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Abstract 

Gilmore and Gomory's algorithm is one of the better actually known exact algorithms for solving unconstrained guillotine 
two-dimensional cutting problems. Herz's algorithm is more effective, but only for the unweighted case. We propose a new 
exact algorithm adequate for both weighted and unweighted cases, which is more powerful than both algorithms. The 
algorithm uses dynamic programming procedures and one-dimensional knapsack problem to obtain efficient lower and 
upper bounds and important optimality criteria which permit a significant branching cut in a recursive tree-search procedure. 
Recursivity, computational power, adequateness to parallel implementations, and generalization for solving constrained 
two-dimensional cutting problems, are some important features of the new algorithm. 
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1. Introduct ion 

The two-dimensional cutting (TDC) problem is 
a generalization of the well-known one-dimensional 
knapsack and it turns out to be surprisingly common in 
applications [ 4,6,12,13 ]. The problem consists of cut- 
ting a given finite set of rectangular pieces into a rect- 
angle of fixed dimensions with minimum wastage or 
maximum profit. Among obvious examples of applica- 
tions are the production of glass, metal sheets, leather 
or multiprogrammed computer systems. In such kinds 
of applications, the objective is either to minimize 
the total amount of waste or to maximize the total 
profit of the used available material in stock by realiz- 
ing required quantities of rectangular pieces. The un- 
constrained two-dimensional cutting problem then ap- 
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pears, either directly, when simple heuristic methods 
are developed, or as an auxiliary problem for gener- 
ating columns when generalized linear programming 
is used. In the latter case, an instance of the prob- 
lem is described by a set of weights (shadow prices) 
associated to each rectangular piece and the objec- 
tive is to find a feasible cutting pattern which maxi- 
mizes the total weight. The same weighted version of 
the problem appears also when clever heuristics are 
used for real applications. For example, in a produc- 
tion line, the weights could define priorities for some 
types of pieces or even to impose that some pieces, 
already present in the current cutting pattern, should 
appear also in the next cutting pattern. In other cases 
without weights on the pieces, the optimizing criterion 
is simply minimizing waste. But, it can also be seen 
as a weighted case by considering a weight equal to 
the surface of each rectangular piece, and the objec- 
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Fig. 1. A guillotine cutting pattern. 

tive becomes equivalent to maximizing the total oc- 
cupied area in the initial rectangle (unweighted ver- 
sion). Frequently, in order to reduce the number of 
possible cutting patterns we consider two restrictions, 
i.e. the cutting is guillotine type (horizontal and verti- 
cal cuts producing two sub-rectangles, see Fig. l ) and 
the pieces are of fixed orientation (a piece of length l 
and height h is different from a piece of length h and 
height l, I 4~ h). These restrictions, however, do not 
considerably limit the scope of the applications since a 
large number of real-word problems naturally appear 
with such restrictions. 

In this paper, we discuss the better known exact al- 
gorithms for the weighted and unweighted versions of 
the problem. We present a recursive exact algorithm 
which can be seen as a generalization of Herz's algo- 
rithm [8] and we develop efficient lower and upper 
bounds which, with some established optimality cri- 
teria, considerably limit branching in the developed 
tree. Next, we present an extensive experimental study 
with a large number of randomly generated instances 
and the computational power of the "algorithm is com- 
pared to Gilmore and Gomory's  algorithm (GG) [7], 
as well as to a modified version of this algorithm pro- 
posed by Beasley (MGG) [ 1]. 

2. Exact algorithms 

An instance of TDC is described by a triplet 
(7-¢., S, c). 7Z is a stock rectangle or initial rectangle 
with dimensions L (length) and H (height). S is a 
finite set of rectangular pieces with smaller dimen- 
sions (li, hi) and c = (ci), i = 1 . . . . .  n a weight 
vector associated to each piece to cut. The parameters 
L, H, li, hi and ci are integer values. 

A feasible cutting pattern is a vector a = 

(a l ,a2  . . . . .  an) where ai is the number of pieces of 
type i cut in ~ with respect to the piece's orientation 
and guillotine cuts. 

A solution of the problem instance is a pair (a, F)  
with a a feasible cutting pattern and F = ate is the 
value of the cutting pattern. 

An optimal solution of the TDC problem is a pair 
(a*, F*) such that the cutting pattern a* gives the 
maximum value F*, over all possible feasible cutting 
patterns. 

In [8], a powerful recursive tree search algorithm 
was given for solving unweighted unconstrained TDC 
problems, i.e. without weights associated to each piece 
and without the assumption that the number of ap- 
pearances of a type of piece in a cutting pattern is 
bounded by a number strictly inferior to the obvious 
bound LL/liJ [H/hi]. The algorithm takes advantages 
of some easily calculated lower and upper bounds re- 
lated to the area occupied by the pieces and the arca 
of the initial rectangle or sub-rectangle. A significant 
branching cut in the developed tree is obtained by 
these bounds which make the algorithm particularly 
efficient for solving small and medium size problem 
instances. Unfortunately, the bounds are not valid any- 
more when weights others than the piece's area are 
associated to the pieces. This inconvenience reduces 
dramatically the power of the algorithm and limits 
considerably its scope of applications. For example, 
in generalized linear programming approaches of the 
general cutting stock problem or in scheduling proce- 
dures, the weights do not have anything in common 
with the piece's area. Morabito et al. [ 10] have de- 
veloped a heuristic based upon this search procedure 
including a depth bound and a hill climbing strategy. 

