objects, and each node has a capacity for C' = 40
objects.

In Table 2 we show the objects replicated under the GL, SO, and EQ replications
strategies for fixed p; = 1 and varying po; here the EQ strategy is produced by
the baseline TSLS. The GL strategy selects for each node the first 40 most popular
objects, i.e., those with ids in {1:40}, independently of ps. The SO strategy, however,
is much different. As the request rate from Node 2 increases, SO uses some of the
storage capacity of Node 1 for replicating objects that do not fit in Node 2’s cache,
thereby depriving Node 1 of valuable storage capacity for its own objects. For ps = 10,
Node 1 gets to store only 3 of its most popular objects, while it uses the rest of its

4 It is worthwhile to emphasize again that although the local placements are multicasted to the group, the
amount of information that is gathered at each node is far less than the amount required by centralized
algorithms (like the one for the SO placement). Here a node knows only the placements of other nodes,
not the entire demand patterns of these nodes.

17

placement strategy‘ Node 1 objects |Node 2 objects 165 P ” \O A N
GL, p2 =X {1:40} {1:40} i o
SO, p2 =1 {1:16} U{41:64} {1:40} 6 . L(f PSLSL e BQ ISLS)
SO, p2 =2 {1:12} U{41:68} {1:40} I S S S S S S S
SO, p2 =3 {1:9}u{41:71} {1:40} 15 R
SO, p2 =4 {1:7}U{41:73} {1:40} "5% - v~ EQTSLS) v~ EQ (TSLS(1))
SO, po=5 |{1:6}u{a1:74}| {140} °
SO, po=6 |{1:5}u{41:75}| {140} i e G
SO, p2 =7 {1:4}uU {41 :76} {1:40}
SO, p2 =8 {1:4} U {41:76} {1:40} 14 0250
SO, p2 =9 {1:3}u{41:77} {1:40}
SO, pp =10 |{1:3}u{41:77}| {1:40} 135
EQ, po =X |{1:23JU{41:57}| {140}

1 2 3 4 5 6 7 8
p2 (request rate of vg)

Table 2. An example with vy, vz having the same Fig. 2. Individual node gains for the example of Ta-
Zipf-like demand pattern with a = 0.8. The number ble 2. “v; — XX” denotes the gain for node v; under
of available objects is N = 100 and the storage the placement strategy XX.

capacity of each node is C = 40. Also, t; = 0,

tr=1,t5s =2, p1 = 1.

storage for picking up the next 37 more popular objects for Node 2, starting with
the one with id 41. Under the EQ strategy Node 1 (v1) stores 23 of its most popular
objects. Node 2 (vg) is the second one (i.e., the last one) to improve its placement,
and it naturally selects the initial 40 most popular objects.

We now turn our attention to the gain G; of the two nodes under the various
placement strategies (the corresponding access cost can be obtained from the expres-
sion ts — G;). Figure 2 shows that as p, increases, the gain of vy under SO increases
as it consumes storage from wv; for replicating objects according to its preference; vy’s
gain under SO decreases rapidly as a result of not being able to replicate locally some
of its most popular objects. In fact, for ps > 2.5, v1’s gain becomes worse (lower) that
the corresponding one under GL. From this point and onwards, v; is being mistreated
by the SO strategy and thus has no incentive in participating in it, as it can obviously
do better on its own under a GL placement.

By following an EQ strategy, a node’s gain is immune to the relative request
intensities and this is why the EQ lines are parallel to the x-axis of Fig. 2. v1’s gain
under the EQ produced by TSLS is immune to the increasing p; and strictly higher
than its gain under GL. This demonstrates the fact that the EQ strategy avoids the
mistreatment problem. Under the EQ produced by TSLS both nodes achieve higher
gains than with GL, but it is vy that benefits the most, and thus incurs a higher
gain than v;. This owes to the fact that vs is the second (last) one to improve its
placement and, thus, has an advantage under TSLS. The difference in performance
between the two nodes can be eliminated by employing the TSLS(k) algorithm. To
show this, Fig. 2 includes the gains of the two nodes under the EQ strategy that is
produced by TSLS(1). The corresponding lines almost coincide, which demonstrates
the ability of TSLS(k) to be fair and to assign identical gains to v; and vy (as opposed
to TSLS which, in this example, favors vs).

