
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING42, 21–29 (1997)
ARTICLE NO. PC971311

On the Task Assignment Problem: Two
New Efficient Heuristic Algorithms

Y. Kopidakis, M. Lamari, and V. Zissimopoulos1

Laboratoire de Recherche en Informatique, CNRS-URA 410 “Al Khowarizmi,” Université de Paris Sud, Centre d’Orsay, 91405 Orsay, France

We study the problem of task allocation in heterogeneous
distributed systems. The objective is the minimization of the sum
of processor execution and intertask communication costs. We
transform the problem to a maximization one, where we try to
determine and avoid large communication costs and inefficient
allocations. After an appropriate graph transformation, we
propose two fast algorithms, the Matching based and Max
Edge heuristics, in order to consider tradeoffs between task
clustering and task processor assignment. Their performance is
evaluated through an experimental study where solution quality
is compared with one of the best up-to-date heuristics for the
problem. Results prove that algorithm Max Edge provides greatly
improved solutions within short computational time even for large
size instances. © 1997 Academic Press

1. INTRODUCTION

The performance of heterogeneous distributed systems heav-
ily depends on the way tasks composing a parallel program are
allocated to processors. Significant research has been done on
the task allocation problem and different models have been
proposed. In this paper, we consider the problem of assign-
ing tasks to processors in a distributed system in order to
minimize the sum of interprocessor communication and task
processing costs. Processors are considered heterogeneous,
having different processing capabilities depending on task na-
ture and each processor communicates with all others through
identical communication channels. The problem was first in-
troduced by Stone in [18] and is known to be NP-hard in gen-
eral [2]. Nevertheless, polynomial time optimal algorithms
exist for two-processor systems [18] and in the case where the
intertask communication graph is a tree [2], a series-parallel
graph [20] or ak-tree [6]. For the general problem, branch
and bound exact algorithms have been studied ([1, 13]) and
several heuristic methods have been proposed in [11, 14, 17].
From the theoretical point of view, Fernandez-Baca [6] showed
the unfeasibility of a polynomial time approximation scheme,
but the question of existence of any approximation guarantee
for the problem is still open. Recently, efforts towards this

1E-mail: vassilis@lri.lri.fr.

direction are reported. In [9], an approximation scheme is
presented in the case of complete communication of constant
value, along with polynomial algorithms for bivalued execu-
tion times or bounded number of processors. An interesting
average case analysis of random versions of the problem with
special value costs is presented in [10]. In addition, in [16],
a heuristic based on partial task allocations is proposed and
evaluated.

In this paper, we transform the initial problem of mini-
mization of total communication and execution costs into a
maximization one, where we try to determine and avoid large
communication and execution penalties. After the model de-
scription in Section 2, we present in Section 3 an appropriate
graph transformation for the maximization problem in ques-
tion. In Section 4, a new heuristic based on maximum weight
graph matching is introduced in order to determine efficient so-
lutions, considering tradeoffs between task grouping and task
processor allocations. In Section 5, we describe the Max Edge
heuristic, an alternative algorithm that functions on the trans-
formed graph in a more careful and constructive way. Finally,
in Section 6 we present experimental results which prove the
quality and the efficiency of the two methods proposed.

2. MODEL DESCRIPTION

Various assumptions made about the distributed computing
system, considered in this paper, are described hereafter.

(1) The processors in the system are heterogeneous. In
other words, a task if executed on different processors, will
require different amounts of running time.

(2) We consider identical communication links between
processors and thus, uniform communication costs. That is,
the task communication times are processor independent and
two tasks assigned to the same processor do not introduce any
communication cost.

Let P = {Pj , j = 1, 2, . . . , n} be the set of processors of
a distributed computing system,T = {Ti , i = 1, 2, . . . , m}
the set of tasks to be allocated andG(V, E) be the intertask
communication graph. Leteip represent the cost of executing
task i on processorp, ci j the communication cost between
tasksi and j andxip, i = 1 · · · m, p = 1 · · · n, a 0, 1 variable,
equal to 1 if taski runs on processorp and 0 otherwise.