For the weighted unconstrained TDC problem, the 
Gilmore and Gomory [7] algorithm based on dy- 
namic programming is one of the most powerful algo- 
rithms. Obviously, the algorithm is applicable also to 
unweighted unconstrained TDC problems by assign- 
ing weights ci = lihi to each piece, but in this case the 
algorithm of Herz is more efficient. 

Gilmore and Gomory's algorithm is based on the 
following recursive functional equation: 

F(x,  y) = max 
• ~>~Xl 4x2, 0<~I <~2 
V~Vl +Y2. 0<Yl ~<~2 

max{{0,  cj} : tj ~< x, 
hj <<. y ,V(l j ,  hj) E $}  

F ( x l , y )  + F(x2, y) 
F(x ,  yl)  + F(x ,  y2) 
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Box 1. Gilmore and Gomory 's  algorithm: 

Input: an instance of  unconstrained two-dimensional cutting problem. 
Output: the optimal solution denoted F* and its structure L s and H s. 

Initialization 
set F*(  x, y )  = Fo(x, y);  
L S ( x , y )  = x; H S ( x , y )  = y; for x and y such that 0 ~< x ~< L and 0 ~< y ~< H; 
set x2 = 1 and y2 = 1; 

Step 1 
set xt = 1; 
repeat 

V = F*(xl  ,Y2) + F*(x2,Y2);  
i f  V >  F*(x l  + x2,y2) then 

set F*(x l  +x2,Y2)  = V;LS(xI  + x2,Y2) =Xl ;HS(x l  + x2,Y2) =Y2; 
else 
/ fV = F*(Xl + x2,Y2) then LS(xl + x2,y2) = x l ;  
Xl =Xl + I; 

until (xl > x2) or (Xl + x2 > L);  

Step 2 
set yl = 1; 
repeat 

V = F * ( x 2 , Y l )  + F*(x2,Y2);  
i f  V >  F*(x2 ,Yl  + Y2) then 

s e t  F*(x2,Yl + Y 2 )  = V;LS(x2 ,y l  +Y2) =x2;HS(x2,  Yl +Y2) =Yl;  
else 
i f V  = F*(x2, Yl + Y2) then LS(x2, Yl + Y2) = Yl; 
Yl = Yl + l; 

until (Yl > Y2) or (Yl + Y2 > H) ;  

Step 3 
i f  x2 < L then x2 = x2 + 1 and go to step 1 ; 
i f  y2 < H then Y2 = Y2 + 1, set x2 = 1 and go to step 1; 

Step 4 
Exit with the optimal solution F* (L, H)  and its structure. 
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where x, xl, x2, and y, yl, y2 have all discrete values. 
The basic idea o f  the method is to consider the set 

of  sub-rectangles ( 1 , y ) ,  ( 2 , y )  . . . . .  ( x2 ,y ) ,  (x2 + 
1, y)  . . . .  ( L, y)  for y = 1 . . . . .  H, and then, for each 
such sub-rectangle to find the best solution by using 
the already known best solution o f  its sub-rectangles. 
The main steps o f  the algorithm are given in Box I. 
Beasley [ 1 ] has shown how discretization procedure 

described by Herz [8] and Christofides and Whit- 
lock [3] can be used to improve the performance of  
the GG algorithm and use it to provide a heuristic for 
large problems. 

In [5] ,  an approximation algorithm was presented 
for solving unweighted unconstrained TDC prob- 
lems. The algorithm is based on the one-dimensional 
knapsack problem and it turns out to be very effi- 
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cient for large size instances. When dynamic pro- 
gramming methods are used for solving the involved 
one-dimensional knapsack problems within pseudo- 
polynomial time complexity, the algorithm remains 
quite efficient and provides near-optimal cutting pat- 
terns within short computational times. In [9], we 
have used this algorithm to obtain efficient lower and 
upper bounds in the recursive tree search procedure 
of Herz for solving exactly unweighted unconstrained 
TDC problems. It has been shown that the resulting 
algorithm improved considerably the efficiency of 
Herz's algorithm. An extensive experimental study 
on large size instances has shown that the improved 
algorithm provided an important average gain (25%) 
in the required computational time. 

In this paper, we use the main features of the algo- 
rithm presented in [5] which permit to develop an ex- 
act recursive algorithm for the weighted unconstrained 
TDC problem. The algorithm constitutes a generaliza- 
tion of the algorithm described in [9] dealing with 
both the weighted and unweighted cases. For the un- 
weighted case, it behaves as the improved algorithm 
of Herz [ 8,9 ], whereas for the weighted case, where 
Herz's algorithm breaks down, it behaves better than 
the GG algorithm and MGG, the modified version of 
this algorithm introduced by Beasley. 

