
Updating Directed

Minimum Cost Spanning Trees

Gerasimos G. Pollatos?, Orestis A. Telelis??, and Vassilis Zissimopoulos

Dept. of Informatics and Telecommunications,
University of Athens, Hellas (Greece)
{gpol,telelis,vassilis}@di.uoa.gr

Abstract. We consider the problem of updating a directed minimum
cost spanning tree (DMST), when edges are deleted from or inserted to
a weighted directed graph. This problem apart from being a classic for
directed graphs, is to the best of our knowledge a wide open aspect for
the field of dynamic graph algorithms. Our contributions include results
on the hardness of updates, a dynamic algorithm for updating a DMST,
and detailed experimental analysis of the proposed algorithm exhibiting
a speedup factor of at least 2 in comparison with the static practice.

Keywords: branchings, dynamic graph algorithms, data structures

1 Introduction

We study the problem of updating a directed minimum spanning tree (DMST)
efficiently when a directed edge is inserted to or deleted from a weighted digraph.
On a digraph G(V,E), of |V | = n vertices and |E| = m edges, each associated
with a non-negative cost c(e), a DMST is defined as a maximal acyclic subset
of edges, such that no vertex of the digraph has more than one incoming edge
in this set, and the total edge cost is minimum. If G is strongly connected this
definition implies indeed a directed tree (also called arborescence) blossoming out
of its root, otherwise it may be a collection of trees (also called a branching [1]).
Since G can always be made strongly connected by the addition of at most O(n)
edges, we can assume a directed tree. Applications of DMST updates range from
wireless networks [2, 3] to hardware design [4, 5].

An identical polynomial time algorithm was described for this problem in [1,
6, 7]. For the rest of the discussion we refer to this algorithm as Edmonds’ al-
gorithm [1]. Tarjan [8] gave an implementation of O(min{m log n, n2}) time.
Gabow et al. [9] improved the running time to O(m+n log n) by using a special
implementation of Fibonacci heaps. Improved heaps in [10] yielded deterministic
O(m log log n) and randomized O(m

√
log log n) time.

? Author partially supported by the programme ΠENE∆2003 of the Greek General
Secretariat of Research and Technology.

?? Author partially supported by the Greek Ministry of Education under the project
PYTHAGORAS II

To the best of our knowledge, the dynamic DMST problem is a wide open
aspect for the area of dynamic graph algorithms [11], in contrast to the near opti-
mal achievements seen for the minimum spanning tree in undirected graphs [12].
A fully dynamic graph algorithm maintains efficiently a solution to a graph prob-
lem when edges are deleted from or inserted to the underlying graph in time less
than the time required for re-evaluating a solution from scratch.

Our contributions include a hardness result regarding the complexity of dy-
namic DMST updates (section 3), the design of a fully dynamic algorithm and
its analysis in the output complexity model (sections 4-5), and extended experi-
mental investigation of the proposed algorithm (section 6), revealing a speedup
factor of at least 2 in comparison with the static re-evaluation practice. In the
output complexity model the complexity of a dynamic algorithm is measured
with respect to a minimal subset of the previous output that needs to be up-
dated [13–16].

2 Preliminaries

From now on we assume as input a strongly connected digraph G(V,E), with
edge costs c(e) ≥ 0. If the input digraph is not strongly connected, we add a
vertex v∞ and 2n edges of infinite (very large) weight, (v∞, vi) and (vi, v∞) for
each vi ∈ V , so as to make it strongly connected. These edges will never be af-
fected by dynamic edge operations, so that strong connectivity of the underlying
digraph is always assured. For each directed edge e = (u, v) ∈ E, we refer to
t(e) = u as the tail vertex of e, and h(e) = v as its head vertex. For S ⊂ V , let
δE(S) = {e ∈ E|h(e) ∈ S, t(e) ∈ V − S} be the “in” cut-set of S w.r.t. E. The
algorithm of Edmonds greedily produces an edge set H ⊆ E and prunes it to
obtain the DMST T :

1. set H = ∅
2. set ĉ(e) = c(e) for every edge e

3. while there are more than one vertices, pick a vertex v

(a) let e? be the incoming edge of v with the minimum ĉ(e)
(b) set ĉ(e) = ĉ(e) − ĉ(e?) for every incoming edge of v

(c) insert edge e? in H

(d) if a directed cycle occurred, contract the cycle into a single vertex.