21

0743-7315/97 $25.00
Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.

22 KOPIDAKIS, LAMARI, AND ZISSIMOPOULOS

Based on the above assumptions, the cost function and the
constraints for the task assignment problem are described in
the following:

(P)



Min
∑m

i=1

n∑
p=1

eipxip

+
∑

(i , j)∈E

n∑
p=1

ci j xip(1− x jp)

n∑
p=1

xip = 1, i = 1 · · · m (1)

xip ∈ {0, 1}, i = 1 · · · m, p = 1 · · · n
The constraint (1) expresses the fact that each task must be
assigned to one processor.

Note that the described assignment problem is similar
to other assignment problems, such as the allocation of
researchers into departments [7] and the famous quadratic
assignment problem [15]. In addition, it is closely related to
graph partitioning problems: the multiway-cut problem, [3],
the k-cut problem [8], and thek-partition problem [5]. This
relation is exploited in [12] for a task assignment formulation
with slightly different objectives. In the same work, the
maximum weight matching algorithm is applied, in a different
perspective than in our work.

3. GRAPH TRANSFORMATION

We now consider the objective function of the previous
section:

min
∑

(i , j)∈E

n∑
p=1

ci j xip(1− x jp)+
m∑

i=1

n∑
p=1

eipxip. (1)

In what follows, a transformation of the problem is proposed.
The minimization of total communication and execution costs
can be viewed as a maximization problem where we try to
locate and avoid two kinds of penalties: heavy communica-
tion between tasks and inefficient allocations. In other words,
instead of determining low cost allocations with small com-
munication costs, we are searching for high cost allocations
and task communications to avoid. Formally, (1) is equivalent
to

min
∑

(i , j)∈E

ci j

n∑
p=1

xip −
∑

(i, j)∈E

ci j

n∑
p=1

xipx jp

−
m∑

i=1

n∑
p=1

eip(1− xip)+
m∑

i=1

n∑
p=1

eip. (2)

Let yi j =∑n
p=1 xipx jp, whereyi j determines if two tasks are

allocated to the same processor. Clearly,yi j = 1 if tasks i ,
j are grouped on the same processor andyi j = 0 otherwise.
Given that

∑n
p=1 xip = 1, (2) can be reformulated as follows:

min
∑

(i , j)∈E

ci j −
∑

(i , j)∈E

ci j yi j +
m∑

i=1

n∑
p=1

eip

−
m∑

i=1

n∑
p=1

eip(1− xip). (3)

Clearly,
∑
(i , j)∈E ci j and

∑m
i=1

∑n
p=1 eip are two large value

constants, for total communication and total execution costs re-
spectively. So we can transform the initial minimization prob-
lem to an equivalent maximization problem:

max
∑

(i , j)∈E

ci j yi j +
m∑

i=1

n∑
p=1

eip(1− xip) (4)

Since yi j equals 1 only if tasksi and j are assigned to the
same processor, the first term in (4) corresponds to the total
communication cost for clustered tasks. Thus, in the trans-
formed problem, we try to maximize the communication of
clustered tasks, which is similar to minimizing the communi-
cation cost of tasks not clustered in the initial problem. At
the same time, in (4), we try to maximize the competitive sec-
ond term, which sums the cost of allocations. Clearly, the new
maximization problem is NP-complete, since it is equivalent
to the initial NP-complete minimization problem.