3. The algorithm 

The algorithm is based on the recursive property 
characterizing a guillotine unconstrained TDC prob- 
lem. That is, the optimal solution, for a given rectan- 
gle R and a set of pieces S, is deduced as the sum of 
the optimal solutions of the two sub-rectangles pro- 
duced by a guillotine cut. This observation permits us 
to develop a recursive procedure as follows: consider 
all possible vertical and horizontal dissections of the 
initial rectangle. For each dissection, consider the two 
sub-rectangles produced. For each sub-rectangle, con- 
sider also all possible dissections and so on. A sub- 
rectangle is not considered for further dissections if it 
produces only one piece belonging in S. In this way, 
the optimal solution for each sub-rectangle is found 
and thus the optimal one for the initial rectangle. 

Obviously, in order to deal with a finite number 
of dissections we discretize the length and the height 
of each rectangle or sub-rectangle, without however 

losing the optimal solution. Such a discretization was 
used in Refs. [3,8]. The adequate points for mak- 
ing vertical dissections are the points which are lin- 
ear combinations of lengths of the pieces entering a 
given (sub-)rectangle, whereas for horizontal dissec- 
tions the adequate points are linear combinations of 
heights of the same pieces. However, the efficiency 
of this recursive procedure remains considerably lim- 
ited. In order to speed up the process, we take into ac- 
count the implied symmetry and thus, the discretiza- 
tion points are limited to half of the length or the height 
of the (sub-)rectangle that we cut at each node of the 
developed tree. 

Next, we develop some optimality criteria, lower 
and upper bounds, and branching strategies which in- 
crease drastically the computational power of this pro- 
cedure. 

3.1. L o w e r  bounds 

A lower bound for the initial rectangle can be ob- 
tained by applying the 0-cut phase of the "Best Strips 
Cutting Algorithm" proposed in [5]. This algorithm 
uses the one-dimensional knapsack for creating a set 
of horizontal and vertical strips and then combines 
them for constructing a feasible cutting pattern. By 
using dynamic programming procedures for solving 
the one-dimensional knapsack problem, it was shown 
that all horizontal and vertical strips and even more, 
the optimal ones with respect to a given height or 
length respectively, can be created by solving only 
two one-dimensional knapsack problems. A feasible 
cutting pattern, then, is realized by solving two other 
one-dimensional knapsack problems. 

Consequently, an initial solution for the uncon- 
strained weighted or unweighted TDC problem is 
obtained by solving four one-dimensional knapsack 
problems. Notice that the one-dimensional knapsack 
problems which are involved are of small sizes even 
for large size instances of the TDC problem. There- 
fore, dynamic programming methods for solving 
these one-dimensional knapsacks turn out to be quite 
efficient. Moreover, as will be discussed later, they 
supply optimal solutions for some sub-rectangles that 
appear in some inner nodes of the developed tree. 
Next, in order to make the paper self-contained and 
for increasing clarity of the proposed algorithm, we 
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recall briefly the procedure which creates horizontal 
strips. 

We reorder the elements of the set S in increasing 
order such that hi ~< h2 ~< • .. ~< h,. Let r denote the 
number of  different heights of the set $ and ( at, 13) de- 
note a (sub-) rectangle. We define the one-dimensional 
knapsack problem i (K~,~), for i = 1 . . . . .  r, as follows: 

f i (at)  = max ~ CjXj 
i jE Ra# ( ) 

such that ~ l jx j  <<. at, xj  E N, j C R~ a 
jERaa 

where R,~B is the set of  rectangular pieces entering in 
the (sub-)rectangle (at, 13), xj denotes the number of 
times the piece j appears in the ith strip, cj the weight 
associated to piece j of  the set R,, B, and fi(at) the 
solution value for ith strip. 

These r one-dimensional knapsacks generate r op- 
timal strips with respect to the length at and the height 
hi if they are solved exactly. Each strip i = 1 . . . . .  r is 
characterized by its solution value f i  (at) and its height 
13i equal to some hi, j = 1 . . . . .  n. By selecting the best 
of these strips we construct a feasible cutting pattern. 
This can be realized, by solving the one-dimensional 
knapsack problem (K,,#) defined as follows: 

r 

£(at ,  13) = max ~-~f i (a t )Y i  

(K.~) ~1 
s u c h  t h a t  ~ hiYi <~ 13, Yi C N 

i=1 

where 13 is the height of (sub-)rectangle to cut and 
Yi, i = 1 . . . . .  r is the number of occurrences of ith 
strip. £(at,13) is a lower bound for (sub-)rectangle 
( at, 13). This procedure, when (at, 13) is the initial rect- 
angle (L, H) ,  is basically the two-phase procedure of 
Gilmore and Gomory [6] for the unconstrained two- 
dimensional guillotine cutting problem. Here, we ex- 
tend it for vertical strips and we exploit intermediate 
optimal solutions for easily obtaining lower bounds 
for smaller rectangles (at,13), at ~< L, 13 ~< H. The 
vertical strips are created by replacing in the previous 
procedure: hi by li, li by hi, at by 13 and 13 by at. In this 
way a second feasible cutting pattern (see also [5])  
is obtained. 

