
E L S E V I E R European Journal of Operational Research 91 (1996) 553-564

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

T h e o r y and M e t h o d o l o g y

A recursive exact algorithm for weighted two-dimensional
cutting

M. Hif i a, V. Z i s s i m o p o u l o s b,*
a CERMSEM, Universit~ de Paris 1 - Panthdon-Sorbonne, 90 rue de Tolbiac, 75634 Paris Cedex 13, France

b L.R.I., URA 410 CNRS, UniversiM de Paris Sud, Centre d'Orsay, 91405 Orsay, France

Abstract

Gilmore and Gomory's algorithm is one of the better actually known exact algorithms for solving unconstrained guillotine
two-dimensional cutting problems. Herz's algorithm is more effective, but only for the unweighted case. We propose a new
exact algorithm adequate for both weighted and unweighted cases, which is more powerful than both algorithms. The
algorithm uses dynamic programming procedures and one-dimensional knapsack problem to obtain efficient lower and
upper bounds and important optimality criteria which permit a significant branching cut in a recursive tree-search procedure.
Recursivity, computational power, adequateness to parallel implementations, and generalization for solving constrained
two-dimensional cutting problems, are some important features of the new algorithm.

Keywords: Knapsack; Two-dimensional cutting; Dynamic programming; Exact algorithms; Heuristics; Recursivity

1. Introduct ion

The two-dimensional cutting (TDC) problem is
a generalization of the well-known one-dimensional
knapsack and it turns out to be surprisingly common in
applications [4,6,12,13]. The problem consists of cut-
ting a given finite set of rectangular pieces into a rect-
angle of fixed dimensions with minimum wastage or
maximum profit. Among obvious examples of applica-
tions are the production of glass, metal sheets, leather
or multiprogrammed computer systems. In such kinds
of applications, the objective is either to minimize
the total amount of waste or to maximize the total
profit of the used available material in stock by realiz-
ing required quantities of rectangular pieces. The un-
constrained two-dimensional cutting problem then ap-

Corresponding author.

pears, either directly, when simple heuristic methods
are developed, or as an auxiliary problem for gener-
ating columns when generalized linear programming
is used. In the latter case, an instance of the prob-
lem is described by a set of weights (shadow prices)
associated to each rectangular piece and the objec-
tive is to find a feasible cutting pattern which maxi-
mizes the total weight. The same weighted version of
the problem appears also when clever heuristics are
used for real applications. For example, in a produc-
tion line, the weights could define priorities for some
types of pieces or even to impose that some pieces,
already present in the current cutting pattern, should
appear also in the next cutting pattern. In other cases
without weights on the pieces, the optimizing criterion
is simply minimizing waste. But, it can also be seen
as a weighted case by considering a weight equal to
the surface of each rectangular piece, and the objec-

0377-2217/96/515.00 (~) 1996 Elsevier Science B.V. All rights reserved
SSDI 0377-22 17 (95)00343-2

5 5 4 M. Hifi, V. Zissimopoulos/European Journal o f Operational Research 91 (1996) 553-564

H I

4

3 1 L

Fig. 1. A guillotine cutting pattern.

tive becomes equivalent to maximizing the total oc-
cupied area in the initial rectangle (unweighted ver-
sion). Frequently, in order to reduce the number of
possible cutting patterns we consider two restrictions,
i.e. the cutting is guillotine type (horizontal and verti-
cal cuts producing two sub-rectangles, see Fig. l) and
the pieces are of fixed orientation (a piece of length l
and height h is different from a piece of length h and
height l, I 4~ h). These restrictions, however, do not
considerably limit the scope of the applications since a
large number of real-word problems naturally appear
with such restrictions.

In this paper, we discuss the better known exact al-
gorithms for the weighted and unweighted versions of
the problem. We present a recursive exact algorithm
which can be seen as a generalization of Herz's algo-
rithm [8] and we develop efficient lower and upper
bounds which, with some established optimality cri-
teria, considerably limit branching in the developed
tree. Next, we present an extensive experimental study
with a large number of randomly generated instances
and the computational power of the "algorithm is com-
pared to Gilmore and Gomory's algorithm (GG) [7],
as well as to a modified version of this algorithm pro-
posed by Beasley (MGG) [1].

2. Exact algorithms

An instance of TDC is described by a triplet
(7-¢., S, c). 7Z is a stock rectangle or initial rectangle
with dimensions L (length) and H (height). S is a
finite set of rectangular pieces with smaller dimen-
sions (li, hi) and c = (ci), i = 1 n a weight
vector associated to each piece to cut. The parameters
L, H, li, hi and ci are integer values.

A feasible cutting pattern is a vector a =

(a l ,a2 an) where ai is the number of pieces of
type i cut in ~ with respect to the piece's orientation
and guillotine cuts.

A solution of the problem instance is a pair (a, F)
with a a feasible cutting pattern and F = ate is the
value of the cutting pattern.

An optimal solution of the TDC problem is a pair
(a*, F*) such that the cutting pattern a* gives the
maximum value F*, over all possible feasible cutting
patterns.