4. create T from H by removing redundant edges.

The loop (lines (a)-(d)) creates an edge set H ⊆ E, and the final DMST T is
produced from H, by removal of redundant edges. This removal can be performed
in O(n) time [8], thus making the loop a complexity bottleneck for the algorithm.
In a strongly connected digraph the algorithm will eventually contract the vertex
set into a single vertex. At most n − 1 contractions will take place, since each
contraction absorbs at least one of the original digraph’s vertices. In the sequel
we refer to vertices emerged by contraction as c-vertices and to vertices of the
original digraph as simple vertices.

... ...
1 + ε1 + ε1 + ε1 + ε

11 1

v0v0 vn−1
vn−1

Fig. 1. Edges of cost 1 form the DMST for the left digraph. Deletion of (vn−2, vn−1)
causes the DMST to change entirely (right) into a new one consisting of edges of cost
1 + ε because inclusion of any of the 1-weighted edges cannot yield a maximal edge set
with DMST properties.

3 On the hardness of updates

We consider the hardness of DMST updates when the only information retained
and used is the DMST itself. We use the framework presented in [17] which
assumes that the unit operation of an algorithm is evaluation and positivity
testing of an analytic function over the edge weights of the underlying digraph.
Such an algorithm is called an analytic tree program. A lower bound on the
verification complexity of a DMST is obtained:

Lemma 1. Given a directed acyclic graph G of m edges with positive edge costs
and a subset T of edges, an analytic tree program verifying that T is a DMST
of G incurs Ω(m) complexity.

Proof. A feasible tree (or a collection of trees - a branching) in a DAG, is any
assignment of a unique incoming edge to each vertex. This can be checked in
O(n) time. The cost of T is minimum if and only if for every e 6∈ T there is e′ ∈ T

with h(e) = h(e′) and c(e′) ≤ c(e), which translates to testing that each vertex
is assigned its minimum cost incoming edge. This implies testing a set of Θ(m)
inequalities for analytic functions of edge weights. A classic result of Rabin [18]
states that all these inequalities must be evaluated in the worst case. ut
The Ω(m) lower bound for verification holds for general digraphs in the worst
case. This leads to the following result:

Theorem 1. Dynamic maintenance of a DMST under edge deletions and/or
insertions is as hard as recomputing a DMST from scratch if only the DMST
information is retained and used between updates.

Proof. Consider a digraph G of n vertices v0, . . . , vn−1. Let edges (vi, vi+1), for
i = 0, . . . , n− 2 have cost 1 and edges (vi, vi−1), i = 1, . . . , n− 1 have cost 1 + ε

for some ε > 0. Set all other edges to some cost M > 1 + ε. Then a DMST
of this digraph is the directed line {(vi, vi+1)|i = 0 . . . n − 2}. Removal of edge
(vn−2, vn−1) from this set, causes the DMST to change completely to another
optimal set of edges {(vi, vi−1)|i = 1, . . . , n − 1}. Re-insertion of the removed
edge causes the DMST to change entirely to its former state (see fig. 1 for an
example). Every algorithm using only DMST information to update the DMST
per edge operation requires at least the time given by lemma 1, which is Ω(n2)
for dense digraphs. ut

A similar result was derived in [17] for shortest paths tree updates. In the next
section we take the approach of maintaining intermediate information related to
construction of a solution (also suggested in [17] and investigated later in [14] for
shortest paths tree updates). Note that when the underlying digraph is restricted
to remain a DAG in between edge operations, a simple application of Fibonacci
heaps yields an O(log n) update time dynamic algorithm.

4 Dynamic Algorithm

The algorithm maintains as many contractions as possible per edge operation,
along with the selected edges (edges of H). The purpose of this practice is to effi-
ciently initialize and execute the implementation of Edmonds’ algorithm known
from [9] on a maintained partially contracted digraph, so as to process less ver-
tices and edges per edge operation. We show that such a partially contracted
digraph can be recognized in O(n) time by using simple operations over an
appropriate data structure, and a modified version of the implementation of [9].