For the above maximization problem, a graph transforma-
tion is proposed where a special node for each processor is
added to the initial task graph. We define fromG(V, E) a
new graphG′(V ′, E′), whereV ′ = V ∪ P. For each task–
task edge inE′, we consider weightc′i j = ci j , i , j ∈ T , cor-
responding to the first term of (4). For each task–processor
couple(i, k), i ∈ T , k ∈ P, we add an edge inE′ with weight
c′ik . This weight should express the term

∑n
p=1 eip(1−xip) of

(4), corresponding to the penalty that the assignment probably
introduces. However, in order to be able to consider trade-
offs between task clustering and task–processor allocations,
we normalize weights for task–processor edges towards the
size of a single execution cost, preserving however the rela-
tive order of cost introduced. Thus, we define edge weightc′ik
as follows:

c′ik =

n∑
p=1

eip − eik

n− 1
. (5)

Weight c′ik can be viewed as the mean penalty in the case
where taski is assigned to one of 1, . . . , k−1, k+1, . . . , n
processors.

The technique of additional processor nodes was first
proposed by Stone in [18] and has been exploited in [11, 13,
16]. Weight((

∑n
p=1 eip)/(n−1))−eik was associated to edge

connecting taski to processork. In that case, the problem is
equivalent to the well-known multiway cut problem where,

HEURISTIC ALGORITHMS FOR TASK ASSIGNMENT 23

given a graph and a set of terminal nodes, one tries to find
a minimum weight set of edges (cut) which disconnects each
terminal from the others. However, it fails in providing any
approximation guarantee for the task allocation problem, even
though there exists a 2−2/n approximation algorithm for the
n-cut problem ([3]). The reason is that the weights defined
above could take negative values.

In our approach, we defined task processor edge weights in
a different perspective. They incorporate tradeoffs between
task–task clusterings and task–processor allocations. In
addition, the algorithms proposed in what follows exploit the
fact thatc′ik in (5) are always positive.

Figure 1 illustrates this model in the case where the dis-
tributed computing system is composed of 3 tasks{T1, T2, T3}
and 2 processors{P1, P2}. On the initial graphG, edge
weights represent the intertask communication cost. Execu-
tion times on processorsP1 and P2 are respectivelyT1(7, 2),
T2(1, 6), T3(7, 2).

4. MATCHING BASED HEURISTIC

In this section, a graph matching approach is proposed
for solving the task assignment problem. We first apply
the graph transformation presented above. Then, in order to
make independent and disjointed decisions for grouping and
assignment, we use the maximum weight matching algorithm
which functions in a fast and parallel way, eliminating several
edges and allowing multiple decisions at a time.

Let G(V, E) be an undirected graph, whereV is the set
of vertices andE is the set of edges. LetPi j the weight of
the edge(i, j) ∈ E. A matchingM of a graphG(V, E) is a
subset of the edgesM ⊆ E with the property that no two edges
of M share the same node. Edges ofM are calledmatched
edges. A maximum weighted matching is a matching ofG
with the largest possible sum of weights, i.e.,

∑
(i , j)∈M pi j is

maximum.
At each stepk of the algorithm, we determine the maximum

weighted matchingM in the graphGk (G1 = G′). Each
matched edge is then contracted. A (task, task) type edge
contracted defines the clustering of the two tasks and a (task,
processor) type edge defines an allocation of the task to
the processor. In the first case, we avoid the penalty that
would be introduced in the objective function by the task
communication cost and in the second case, the penalty that

would be introduced by the nonallocation of the task to the
processor.

This contraction reduces the graphGk to a graphGk+1,
where new edge weightsck+1 are defined fromck. For each
processor, the execution cost of two grouped tasks is equal
to the sum of the execution costs of the two tasks. The
communication cost between a task and the clustered tasks is
equal to the sum of the corresponding communication costs.
The edge strength between a taskt and a task–processor
matched edge (i, p), ck+1

tp , is equal to the execution cost of the
taskt on the processorp, ck

tp, plus the intertask communication
costck

i t . After the allocation, taski and processorp constitute
one node, corresponding top. Thus, all edges connectingi
and the other processors are deleted.

MATCHING BASED ALGORITHM.