The best of  these two cutting patterns is retained as 
a lower bound for the initial rectangle. For the subse- 

quent sub-rectangles, in order to obtain quickly lower 
bounds, we limit ourselves to lower bounds corre- 
sponding to horizontal strips. We have already men- 
tioned that four one-dimensional knapsacks provide 
a lower bound for the initial rectangle. In fact, if we 
solve the problem (K/B) for at = L, fl = H and i = r, 
by using dynamic programming techniques, the opti- 
mal solutions of the r - 1 one-dimensional knapsacks 
are known and the r -  1 optimal strips are already cre- 
ated. Consequently, the parameters used in the (K,~)  
problem are perfectly known. Thus, the first lower 
bound /2(at, fl) produced by horizontal strips at the 
zero level is obtained by two one-dimensional knap- 
sacks. The same observations are made for the ver- 
tical strips which provide the second lower bound at 
the zero level, also by two knapsacks. As concerns 
the inner nodes of the tree where we deal with a sub- 
rectangle (at,/3), the lower bounds should be obtained 
by solvingthe / problems, (K/B),  i = 1 . . . . .  d ,  at < 
L, fl < H, r '  < r (since some pieces are not en- 
tering in (at, f l ) ) .  Fortunately, the optimal values of 
these problems are also available by the solution of 
the (Kin )  problem at the beginning of the process. 
Therefore, each lower bound for each sub-rectangle 
(at, 13) in the inner nodes is obtained by solving only 
the (Kay)  problem. 

3.2. Upper bounds 

An optimal cutting pattern for a (sub-)rectangle 
(at, f l ) ,  since it should not violate the area in which 
it is performed, is obviously a feasible solution of 
the following one-dimensional knapsack, with integers 
bounded variables x j: 

U ( a ,  fl) = max CjXj 

.iER,~13 

such that ~ ( l jh i )x  j ~ (atfl) 
(K.)  

.jE R~.a 

xj >/0, j c R,,~ 

where R~, B is the set of rectangular pieces entering a 
(sub-)rectangle (or, 13), xj is the number of appear- 
ances of jth piece into (sub-)rectangle (at, 13). How- 
ever, in order to avoid the long computational time 
required by a such large-dimension knapsacks, we re- 



558 M. Hifi, E Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564 

lax the integer requirement on the variables and we 
quickly obtain a lower quality upper bound equal to 
LH(a, fl)] by solving the (Ku) problem. This upper 
bound has already been used in similar tree-search 
procedures [ 14,2,10]. 

3.3. Effects of the bounds 

Let now see how we can use the previously de- 
scribed lower and upper bounds in a tree-search proce- 
dure. We consider a sub-rectangle (a , /3)  and a verti- 
cal cut at point x. Let (x,/3) and ( a - x ,  fl) denote the 
produced two sub-rectangles. The horizontal cuts are 
treated similarly. We denote V the best current value. 

(i) Consider an upper bound Ll(x ,y)  and the op- 
timal value Opt(x,  y) for a sub-rectangle (x, y).  Set 
Opt(x,  y) = cxD, if the optimal value is not yet known. 
Set 

v0 = V - min{b/(x, fl) ,  Opt(x,  fl) }. 

Clearly, if v0 > /b l (o t -x , / 3 )  then it is not necessary to 
investigate the dissection for the sub-rectangle ( a  - 
x,/33). The value v0 can not be attained by cutting 
( a  - x,/3).  Similarly, if the sub-rectangle ( a  - x,/3) 
is chosen and v0 /> H(x ,  fl),  then further dissection 
of (x, fl) is avoided. 

(ii) If min{H(x , /3 ) ,Opt (x ,  f l )}  + min{H(a  - 
x,/3),  Opt ( a - x,/3) } <<. f-. ( t~, /3) , then a cut at x can 
be skipped without loss of  optimality, since the best 
patterns for the sub-rectangles (x,/3) and ( a  - x,/3) 
cannot improve the already known pattern /:(ct, fl) 
for the (sub)rectangle (a , /3) .  

(iii) A lower bound/~(t~,/3) for a (sub-)rectangle 
(or,/3) is always updated when the next produced two 
sub-rectangles, provide a better lower bound. That is, 
if £(x , /3 )  + £ ( a  - x,/3) > / ~ ( a ,  fl),  then/~(cr, fl) 
is replaced by E(x ,  fl) + ~.(a - x, fl). 

Consequently, if both optimal values for the next 
two sub-rectangles are already found, then we stop 
the branching and the current lower bound £ ( a , / 3 )  is 
updated by the new value max{/~(ot, f l) ,  Opt(x, /3)  + 
Opt(ee - x,/3) }. 

(iv) I f  the sum of the two lower bounds for the 
two sub-rectangles produced by a cutting at a point 
x exceeds the known upper bound H(a , /3 )  for the 
current (sub-)rectangle (a , /3)  i.e. ~(x , /3)  + £ ( a -  
x,/3) /> H ( a , / 3 )  then the branching on the resulting 
sub-rectangles is stopped. 