4.1 An augmented structure

We present a data structure, namely the Augmented Tree (ATree), which appro-
priately encodes the redundant edge set H along with all vertices (c-vertices and
simple ones) processed during execution of Edmonds’ algorithm. Simple vertices
are represented in the ATree by simple nodes while c-vertices are represented by
c-nodes. For the rest we denote simple nodes with Ns

i , where vi ∈ V and c-nodes
with N c

j . We use unsuperscripted N to refer to ATree nodes regardless of their
type. Six records are maintained at each node N of the ATree:

1. e(N) is the edge selected by the algorithm for the represented vertex. If no
edge was selected we set e(N) = null and call N a root node. The root node
will be unique as discussed below.

2. yN = ĉ(e) is the cost of edge e(N) at the time it was selected for the vertex
represented by N .

3. children(N) is a list holding the children of N in the ATree.
4. parent(N) is the parent node of N in the ATree (which equals to null if N

is the root node).
5. contracted-edges(N c) is a list holding all edges contracted during creation of

the corresponding c-vertex represented by N c (that is, edges having both
their end-vertices on the contracted cycle).

6. kind(N) is the kind of node N (simple node or c-node).

Since the digraph is strongly connected, all vertices will be eventually contracted
to a single c-vertex by the end of the algorithm’s execution. This c-vertex is
represented by the root node of the ATree. The parent of each other node N is
the intermediate c-node N c to which it was contracted. Since the parent of each
node is unique, the described structure is indeed a tree.

v0

v1 v2

v3

Ns

0Ns

0 Ns

1Ns

1 Ns

2Ns

2 Ns

3Ns

3

Nc

1

Nc

1

Nc

1

Nc

2

Nc

2

Nc

3

Nc

3

1111

2

2

Fig. 2. Execution of Edmonds’ algorithm on the digraph on the left performs con-
tractions marked with dashed lines. The representative ATree appears in the middle.
The decomposed ATree after deletion of edge (v2, v3) represents a partially contracted
digraph of three vertices (on the right).

The ATree has at most O(n) nodes because the algorithm handles O(n) con-
tractions. Construction of an ATree can be embedded into the implementation
of [9], without affecting its complexity. However, maintenance of contracted-edges
lists requires special manipulation with respect to the implementation of [9], and
we defer this discussion to paragraph 4.5. Fig. 2 depicts an ATree example (mid-
dle) with respect to execution of Edmonds’ algorithm on a digraph (left).

4.2 Deleting edges

We discuss how to handle edge deletions using the ATree structure. Let eout ∈ E

be an edge we want to remove from the digraph. Two cases must be considered:

1. eout 6∈ H: we only need to remove eout from the digraph and from the
contracted-edges list to which eout belongs. This can be achieved in O(1) time,
if we use an endogenous list implementation [9]: each edge has associated
pointers in the digraph representation, pointing to the next and previous
elements in the list.

2. eout ∈ H, in which case we proceed by decomposing the ATree, initializing
Edmonds’ algorithm w.r.t. the remainders of the ATree and execute it.

Decomposition. The decomposition of the ATree begins from node N such that
e(N) = eout and proceeds by following a path from N towards the ATree root and
removing all c-nodes on this path except N . Each of the children of a removed
c-node is made the root of its own subtree. By the end of this procedure, the
initial structure has been decomposed into smaller ATrees, each corresponding
to a contracted subset of the original digraph’s vertices. Observe that all these
ATrees remain intact after decomposition, because eout was not part of their
formation. An example of ATree decomposition is shown on the right of fig. 2.

4.3 Recognizing a partially contracted digraph

Having performed the decomposition of the ATree, we proceed by recognizing the
partially contracted digraph G(V ′, E′) represented by the remainders (namely

smaller ATrees). Let V ′ = {N1 . . . Nk} be the roots of ATrees after decompo-
sition. These will constitute the vertex set of the digraph. A BFS on each tree
suffices to assign each original digraph vertex vi to some ATree root in V ′ in
O(n) time. Now we need to identify E′ without scanning all edges of the origi-
nal digraph. E′ consists of edges having their end-vertices in different remaining
ATrees. Let R = {N c

1 . . . N c
r} be the set of removed c-nodes during decomposi-

tion of the ATree. Note that the union of contracted-edges(N c
i) lists, N c

i ∈ R, is
precisely the correct edge set E′ and it can be found in O(n) time.