G1 = G′, k :=1, ck
i j := c′i j

repeat
— Find a maximum weighted matchingM on Gk

— Gk+1 is the new graph obtained by contracting
edges(i, j) ∈ M

if (i, j) ∈ M and i, j ∈ T then group tasksi
and j into a new taskl . Let ck+1

lt := ck
it +Ck

jt ,

∀ t ∈ T , t 6= i , t 6= j andck+1
lp := ck

ip + ck
jp

f orall p ∈ P
if (i, p) ∈ M and i ∈ T , p ∈ P then assign the

task i to the processorp. Let ck+1
tp := ck

tp + ck
i t ,

∀ t 6= i and delete edgesck
iq , ∀ q ∈ P, q 6= p

— k := k+ 1;
until all edges are removed (all tasks are allocated)

Obviously, the algorithm leads to a complete assignment
of tasks to processors, since it deletes an edge only if the
corresponding task (or cluster of tasks) is allocated. Thus, the
algorithm always provides a feasible suboptimal solution for
the transformed maximization problem and, consequently, for
the initial minimization one.

Figure 2 presents the maximum weighted matching, drawn
in bold, in the modified graphG′(V ′, E′) of Fig. 1. The
edges (T2, P1) and (T1, T3) define the assignment ofT2 to
P1 and the clustering ofT1 and T3 respectively. After edge
contraction, the cluster (T1, T3) will be assigned to processor
P2 in the next step of the algorithm.

FIG. 1. The communication graphG(V, E), transformed inG′(V ′, E′) on the right.

24 KOPIDAKIS, LAMARI, AND ZISSIMOPOULOS

FIG. 2. Maximum weighted matching and edge contraction inG′(V ′, E′).

The complexity of the matching based algorithm described
above is O(m(m + n)2), since the repeat loop is executed
O(m+ n) times (m+ n is the total number of nodes inG′)
and the most costly operation inside the loop is graph edge
update takingO(m(m+ n)) time. We assume here that, for
determining a maximum weighted matching, we use a simple
algorithm which finds the edge of maximum weight, deletes
its neighbors and proceeds in the same way. Assuming that
edges are sorted in lists, all this can be done inO((m+ n)m)
time, which is the maximum number of edges ofG′.

5. THE MAXIMUM EDGE ALGORITHM

We now present an alternative method in order to determine
clustering and allocation on the modified graph of Section 3.
In the Matching based heuristic, we considered simultaneous
clusterings and allocations provided by the determined match-
ing at each step. In the Max Edge heuristic, we consider the
clustering or allocation provided by the maximum weight edge
of the transformed graph, contracting only one graph edge at
a time and thus proceeding in a greedy, but more careful and
slow way at each step. The description of the Max Edge
heuristic follows:

MAXIMUM EDGE ALGORITHM.

repeat
— on the transformed graphG′(V ′, E′) find

edge (i, j) with:
c′i j = max {c′uv, (v, u) ∈ E′}

— delete edge (i, j)
if i , j tasks, then group tasks in a new taskk

and setc′kl = max {c′i l , c′j l }, ∀ l ∈ V ′
if i task andj processor, allocatei to j , delete

edges (i, p), ∀ p ∈ P, p 6= j and set
c′l j = max {c′li , c′l j }, ∀ l ∈ T , l 6= i

until all edges are removed (all tasks are allocated)

Notice that weightc′kl for task l and added nodek replac-
ing i and j is set to max{c′i l , c′j l } and not toc′i l + c′jl , as in
the corresponding case in the Matching based heuristic of the
previous section. The reason is that the above sum would auto-
matically create a large value weight and the algorithm would
proceed in the next step by contracting an edge neighbor to
the one just contracted. Choosing the max weight prevents so-
lution polarization towards a certain region of the graph and
allows progressive algorithm function.

The complexity of the Maximum Edge Algorithm is
O(m(m + n)2), as in the Matching based algorithm. The
repeat loop is executed at mostO(m + n) times and edge
weight updates in the repeat loop requireO(m(m+ n)) time.