3.4. Branching strategy 

The procedure which creates lower bounds, as was 
confirmed in [5] for the unweighted TDC problem 
and by the experimental justification reported here for 
the weighted TDC problem, is particularly efficient 
for large size instances. Therefore, the cuts made on 
a (sub-)rectangle (a ,  fl) are examined from the mid- 
dle to the left of the length for the vertical cuts and 
from the middle to the bottom for the horizontal ones. 
This branching strategy in the tree-search procedure 
permits us to deal firstly with large sub-rectangles, in 
order to take profit of the high quality lower bounds. 
For the same reasons, after a cut has been made, the 
largest produced sub-rectangle is systematically cho- 
sen in the algorithm for further dissections. 

As was already mentioned, in order to deal with a 
finite number of dissections without loss of optimality, 
the cuts are made at points in the horizontal axis which 
are linear combinations of lengths of pieces entering a 
sub-rectangle to cut. Similarly, the cuts on the vertical 
axis are linear combinations of the heights. In this 
way, the patterns that are produced have a structure 
with pieces always at the left and the bottom of the 
rectangle. These patterns are the so-called normalized 
cutting patterns used also by Herz [ 8 ] and Christofides 
and Whitlock [3]. A function which generates these 
points can be found in [ 3 ]. In the sequel, the set of 
points on the horizontal axis, for a (sub-)rectangle 
(re,/3) is denoted by 

Pail = {x I x = ~ lizi ~ or, zi E N, hi ~ /3}, 
i=-I 

and the set of points on the vertical axis is denoted by 

Q~I3 = {y I Y = ~ hizi <~ /3, Zi E ~ ,  li ~ oz}. 
i=1 

3.5. Optimality criteria 

During the search, some branches are discarded by 
virtue of optimality for some sub-rectangles. In fact, if 
we consider the sets P,,# = {xl, x2 . . . . .  xk} and Q,~t~ = 
{yl, y2 . . . . .  yk, }, where k and k' are the cardinalities 
of the sets P~# and Q,,# respectively, then the optimal 
solutions are already known or are obtained when we 
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Box 2. Recursive algorithm 

Input: an instance of unconstrained two-dimensional cutting. 
Output: The optimal solution value denoted by Opt and its structure 
1. Construct the sets PLn and QLH 
2. Compute lower bound/~(L, H) at zero level; set v0 = Z~(L, H) 
3. Opt=max{v0, ~ ( L ,  H, v0) } 
4. Function ~(ot ,  13,t0) : integer; 

Compute upper bound f = H(ot, 13) 
if v0 7> f then exit with ~ = 0 {effect 1 } 
else let of 0 = sup{x I x ~< of, x E P,~#} and 130 = sup{y I Y ~< 13, Y C a,~,~} 

if the optimal solution for (a0,130) is already known then exit with this value {OPT 3} 
else 

if min {hi} > 13o/2 then exit with the value of the optimalstrip {OPT 1} 
hl/lj<~ao 

else find a lower bound/~(a0,130) {if it is not the zero level} 
if £(a0,13o) /> U(ao,13o) then exit with ~" = Z:(a0,130) 
else 

if min {l j }  > a0/2 then exit with the optimal solution {OPT 2} 

else V =/2(o~0,130) 
for all x E P~a 

compute Opt(x ,  13) = ~ '(x,  13, max(V, v0) - bl(ot - x, 13) ) 
and record solution's structure 
i fmin{Ll (x ,13) ,Opt (x ,13)}  + min{H(a - x ,13) ,Opt (a  - x, 13)} ~</:(or, 13) {effect 2} 

then exit with best known value V 
else 
set ~ = Opt(x,13) + ~ ( a  - x,13, max ( V, v0) - Opt(x,13))  
and record solution's structure 

if l,~ /> H ( a ,  13) then exit with .~" = Vl {effect 4} 
else I/1 = max(V, ~ ) and record solution's structure {effect 3} 
repeat for all y E Q,~ 

exit with the best solution. 

559 

solve the K,~# problem for many sub-rectangles. For 
example, the following sub-rectangles: 

{(L, yl), (Xk, Y l ) ,  (Xk-I  , Y l )  . . . . .  (xl,Yl)}, 
{(L, y2), (Xk,Y2), (xk-~ ,Y2) . . . . .  (xl ,  y2)}, 

{(L, y~), (xk, ye), (xt:-i ,  ye) . . . . .  ( x l ,  ye) } 

with Yi < 2hs, i = 1 . . . . .  /~ and hs, s <~ n, the mini- 
mum height of the pieces entering each of these sub- 
rectangles are known to be solved to the optimum at 
the beginning of the algorithm, after we have solved 
the (K[H) problem. This is because the optimal so- 

lution of these sub-rectangles are composed by only 
one strip and the strips considered here are optimal 
(OPT 1). 

Also, the following sub-rectangles are solved to the 
optimum after we have applied the K,~ problem: 

{(Xl, H) ,  (xl ,  Yk' ), (xl ,  Yk'-) ) . . . . .  (Xl,  Yl ) }, 

{(x2 ,H) ,  (x2 ,y t , ) ,  (x2, yk,-I ) . . . . .  ( x 2 , y l ) } ,  

{ (xe,, H),  (x t , , yk , ) ,  ( xe , , yk , - l )  . . . . .  ( x e , , y l ) }  

with xi < 21s, i = 1 . . . . .  £r and Is the minimum length 
of the pieces entering each of these sub-rectangles. 
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This is, because their optimal solution can not con- 
tain more than one pieces horizontally and therefore 
its structure is a vertical strip (i.e. trivial horizontal 
strips) obtained by the (K,~)  problem (OPT 2). 