Given the partially contracted digraph G(V ′, E′), each N ∈ V ′ associated
with a set of incoming edges δE′(N), a second aspect concerns consideration of
the proper reduced costs ĉ for these edges. Let vi ∈ V be a vertex of the original
digraph represented as a leaf Ns

i of an ATree with root N ∈ V ′ (it may occur
that Ns

i is the root N itself). Let e = (u, vi) with e ∈ δE(vi) ∩ δE′(N). Let
P = [Ni, N

c
1 , . . . N c

l , N] denote the path from Ni to N in the ATree. Then by
definition of the ATree and by functionality of Edmonds’ algorithm described in
section 2, we can determine the reduced cost of e:

ĉ(e) = c(e) −
∑

N∈[Ni,N
c

1
,...Nc

l
]

yN

As an example in the decomposed ATree of fig 2 we obtain ĉ(e) = c(e)− yN0
for

all edges e ∈ δE′(N c
1) ∩ δE(v0). Our practice is to compute a reduction quantity

ri (i.e. the subtracted sum) for each simple node Ns
i of the remaining ATrees

with a single BFS on each remaining ATree in a total of O(n) time. Then, we
can scan once the edges e = (u, vi) ∈ E′ and assign them the proper reduced
cost ĉ(e) = c(e) − ri.

4.4 Inserting Edges

Edge insertion is handled by reduction to edge deletion. Let ein be the edge
we want to insert, at cost c(ein). We have to check whether ein should replace
some edge encoded in the ATree. This check involves only c-nodes of the ATree
that are ancestors of Ns

h(ein) and is performed as follows: starting from the node
Ns

h(ein) we follow the path towards the ATree root. For each visited node N , we

check whether c(e(N)) > c(ein). If this is not the case, we proceed to the parent
node. Otherwise, we have found a candidate node N which should have ein as
its selected edge, because it is of lower cost. It may be the case that the root
node of the ATree is reached: then ein cannot replace any edge of H. In this case
we insert it in the digraph and in the contracted-edges list associated with the
least common ancestor of Ns

t(ein) and Ns
h(ein).

Given that we have found a candidate node N which should replace its e(N)
with ein, we have to determine whether ein should or should not belong in the
”in” cut-set of N . To do so we examine whether the Ns

t(ein) is hanged in the
subtree rooted at N , by engaging a BFS on this subtree. If Ns

t(ein) is found, it is
implied that ein should not belong in the ”in” cut-set of N , so we simply insert
the edge in the digraph and in the contracted-edges list of the least common

ancestor of Ns
t(ein) and Ns

h(ein). Otherwise, we insert ein in the digraph and

engage a virtual deletion of e(N), i.e. without actually removing e(N) from the
digraph. After this virtual edge deletion recognition of G(V ′, E′) takes place as
described in the previous paragraph, and the algorithm of Edmonds is executed
over G(V ′, E′ ∪ {ein}).

4.5 Maintaining Contracted Edges

We describe here how to maintain a contracted-edges(N c) list for each c-node N c

of the ATree structure, by introducing a simple modification on the O(m+n log n)
time implementation of Gabow et al. [9], without burdening the complexity. A
brief description of the implementation follows.

The loop of Edmonds’ algorithm is executed by growing a path, referred to
as the growth path in [9]. The growth path is constructed as follows: initially,
an arbitrary vertex s, called current root vertex, is considered and an incoming
edge e = (u, s) of minimum cost ĉ(e) is selected. Vertex u gets marked, edge e is
added in the growth path and the process is repeated by considering vertex u as
the current root vertex. If the insertion of e causes a directed cycle (i.e. its tail
t(e) is already marked), a contraction of the cycle happens and a new c-vertex
replaces all cycle vertices in the growth path. This c-vertex becomes the current
root vertex of the growth path.