6. COMPARATIVE STUDY

The performance of the proposed algorithms was evaluated
through an experimental study on randomly generated problem
instances. In our study, the algorithm VML proposed by
Virginia Mary Lo [11] was chosen among existing methods
as one of the most general and effective. The method
consists essentially of three stages. In the first stage, a partial
task assignment is determined by considering repeatedly two
processor networks formed by one processor and then a
superprocessor representing then − 1 processors. In the
second stage, the possibility of assigning all remaining tasks
to the same processor is investigated. Finally, in the third
stage, strongly communicating tasks form groups for which
lower cost allocations are determined. The complexity of the
proposed algorithm isO(nm4 log m).

During test data generation, execution costs were randomly
generated integers following a uniform distribution within
the interval [1, 100]. Similarly, communication costs were
uniformly distributed integers in an interval which varied in
order to estimate the impact of the relative size of execution
and communication costs. During instance generation, the
following parameters were considered:

• m: the number of tasks
• n: the number of processors
• the density of the task graph, defined as the probability

of existence of an edge between any two nodes of the task
graph (task graph generation guaranteed the connectivity of
the graph independently from graph density)

• rcom: the communication ratio defined as the ratio of
the mean communication on the mean execution cost (rcom
= 0.5 implies communication and execution costs uniformly
distributed in [1, 50] and [1, 100] respectively)

For each choice of the above parameters, 20 problem
instances were generated and solved by the three algorithms
considered: the Matching heuristic, the Max Edge heuristic,
and the reference algorithm VML heuristic. In order to
evaluate the performance of the methods, the percentage of
cases where each algorithm provided better solutions than the

HEURISTIC ALGORITHMS FOR TASK ASSIGNMENT 25

others was measured. As a measure of solution quality, the
relative distance from the best solution was calculated for each
of the three algorithms. For algorithm A, the relative distance
from the best solution is defined as

rdA = SA − S∗

S∗
,

where SA is the solution provided by algorithm A andS∗ is
the best solution provided by the three methods. Clearly, rdA

= 0, if A has provided the best solution for the specific prob-
lem instance. The mean relative distance of each algorithm
over the different problem instances is considered through the
present section.

Experimental studies proved that algorithm Max Edge
outperforms both VML and Matching heuristics. For equal
mean execution and communication costs (rcom = 1) and for
different graph densities, Max Edge provided better solutions
than VML in 60–80% of cases on small size instances
(m × n = 5 × 3, 10× 7) and in 100% of cases on large
size instances (m × n = 20× 10, 30× 15, 50× 20). In
contrast, Matching provided better solutions than VML only
in 10% of cases for small instances. For large instances
its performance was always inferior. Percentage on solution
comparisons between couples of algorithms forrcom = 1 are
provided in Table I.

The mean relative distance for each algorithm and for the
different values of graph density is presented in Fig. 3 when
rcom = 1. The exact measures corresponding to the curves can
be found in Table II. The quality of the solutions provided by
the Max Edge heuristic is obviously and constantly superior.
The Matching heuristic is outperformed by both the Max Edge
and the VML heuristic. As the gap between relative distances
grows with the problem size, Max Edge provides impressively

TABLE I
Percentage (%) of Cases Where Solutions Were Better or Worse

for Each Pair of Algorithms for r com = 1 and for Varying
Graph Density p (Cases of Equality Correspond to

Percentages Which Do Not Sum to 100%)