When a sub-rectangle of dimensions d and/~ has 
been solved to the optimum, we record its optimal 
value and its dimensions in order to avoid to compute 
it again at other nodes. Remark, however, that each 
sub-rectangle (d,  fl) has the same optimal solution 
as the sub-rectangle (d0, rio) where do = sup{x/x <~ 
d, x E P ~ }  and flo = sup{y/y <~ a , y  E Q~I3}. 
Therefore, in order to better exploit the optimality ob- 
tained for the sub-rectangle (d,  fl) we record the di- 
mensions a0 and fl0 instead of d and ft. Hence, sub- 
rectangles larger or smaller than (d,  fl) but with the 
same d0 and/3o are not treated (OPT 3). 

We remark that the effectiveness of optimality crite- 
ria will be significant at lower levels of the developed 
tree. Moreover, the effectiveness of lower and upper 
bounds will be more significant at the upper levels. 

In summary, the algorithm we propose is a recur- 
sive tree-search procedure, similar to the procedure of 
Herz. Its particularities are that at the beginning it ap- 
plies a powerful heuristic to obtain an initial solution, 
by solving four one-dimensional knapsack problems. 
For each inner node it solves a one-dimensional knap- 
sack for obtaining a lower bound and also a relaxed 
bounded one-dimensional knapsack for obtaining an 
upper bound. Box 2 gives a detailed description of the 
algorithm. P~# and Q,~ in the algorithm denote sub- 

sets of PaB and Qaa respectively, including points less 
or equal to half of the length or the height of the sub- 
rectangle (d ,  fl) ,  in order to avoid effects of symme- 
try. 

4. Computational results 

This section presents empirical evidence for the per- 
formance of the new algorithm by comparing it to GG 
and MGG algorithms. As is already mentioned, the 
power of the algorithm is arising from the high quality 
lower bounds and the way they are calculated (solv- 
ing only one one-dimensional knapsack at each node 
of the tree). Before studying the performance of the 
algorithm let us see the effectiveness of these lower 
bounds. 
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Table 1 
Lower bounds quality 

Instances size Group 1 Group 2 Total 

Av. time (s) for GG 4.03 12.07 8.05 
Av. time (s) for MGG 3.69 10.71 7.20 
Av. time (s) for lower bounds 0.43 0.79 0.61 
Percentage time 11.65 7.38 8.47 
Av. approximation ratio 0.993 0.997 0.995 
(%) Lower bound 
= Optimal solution 76 72 74 

We consider two groups of randomly generated 
instances. The first group includes 150 instances, 
with sizes L and H taken in the interval [30, 80] and 
the number of pieces to cut are taken in the interval 
[10,40].  The second group includes also 150 in- 
stances. The parameters L and H range in the interval 
[ 80, 150], whereas the number of pieces to cut ranges 
in the interval [20, I00]. The first group includes 
small or medium instances, whereas the second group 
includes rather large instances for exact algorithms. 
The dimensions L and H of the initial rectangle and 
the number of pieces to cut are taken uniformly on the 
fixed interval, while the dimensions of the pieces to 
cut are picked up uniformly in the interval ]0, L] and 
]0, H] ,  respectively. The weight associated to a piece 
i is computed by c i ---- I~ /Tr i l ,  where rri, i = 1 . . . . .  n, 
is the piece's area and y is a number uniformly dis- 
tributed in the real interval [ 1,5]. 

In Table 1 we observe that MGG performs bet- 
ter than the standard version GG. Also, lower quality 
bounds at the zero level as well as the required com- 
putational times are given. For all treated instances, 
excellent quality lower bounds are obtained within av- 
erage time representing 8.47% of the average time 
required by MGG algorithm. Moreover, 74% of the 
lower bounds are equal to the optimal values. 

In particular, for group l, the lower bounds rep- 
resent feasible solutions very close to the optimal 
ones. The average approximation ratio (lower bound 
value/optimal solution value) is 0.993. The required 
average computational time represents 11.65% of the 
time required by MGG algorithm. The percentage 
of the bounds equal to the optimal values is 76%. 
In the case of group 2 the efficiency of the lower 
bounds is still increasing: the average approximation 
ratio is equal to 0.997, whereas the average required 
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Table 2 
Computational time performance of the new algorithm compared to GG and MGG algorithms on some particular instances. The number 
n of pieces to cut is 5, 7, 10, 20, 10 and 10, respectively. 