8 Conclusions

This work has described two algorithms and an efficient distributed protocol for im-
plementing equilibrium object placement strategies in a distributed selfish replication
group. Such placement strategies become meaningful when replication nodes cater to
their local utilities, as is the case with some content distribution applications that are
run under multiple authorities (e.g., P2P, distributed web caching). In such applica-
tions, following a socially optimal placement strategy may lead to the mistreatment
of some nodes, possibly causing their departure from the group. Our equilibrium
strategies on the other hand, guarantee that all nodes are better off participating in
the group as opposed to operating in isolation in a greedy local manner. This keeps
a distributed group from splitting apart, by creating an excess gain for all (stemming
from the cooperation) while forbidding the mistreatment of any one of the nodes. In a
longer version of this article, we present several numerical examples for demonstrating
the properties of the equilibrium placement strategies.

References

1. Avraham Leff, Joel L. Wolf, and Philip S. Yu, “Replication algorithms in a remote
caching architecture,” IEEE Transactions on Parallel and Distributed Systems, vol. 4,
no. 11, pp. 1185-1204, Nov. 1993.

2. P. Krishnan, Danny Raz, and Yuval Shavit, “The cache location problem,” IEEE/ACM
Transactions on Networking, vol. 8, no. 5, pp. 568-581, Oct. 2000.

3. Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng, and Kazem Sohraby, “On
the optimal placement of web proxies in the internet,” in Proceedings of the Conference
on Computer Communications (IEEE Infocom), New York, Mar. 1999.

4. Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman, “Placement al-
gorithms for hierarchical cooperative caching,” in Proceedings of the 10th Annual Sym-
posium on Discrete Algorithms (ACM-SIAM SODA), 1999, pp. 586 — 595.

5. Thanasis Loukopoulos and Ishfaq Ahmad, “Static and adaptive distributed data repli-
cation using genetic algorithms,” Journal of Parallel and Distributed Computing, vol.
64, no. 11, pp. 1270-1285, Nov. 2004.

6. Nikolaos Laoutaris, Vassilios Zissimopoulos, and Ioannis Stavrakakis, “Joint object
placement and node dimensioning for internet content distribution,” Information Pro-
cessing Letters, vol. 89, no. 6, pp. 273-279, Mar. 2004.

7. Nikolaos Laoutaris, Vassilios Zissimopoulos, and Ioannis Stavrakakis, “On the optimiza-

tion of storage capacity allocation for content distribution,” Computer Networks, vol.

47, no. 3, pp. 409-428, Feb. 2005.

Martin J. Osborne and Ariel Rubinstein, A Course in Game Theory, MIT Press, 1994.

9. Burton Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commu-

nications of the ACM, vol. 13, no. 7, pp. 422-426, July 1970.

10. Andrei Broder and Michael Mitzenmacher, “Network applications of Bloom filters: A
survey,” Internet Mathematics, 2004, [accepted for publication].

11. Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Barreno, Christos H. Pa-
padimitriou, and John Kubiatowicz, “Selfish caching in distributed systems: A game-
theoretic analysis,” in Proc. ACM Symposium on Principles of Distributed Computing
(ACM PODC), Newfoundland, Canada, July 2004.

12. Nikolaos Laoutaris, Orestis Telelis, Vassilios Zissimopoulos, and Ioannis Stavrakakis,
“Distributed selfish replication,” UoA Technical Report, 2004, available on-line at:
http://www.cnl.di.uoa.gr/~laoutaris/cgame TECH.pdf.

®