Max Edge Max Edge Matching
better worse better worse better worse

m × n p (than VML) (than Matching) (than VML)
0.3 60 20 95 5 10 90

(5,3) 0.5 75 15 100 0 20 75
0.8 50 25 100 0 15 85

0.3 95 5 100 0 0 100
(10,7) 0.5 100 0 100 0 0 100

0.8 95 5 100 0 20 80

0.3 100 0 100 0 0 100
(20,10) 0.5 100 0 100 0 0 100

0.8 100 0 100 0 10 90

0.3 100 0 100 0 0 100
(30,15) 0.5 100 0 100 0 0 100

0.8 100 0 100 0 0 100

0.3 100 0 100 0 0 100
(50,20) 0.5 100 0 100 0 0 100

0.8 100 0 100 0 0 100

better solutions for large size instances (30–50 tasks on 15–20
processors). Note that the performance of all three algorithms
does not depend on the graph densityp. Results on solution
comparison (Table I) and fluctuations of relative distance
(Fig. 3 and Table II) for each algorithm are quite similar
for different density values. Since the same behavior was
constantly observed for differentrcom values, in what follows

FIG. 3. Mean relative distance for com ratio = 1 and for varying densityp.

26 KOPIDAKIS, LAMARI, AND ZISSIMOPOULOS

TABLE II
Mean Relative Distance from Best Solution for

r com = 1 and for Varying Graph Density p

m × n p VML Matching MaxEdge

0.3 0.53 1.41 0.11
(5,3) 0.5 0.54 1.09 0.04

0.8 0.52 1.45 0.07

0.3 1.87 3.68 0.02
(10,7) 0.5 2.57 4.00 0.00

0.8 1.56 2.68 0.05

0.3 4.38 8.10 0.00
(20,10) 0.5 3.99 7.68 0.00

0.8 4.16 10.63 0.00

0.3 6.39 12.83 0.00
(30,15) 0.5 6.29 12.08 0.00

0.8 5.59 10.62 0.00

0.3 8.75 22.35 0.00
(50,20) 0.5 10.74 21.64 0.00

0.8 8.95 16.88 0.00

we use average measures for the three different density values
and present them as a single measure.

The percentage of cases where algorithm Max Edge pro-
vided the best solution was constantly between 90% and 100%
for different values of communication ratiorcom. In Fig. 4,
the mean relative distance comparison is presented forrcom =
0.2, as an indication of the stability of Max Edge algorithm
(corresponding detailed values in Table III). The relative be-
havior of the curves is quite similar and Max Edge converges

TABLE III
Mean Relative Distance from Best Solution for Varyingr com

(Mean over 20 Problem Instances for Each Value
of Graph Density p)

rcom m × n VML Matching MaxEdge

(5,3) 0.53 1.32 0.07
(10,7) 2.00 3.45 0.02
(20,10) 4.19 8.90 0.00
(30,15) 6.09 11.9 0.00

= 1

(50,20) 9.49 20.29 0.00

(5,3) 0.08 0.33 0.11
(10,7) 0.25 0.46 0.05
(20,10) 0.73 1.13 0.01
(30,15) 1.16 1.26 0.01

= 0.2

(50,20) 1.98 3.70 0.00

(5,3) 0.03 0.21 0.49
(10,7) 0.08 0.11 0.69
(20,10) 0.16 0.08 0.28
(30,15) 0.19 0.11 0.10
(50,20) 0.50 0.60 0.00

= 0.05

(80,30) 0.75 1.30 0.00

fast to zero, indicating that it provided the best solution among
the three methods in most of the cases. However, the absolute
values of the relative distances for VML and Matching heuris-
tics is clearly reduced.

In order to investigate the performance of the algorithms,
experiments were affected with several differentrcom values,
superior to 1, as well as inferior to 1. It was observed that
only in the extreme case where communication cost was much
weaker than execution cost (rcom = 0.05), relative performance

FIG. 4. Mean relative distance com ratio = 0.2 (mean over different densities).

HEURISTIC ALGORITHMS FOR TASK ASSIGNMENT 27

FIG. 5. Mean relative distance com ratio 0.05. Critical point is 30× 15.

changed for small size instances. In Fig. 5 (corresponding
detailed values in Table III) it is clear that Matching and VML
heuristics provide better solutions form× n = 5× 3, 10× 7,
and 20,10. At the pointm× n = 30× 15, the methods seem
almost equivalent and form× n = 50× 20 and 80× 30 the
superiority of Max Edge is obvious and its relative distance

from best solution converges to zero. In order to confirm the
above observation forrcom = 0.05, we fixed the number of
processors to 10 and we varied the number of tasks. Results
are presented in Fig. 6.