Each vertex u ∈ V is associated with an exit list, which holds outgoing edges
of u, incoming to some vertex on the current growth path. If we let v0, . . . , vl

be the current growth path, with v0 its current root vertex, such a list has the
following contents:

1. If u is not on the growth path: its associated exit list contains only the edges
e with t(e) = u and h(e) = vj such that vj is on the growth path.

2. If u = vi is on the growth path: only edges e with t(e) = u and h(e) = vj

such that vj is on the growth path and j < i, are contained.

Furthermore, in both cases, the edges are sorted in increasing order of j. When
a vertex is either added to the growth path, or takes place in a contraction, its
exit list is scanned once (for purposes related to details of [9]) and cleared. The
following modified manipulation of exit lists is adopted:

1. When a vertex u is added to the growth path, its exit list is scanned once
and cleared as in [9], but each edge (u, vi) (vi belonging on the growth path)
is added in a list deprecated(vi).

2. When a contraction of vertices v0, . . . , vk happens, the new c-vertex is given
an explicit name, say c. The exit lists of the contracted vertices are scanned
once and cleared as required in [9], but their contents are merged into a
contracted-edges(c) list initialized for the new c-vertex c. All deprecated(vi),
i = 0 . . . k, are merged into contracted-edges(c).

By these modifications all edges contracted due to the emergence of a new c-
vertex c (having both their end-vertices in the cycle) are stored in its associated

deprecated(v1):{(v0, v1)}
deprecated(v2):{(v1, v2)}

u

u

v0

v0

v1

v1

v2

v2

exit(u):{(u, v0), (u, v1), (u, v2)}
exit(v0):{ }
exit(v1):{ }
exit(v2):{(v2, v0)}

exit(u):{ }
exit(v0):{ }
exit(v1):{ }
exit(v2):{(v2, v0), (v2, u)}

deprecated(v0):{(u, v0)}
deprecated(v1):{(v0, v1), (u, v1)}
deprecated(v2):{(v1, v2), (u, v2)}

c
contracted-edges(c):{(v2, v0), (v2, u), (u, v0), (v0, v1),

(u, v1), (v1, v2), (u, v2)}

Fig. 3. In the upper part, exit lists and deprecated lists are shown for the current
growth path v0, v1, v2. When edge (u, v0) is added on the growth path the updated
exit lists and the deprecated lists are as shown in the center part. Augmentation of the
growth path with edge (v2, u) causes contraction of all vertices. The list of contracted
edges for the new c-vertex c is the union of exit and deprecated lists, shown in the
lower part.

list contracted-edges(c). Merging of the lists can be done in k steps and since the
algorithm performs k steps anyway for identifying the cycle, its complexity is
not burdened. An example of the described manipulation appears in fig. 3.

5 Complexity

In order to study the output complexity of the proposed dynamic scheme, we
have to identify the minimal portion of the maintained output that is affected
by each edge operation. As mentioned previously, the output consists of all pro-
cessed vertices (simple and c-vertices). A vertex v (whether a simple or c-vertex)
is affected if it takes part in a different contraction in the new output after an
edge operation. A contraction is defined exactly by the vertices and edges that
comprise the directed cycle which caused it. A different contraction is one which
was not present in the previous output. We denote the set of affected vertices
with ρ, |ρ| being its size. The extended set of affected elements (namely vertices
and edges incoming to affected vertices) is denoted as ||ρ||: this definition was
introduced in [13] also used in [14, 16]. First we show that:

Lemma 2. Root nodes of ATrees which emerged after decomposition of the ini-
tial ATree represent affected vertices.

Proof. Let eout be the removed edge, and N be the corresponding ATree node
with e(N) = eout. Clearly N is affected by definition, since it will change its
selected incoming edge. Hence any contraction to which it takes part differs

from previous contractions at least by the new edge. For the rest roots of ATrees
one of the following happens: either they take part in at least one contraction not
present in the previous output, or they take part in a contraction also present
in the previous output. In the latter case however, this contraction also included
N , hence in the new output it differs at least by e(N). ut

Notice that |ρ| ≤ n. During edge insertion/deletion all supplementary operations
incur O(n) complexity, while re-execution of Edmonds’ algorithm processes only
affected vertices, given by lemma 2. Hence:

Theorem 2. Fully dynamic maintenance of a directed minimum cost spanning
tree can be done in O(n+ ||ρ||+ |ρ| log |ρ|) output complexity per edge operation.