Instances size ( 127, 98) ( 15, 10) (40, 70) (40, 70) (70,40) (70, 40) 

Value of optimal solution 12348 249 3076 2240 2758 2776 
GG (Av. time (s ) )  3.19 0.051 0.44 1.17 0.51 0.48 
MGG (Av. time (s) )  2.70 0.053 0.32 0.98 0.53 0.47 
New algorithm (Av. time (s ) )  1.42 0.047 0.21 0.69 0.43 0.42 
(%) time gain versus MGG 47.41 11.32 34.37 29.59 18.87 10.64 

computational time represents 7.38% of the MGG 
algorithm. In the last case, the percentage of bounds 
which are optimal solutions is 72%. Moreover, it is 
worth noticing the time gain in relation to instances 
size. For increasing instances size we obtain bet- 
ter lower bounds whereas the computational gain 
becomes more important. 

So, by including these good quality bounds in a tree- 
search procedure, one expects also a good behavior 
of the resulting algorithm. Notice also that the lower 
bounds in the inner nodes of  the tree require less com- 
putational time, since only one one-dimensional knap- 
sack of small size is solved at each node. We return 
now to examine the performance of the algorithm. 

We consider (see Table 2) some instances taken in 
the literature and we compare computational time re- 
quired by MGG (which in general behaves better than 
GG) algorithm to the time of new algorithm. The first 
instance is taken from [8]. The weight associated to 
each piece is exactly the area of the piece, i.e. c i  = 

lihi for i = 1 . . . . .  n. The three following instances 
are taken from [3],  where we have relaxed the up- 
per bounds on the number of repetitions of  each type 
of piece. The weights associated to each piece are as- 
signed independently of the piece's area. The two other 
instances are taken from [ 11 ]. For all these instances 
the new algorithm is faster than GG and MGG algo- 

Table 3 
Computational time performance of the new algorithm compared 
to the MGG algorithm on randomly generated instances 

Instances size Group 1 Group 2 Total 

Av. time (s) for MGG 3.69 10.71 7.20 
Av. time (s) for new algorithm 3.13 8.38 5.755 
Percentage time gain 15.17 21.75 20.07 

rithms. The computational time gain is at least 11.32% 
(second instance), and for some instances it is very 
important, i.e. 47.41% (first instance) and 34.37% 
(third instance). 

In Table 3, we can see the computational perfor- 
mance of the new algorithm on the randomly gener- 
ated instances described above. The average gain on 
the total number of  treated instances is 20.07%. 

An important point is that the average time gain is 
increasing with instances size. This can be explained 
by the efficiency of lower bounds especially on the 
large size instances (Table 1 ), and also by the fact that 
the GG algorithm performs poorly for large instances. 
However, for instances of group 1, the GG algorithm is 
sufficiently efficient. For this reason, we have decided 
to exploit the efficiency of the GG algorithm on small 
instances in order to increase even more the efficiency 
of the new algorithm on large instances. This has been 
done by developing a hybrid algorithm which still uses 
the tree-search GG algorithm, but only on a quarter of 
the initial rectangle. So, at the beginning of the new 
algorithm, we apply the procedure of GG on the sub- 
rectangle ( [L/2],  [/-//2/). Next, at each node of the 
tree when we deal with a sub-rectangle smaller than 
a quarter of  the initial rectangle we know its optimal 
solution by virtue of the dynamic programming basis 
of the GG algorithm. 

Table 4 
Computational time performance of the new hybrid algorithm 
versus MGG algorithm on randomly generated instances 

Instances size Group 1 Group 2 Total 

Av. time (s) for MGG 3.69 10.71 7.20 
Av. time (s) for the hybrid algorithm 2.71 7.32 5.015 
Percentage time gain 26.56 31.65 30.35 



562 M. Hifi, V. Zissimopoulos /European Journal of Operational Research 91 (1996) 553-564 

Pt Pl Pl 

P5 PI Pl Pl 

Pl Pl Pl Ps 
Pl Pl Pl 

P5 Pl Pl Pl 

P5 Pl Pl Pl 

(a) 

Pl Pl P 1 

Pl Pl Pl 

Pl Pl P 1 

~ Pl Pl Pl 

(b) 

Fig. 2. An instance of the weighted TDC problem with (L, H) = (99, 80) and 5 pieces to cut. (a) the solution structure corresponding 
to the lower bound at zero level. (b) the structure of the optimal solution provided by the exact algorithms. 

Table 5 
Lower bounds quality and performance of the new algorithm on 5 instances taken in [ 10]. "'*" denotes the optimal value 

Instance (100,156) (253,294) (318,473) (501,556) (750,806) 

Optimal value 15024 73176 142817 265768 577882 
Time (s) Herz's algorithm 3.91 9.92 7.49 6.53 7.47 
Time(s) for new algorithm 3.07 6.83 5.81 4.21 3.75 
Time for lower bound 0.16 0.43 0.60 0.71 1.22 
Value of lower bound * 72172 141810 * • 

Consequently, we have three alternatives for prun- 
ing branches in the hybrid algorithm: the lower 
bounds, the upper bounds and the optimality criteria 
provided either by the one-dimensional knapsack or 
the GG algorithm. We recall here that on high lev- 
els of  the developed tree one-dimensional knapsacks 
are more important, since we deal with large sub- 
rectangles, whereas on lower levels optimality criteria 
play a particular role. 

Table 4 shows the computational power of  the hy- 
brid algorithm. The average computational time gain 
over the MGG algorithm, for all treated instances, is 
considerably increased, being now 30.35%. Also, the 
average time gain continues to increase with instances 
size. 