Matching and VML heuristics outperform Max Edge for
small sizes (10× 10, 15× 10, 20× 10). The point of

FIG. 6. Mean relative distance for com ratio 0.05 and for 10 processors.

28 KOPIDAKIS, LAMARI, AND ZISSIMOPOULOS

FIG. 7. CPU times in msecs for the three algorithms (in logarithmic scale).

equivalence of three methods is 25× 10 and for large sizes
(30 × 10, 40× 10, 50× 10) the relative distance of Max
Edge converges again to zero.

The above behavior can be explained by the fact that
the impact of communication costs in the objective function
is negligible whenrcom = 0.05 and the number of tasks
is small. When the number of tasks is large enough to
introduce important total communication costs (even though
each communication cost is small), algorithm Max Edge
regains in performance over Matching and VML algorithms.

In conclusion, experimental results have proved the effec-
tiveness of Max Edge heuristic, especially when communica-
tions are important. For very small communication times and
few tasks, Matching and VML heuristics provide better allo-
cations. On the contrary, they fail in determining low cost
allocations when there is an important tradeoff between exe-
cution and communication costs.

Finally, it is of great importance the fact that CPU execution
time for both algorithms proposed in the present study is
impressively small. Measures on CPU time for the three
algorithms considered are presented in Fig. 7 in logarithmic
scale. Matching and Max Edge algorithms are extremely fast
even for large size instances (0.4 and 1.5 s respectively for
50 tasks on 20 processors compared to 21 s for VML). The
Matching based heuristic is clearly faster than Max Edge for
large size instances due to multiple clustering and allocation
decisions at each step of the algorithm. In fact, this is the
reason we have used a fast heuristic procedure for determining
maximum weight matching, instead of the optimal algorithm
(the complexity of the Matching based heuristic was calculated
in Section 4). Even though there was a negligible improvement

in solution quality when we used the optimal algorithm, the
CPU time of the Matching based heuristic was significantly
increased. Therefore, we preferred keeping the version of
the algorithm with near optimal matchings as an alternative
allocation strategy, clearly less efficient than the others, but
faster for large problems.

7. CONCLUSION

We have presented two fast algorithms for task allocation,
both based in a transformation of the initial minimization
problem to a maximization one. In the present study, an
experimental evaluation was affected, proving their efficiency.

Many questions arise from this work. Further performance
analysis would possibly provide explanations on algorithm
behavior. For example, it would be interesting to know if
the break region for the three methods considered is due to
algorithm function or to problem structural properties.

Another interesting perspective is the theoretical study of the
heuristics proposed. The simplicity of problem transformation
and of the structure of new algorithms can be exploited in
order to provide approximation guaranties. Recent evolution
on the approximability of the problem [9, 10] shows that
the way to proceed is the analysis of special cases where
execution or communication costs belong to a finite set of
distinct values. In any case, the Max Edge algorithm avoids
large penalties in the objective function due to communication
and inefficient assignments at each step and this characteristic
could be exploited in its worst-case performance analysis.

HEURISTIC ALGORITHMS FOR TASK ASSIGNMENT 29

REFERENCES

1. Billionnet, A., Costa, M. C., Sutter, A. An efficient algorithm for task
allocation problem.J. Assoc. Comput. Mach.39, 3 (1992), 502–518.

2. Bokhari, S. H. A shortest tree algorithm for optimal assignments across
space and time in a distributed processor system.IEEE Trans. Software
Engrg. SE-7,6 (Nov. 1981).

3. Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D.,
and Yannakakis, M. The complexity of multiway cuts.Proc. 24th ACM
STOC.1992.