By the previous discussion and the results of [10]:

Corollary 1. Fully dynamic maintenance of a directed minimum cost spanning
tree can be done in deterministic O(n+||ρ|| log log |ρ|) and O(n+||ρ||

√

log log |ρ|)
randomized output complexity per edge operation in sparse digraphs.

6 Experimental Evaluation

We evaluated the proposed method on sequences of edge operations on digraphs
of varying order and density. Implementation was grown in C++ under version
3.1 of the gcc compiler with optimization level 3. Experiments were carried out
on an Intel P4 3.2 GHz PC with 1 GB of memory, running Linux Kernel 2.6.
CPU time was measured using the getrusage() system call. We implemented
the description of [9] for dense digraphs of O(n2) edges and the deterministic
heaps of [10] for sparse digraphs of O(n) edges. Both implementations discourage
usage of pre-existing data structure libraries due to the heaps used and due to
the endogenous nature of other supplementary structures.

6.1 Experimental Setup

A large set of random digraphs divided into three categories was used:
Dense Digraphs: n = 500i, i = 1 . . . 10, densities p = 0.2i, i = 1 . . . 5.
Sparse Digraphs: n = 500i, i = 1 . . . 10, densities p = c

n−1 , with c taking
values in {10, 20, 30, 40, 50}.
Embedded Cliques: We generated 10 digraphs of order n = 5000 and density
10

n−1 , and embedded on each of them a clique of increasing order 500i, i = 1 . . . 10.
Edge costs were chosen uniformly at random from the range 1 . . . 1000. The

dynamic algorithm was compared against re-executing Edmonds’ algorithm on
the whole digraph instance per edge operation (static practice). An edge oper-
ation was chosen to be insertion or deletion with probability 0.5. Average CPU

time and number of iterations performed by each algorithm were derived over
104 operations per digraph instance. % Gain for both measures, defined as the
relative savings of the dynamic over the static practice, is discussed.

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
ec

)

|V|/100

Complete

static
dynamic

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
ec

)

|V|/100

Sparse (c=10)

static
dynamic

Fig. 4. Performance comparison per edge operation in complete and very sparse di-
graphs.

 0.2 0.4 0.6 0.8 1 5
 20

 35
 50

 0
 20
 40
 60
 80

 100

Dense

% CPU Time Gain

density
|V|/100 10 15 20 25 30 35 40 45 50 5

 20
 35

 50
 0

 20
 40
 60
 80

 100

Sparse

% CPU Time Gain

c
|V|/100

Fig. 5. Almost stable over 60% CPU Time gain of dynamic over static per edge oper-
ation in dense digraphs and increasing gain in sparse digraphs.

 0.2 0.4 0.6 0.8 1 5
 20

 35
 50

 60

 80

 100

Dense

% Iterations Gain

density
|V|/100 10 15 20 25 30 35 40 45 50 5

 20
 35

 50
 60

 80

 100

Sparse

% Iterations Gain

c
|V|/100

Fig. 6. Stable 80% iterations gain of dynamic over static per edge operation in dense
and sparse digraphs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
ec

)

(clique size)/100

static
dynamic

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

(clique size)/100

% CPU Time Gain

Fig. 7. Performance and % CPU Time gain for embedded cliques of increasing size.

6.2 Discussion

The proposed practice achieves substantial CPU time savings over the static
DMST re-evaluation, as shown in fig. 4, for both complete and very sparse di-
graphs. Fig. 5 shows that for general dense digraphs, the savings are stable across
orders and densities over 60% on average. For sparse digraphs the gain in CPU

time increases from about 65% to near 95% when c = 10 (very sparse digraphs)
as n increases, while the increase becomes more modest when c becomes larger.