In Fig. 2 we give the structure of  the solutions cor- 
responding to the lower bound at zero level of  the 
tree (2a) and the optimal solution provided by the ex- 
act algorithms (2b) ,  for the following instance. The 
set of  the rectangular pieces is ,S = {Pl = (21 ,13) ,  
P2 = (54 ,20) ,  P3 = (24 ,23) ,  P4 = (18 ,35) ,  P5 = 

(36, 17)}, the corresponding vector of  weights is c = 
(285, 1083, 556,273,729)  and the dimensions of  the 
initial rectangle L and H are respectively 99 and 80. 
The lower bound is equal to /Z(L,H)  = 7934 giv- 
ing an approximation ratio for this instance equal to 
0.964. The required calculation time is 28 ms on a PC 
386. The value of  the optimal solution found by the 
exact algorithms is 8226. The GG algorithm found it 
in 445 ms, the MGG algorithm found it in 371 ms. 
The new algorithm found it in 265 ms, whereas the 
hybrid algorithm required only 193 ms. 

In Table 5 we consider five instances taken in 
Ref. [10] .  They are described by ( L , H )  equal to 
(100, 156), (253 ,294) ,  (318 ,473) ,  (501,556)  and 
(750,806)  respectively, and 10 pieces to cut with 
weights equal to the surface. The execution of  GG 
and MGG on these instances was impossible with 
the resources at our disposal. Thus, we compare the 
new algorithm with Herz's algorithm. The average 
percentage time gain on the five instances is 32.21. It 
is worthwhile to notice the impressive quality of  the 
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lower bounds. For the problems 1, 4 and 5 the lower 
bound is equal to the optimal solution. The heuristic 
of Morabito et al. gives the same solutions as the 
lower bound except for the third instance where it 
is superior (142817). The required execution time 
by the Morabito et al. heuristic, on a IBM PC-AT 
(see [ 10] ) is 3, 3, 5, 4 and 3 seconds for the 5 prob- 
lems respectively. In [ 1 ], a large instance was given 
described by (L, H) = (3000, 3000) with 32 pieces 
to cut and weights associated to each piece equal to 
its surface. The best value found by the heuristic of 
Morabito and al. is equal to 8944026 (99.378% of 
the initial rectangle surface) within 36 s. Our initial 
lower bound is equal to 8997780 (99.975%) and it is 
obtained in 18.6 s. 

In conclusion we can state that the new algorithm 
performs very well, especially for large instances size 
for the weighted version of the problem. As con- 
cerns the unweighted cases, the algorithm is easily 
adapted by assigning weights equal to the piece's area 
and replacing the upper bound by the area of the 
(sub)rectangle. Then, the algorithm behaves as the 
improved algorithm presented in [9]. There it was 
concluded that the gain over Herz's algorithm is 25%. 
Notice that for the unweighted cases Herz's algorithm 
is superior to the GG algorithm by 20% (see [8] ). 

The gain of the new algorithm over the other 
algorithms will be more important in parallel im- 
plementations of these algorithms. For example, 
consider a straightforward approach as follows: pro- 
cessors simultaneously deal with each dissection at 
a (sub)rectangle and use the same current solution. 
If one of the processors finds a better solution, then 
the current solution is replaced by the newly found 
solution and this solution is communicated to all pro- 
cessors. In this way, load distribution to all processors 
can be achieved while the high quality lower and 
upper bounds preserve from going deep down in the 
tree. The parallelization however of the algorithms 
presented here constitutes a field for future work. 
Another important point for further investigation is 
the generalization of the new algorithm for solv- 
ing bounded two-dimensional cutting problems. The 
lower and upper bounds described here can be used 
in Christofides and Whitlock's exact algorithm. An 
important gain is expected, since the transportation 
routine which makes the algorithm heavy will be exe- 
cuted less frequently. Also, the heuristic of Morabito 

et al. [10] can easily be adapted to the algorithm 
proposed here, with important benefits. 

5. Conclusion 

A new recursive algorithm is presented for solv- 
ing weighted two-dimensional cutting problems. The 
algorithm uses efficient lower and upper bounds and 
some important optimality criteria which considerably 
reduce the searching effort. Empirical evidence for the 
power of the algorithm is given by comparing it to the 
best known exact algorithm. The key of the algorithm 
is the exploitation of dynamic programming proce- 
dures for solving a series of one-dimensional knap- 
sack problems. When the algorithm is slightly modi- 
fied by applying Gilmore and Gomory's algorithm on 
small sub-rectangles we obtain more efficient a hybrid 
algorithm especially for large size instances. Another 
important feature of the algorithm is that it can be 
applied also to solving unweighted two-dimensional 
cutting problems. In this case the new algorithm is 
still better than the best actually known algorithm of 
Herz. Finally, the new algorithm could be generalized 
for solving bounded two-dimensional cutting prob- 
lems where the actually known algorithms suffer by 
heavy computational time. In particular, the lower and 
upper bounds introduced here should considerably in- 
crease the computational power of Christofides and 
Whitlock's algorithm. 
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