4. Efe, K. Heuristic models of task assignment scheduling in distributed
systems.IEEE Comput.(June 1982).

5. Feo, T., Goldschmidt, O., and Khellaf, M. One-half approximation
algorithms for the k-partition problem.Oper. Res. Soc. Amer.40,
Suppl. 1 (1992), 170–173.

6. Fernandez-Baca, D. Allocating modules to processors in a distributed
system.IEEE Trans. Software Engrg.15, 11 (Nov. 1989).

7. Gallo, G., and Simeone, B. Optimal grouping of researchers into
departments.Ric. Oper.,57 (1991), 45–69.

8. Goldschmidt, O., and Hochbaum, D. A polynomial algorithm for the
k-cut problem for fixedk. Math. Oper. Res.19, 1 (1994), 24–37.

9. Lamari, M., and Fernandez de la Wega, W. The task allocation problem
with complete communication. Research Report LRI, No. 1048, 1996.

10. Lamari, M., and Fernandez de la Wega, W. The module allocation
problem: An average case analysis.IRREGULAR’96(G. Gaos, J.
Hartmanis, and J. van Leeuwen, Eds.), Lecture Notes in Computer
Science, Vol. 1117. Springer-Verlag, Berlin/New York, 1996.

11. Lo, V. M. Heuristic algorithms for task assignment in distributed
systems.IEEE Trans. Comput.C-37 (Nov. 1988), 1384–1397.

12. Lo, V. M. Algorithms for static task assignment and symmetric
contraction in distributed computing systems.Int. Conf. Parallel
Processing.1988, pp. 239–244.

13. Magirou, V. F., and Milis, J. An algorithm for the multiprocessor
assignment problem.Oper. Res. Lett.8 (1989), 351–356.

14. Magirou, V. F. An improved partial solution to the task assignment
problem.Oper. Res. Lett.12 (1989).

15. Mainiezzo, V., Dorigo, M., and Colorni, A. Algodesk: An experimental
comparison of eight evolutionary heuristics applied to the quadratic
assignment problem.Eur. J. Oper. Res.81 (1995), 188–204.

16. Milis, I. Task assignment in distributed systems using network flow
methods.CCS’95,(M. Dezaet al., Eds.). LNCS 1120, pp. 396–405,
1996.

17. Price, C. C., and Krishnaprasad, S. Software allocation models for
distributed computing systems.Proc. 4th Int. Conf. on Distributed
Computing Systems.1987.

18. Stone, Harold S. Multiprocessor scheduling with the aid of network flow
algorithms.IEEE Trans. Software Engrg.SE-3, 1 (Jan. 1977).

19. Stone, Harold S. Critical load factors in two-processor distributed
systems.IEEE Trans. Software Engrg.SE-4,3 (May 1978).

20. Towsley, D. F. Allocating programs containing branches and loops
within a processor system.IEEE Trans. Software Engrg.SE-12(1987).

YANNIS KOPIDAKIS received a M.Sc. in computer science from the
University of Crete, in 1993. He is currently a Ph.D. student at the University
of Paris—Sud. His research interests include approximation algorithms and
scheduling in parallel and distributed systems.

MERIEM LAMARI received a Dipl̂ome d’Etudes Approfondies from the
University of Paris—Dauphine, in 1992. She is currently a Ph.D. student at
the University of Paris—Sud. She is working on neural networks and tasks
allocation in distributed systems.

VASSILIS ZISSIMOPOULOS is a graduate from Athens University,
Greece, and in 1984, received his Ph.D. in computer science at the University
of Paris—Sud. He is currently a Maıˆtre de Conférences of computer
science at the University of Paris—Sud. His research interests include
approximation algorithms, local search, neural networks in combinatorial
optimization, task allocation, static and dynamic scheduling, load balancing,
and adaptive algorithms.

Received March 20, 1996; revised January 8, 1997; accepted February 12, 1997