A stability of the dynamic practice is observed in fig. 6 in terms of iterations
savings to a 80% gain across all dense and sparse graphs. This result combined
with the 60% time gain for dense digraphs and the increasing gain observed
for large sparse instances, implies a dependance of the overall performance on
the density of edges. This dependance was further examined on very sparse
instances (c = 10) having an embedded clique of increasing size, i.e. on digraphs
of increasing non-uniformly distributed density.

The results we obtained confirm this dependance. Initially, when the em-
bedded clique is very small and thus the instance is sparse, the overall gain is
approximately 95% as shown in Fig. 7. As the embedded clique grows and the
density of the considered digraphs increases, the gain decreases, resulting in a
still significant 60% when the whole digraph has become complete.

Conclusively, the proposed dynamic algorithm achieves an update time re-
duced by a factor of more than 2 as opposed to solving the problem statically on
dense digraphs. We believe that the case of sparse digraphs merits theoretical
investigation from an average case complexity perspective, since there appears
to be an asymptotic improvement on average.

7 Conclusions

We have studied the problem of updating the DMST of a weighted digraph
changing by edge insertions and deletions. We provided an Ω(n2) complexity
lower bound when the only information retained is the DMST itself, and designed
a dynamic algorithm of O(n + ||ρ|| + |ρ| log |ρ|) output complexity, where ρ is

a minimal subset of the output that needs to be updated per edge operation.
Experimental evaluation of the proposed technique establishes its practical value,
and raises an open question regarding average case analysis for sparse digraphs.

Acknowledgements. We thank three anonymous reviewers for comments that
helped improve the quality of the paper.

References

1. Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau
for Standards 69B (1967) 125–130

2. Kang, I., Poovendran, R.: Maximizing network lifetime of broadcasting over wire-
less stationary adhoc networks (to appear). Mobile Networks 11(2) (2006)

3. Li, N., Hou, J.: Topology Control in Heterogeneous Wireless Networks: Problems
and Solutions. In: Proceedings of the 23rd IEEE INFOCOM. (2004)

4. Li, Z., Hauck, S.: Configuration compression for virtex fpgas. In: Proceedings of
the 9th IEEE Symposium on Field-Programmable Custom Computing Machines,
FCCM’01. (2001) 147–159

5. He, L., Mitra, T., Wong, W.: Configuration bitstream compression for dynamically
reconfigurable FPGAs. In: Proceedings of the 2004 International Conference on
Computer-Aided Design, ICCAD’04. (2004) 766–773

6. Bock, F. In: An algorithm to construct a minimum spanning tree in a directed
network. In: Developments in Operations Research. Gordon and Breach (1971)
29–44

7. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Scientia
Sinica 14 (1965) 1396–1400

8. Tarjan, R.E.: Finding optimum branchings. Networks 7 (1977) 25–35
9. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding

minimum spanning trees in undirected and directed graphs. Combinatorica 6

(1986) 109–122
10. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding Priority Queues. In:

Proceedings of SWAT’04, Springer LNCS 3111. (2004) 223–235
11. Eppstein, D., Galil, Z., Italiano, G.F.: 8: Dynamic graph algorithms. In: Algorithms

and Theory of Computation Handbook. CRC Presss (1999)
12. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. Journal of the ACM 48 (2001) 723 – 760

13. Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental
evaluation of computational circuits. In: Proceedings of the 1st ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’90. (1990) 32–42

14. Ramalingam, G., Reps, T.: On the complexity of dynamic graph problems. The-
oretical Computer Science 158(1&2) (1996) 233–277

15. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for
maintaining shortest paths trees. Journal of Algorithms 34 (2000) 251–281

16. Pearce, D.J., Kelly, P.H.J.: A Dynamic Algorithm for Topologically Sorting Di-
rected Acyclic Graphs. In: Proceedings of the 3rd Workshop on Efficient and
Experimental Algorithms, WEA’04, Springer LNCS 3059. (2004) 383–398

17. Spira, P.M., Pan, A.: On Finding and Updating Spanning Trees and Shortest
Paths. SIAM Journal on Computing 4(3) (1975) 364–380

18. Rabin, M.O.: Proving simultaneous positivity of linear forms. Journal of Comput-
ers and Systems Sciences 6 (1972) 639–650