In [8], a powerful recursive tree search algorithm
was given for solving unweighted unconstrained TDC
problems, i.e. without weights associated to each piece
and without the assumption that the number of ap-
pearances of a type of piece in a cutting pattern is
bounded by a number strictly inferior to the obvious
bound LL/liJ [H/hi]. The algorithm takes advantages
of some easily calculated lower and upper bounds re-
lated to the area occupied by the pieces and the arca
of the initial rectangle or sub-rectangle. A significant
branching cut in the developed tree is obtained by
these bounds which make the algorithm particularly
efficient for solving small and medium size problem
instances. Unfortunately, the bounds are not valid any-
more when weights others than the piece's area are
associated to the pieces. This inconvenience reduces
dramatically the power of the algorithm and limits
considerably its scope of applications. For example,
in generalized linear programming approaches of the
general cutting stock problem or in scheduling proce-
dures, the weights do not have anything in common
with the piece's area. Morabito et al. [10] have de-
veloped a heuristic based upon this search procedure
including a depth bound and a hill climbing strategy.

For the weighted unconstrained TDC problem, the
Gilmore and Gomory [7] algorithm based on dy-
namic programming is one of the most powerful algo-
rithms. Obviously, the algorithm is applicable also to
unweighted unconstrained TDC problems by assign-
ing weights ci = lihi to each piece, but in this case the
algorithm of Herz is more efficient.

Gilmore and Gomory's algorithm is based on the
following recursive functional equation:

F(x, y) = max
• ~>~Xl 4x2, 0<~I <~2
V~Vl +Y2. 0<Yl ~<~2

max{{0, cj} : tj ~< x,
hj <<. y ,V(l j , hj) E $}

F (x l , y) + F(x2, y)
F(x , yl) + F(x , y2)

M. Hifi, V. Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564

Box 1. Gilmore and Gomory 's algorithm:

Input: an instance of unconstrained two-dimensional cutting problem.
Output: the optimal solution denoted F* and its structure L s and H s.

Initialization
set F*(x, y) = Fo(x, y);
L S (x , y) = x; H S (x , y) = y; for x and y such that 0 ~< x ~< L and 0 ~< y ~< H;
set x2 = 1 and y2 = 1;

Step 1
set xt = 1;
repeat

V = F*(xl ,Y2) + F*(x2,Y2);
i f V > F*(x l + x2,y2) then

set F*(x l +x2,Y2) = V;LS(xI + x2,Y2) =Xl ;HS(x l + x2,Y2) =Y2;
else
/ fV = F*(Xl + x2,Y2) then LS(xl + x2,y2) = x l ;
Xl =Xl + I;

until (xl > x2) or (Xl + x2 > L);

Step 2
set yl = 1;
repeat

V = F * (x 2 , Y l) + F*(x2,Y2);
i f V > F*(x2 ,Yl + Y2) then

s e t F*(x2,Yl + Y 2) = V;LS(x2 ,y l +Y2) =x2;HS(x2, Yl +Y2) =Yl;
else
i f V = F*(x2, Yl + Y2) then LS(x2, Yl + Y2) = Yl;
Yl = Yl + l;

until (Yl > Y2) or (Yl + Y2 > H) ;

Step 3
i f x2 < L then x2 = x2 + 1 and go to step 1 ;
i f y2 < H then Y2 = Y2 + 1, set x2 = 1 and go to step 1;

Step 4
Exit with the optimal solution F* (L, H) and its structure.

555

where x, xl, x2, and y, yl, y2 have all discrete values.
The basic idea o f the method is to consider the set

of sub-rectangles (1 , y) , (2 , y) (x2 ,y) , (x2 +
1, y) (L, y) for y = 1 H, and then, for each
such sub-rectangle to find the best solution by using
the already known best solution o f its sub-rectangles.
The main steps o f the algorithm are given in Box I.
Beasley [1] has shown how discretization procedure

described by Herz [8] and Christofides and Whit-
lock [3] can be used to improve the performance of
the GG algorithm and use it to provide a heuristic for
large problems.

In [5] , an approximation algorithm was presented
for solving unweighted unconstrained TDC prob-
lems. The algorithm is based on the one-dimensional
knapsack problem and it turns out to be very effi-

556 M. Hifi, V Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564

cient for large size instances. When dynamic pro-
gramming methods are used for solving the involved
one-dimensional knapsack problems within pseudo-
polynomial time complexity, the algorithm remains
quite efficient and provides near-optimal cutting pat-
terns within short computational times. In [9], we
have used this algorithm to obtain efficient lower and
upper bounds in the recursive tree search procedure
of Herz for solving exactly unweighted unconstrained
TDC problems. It has been shown that the resulting
algorithm improved considerably the efficiency of
Herz's algorithm. An extensive experimental study
on large size instances has shown that the improved
algorithm provided an important average gain (25%)
in the required computational time.

In this paper, we use the main features of the algo-
rithm presented in [5] which permit to develop an ex-
act recursive algorithm for the weighted unconstrained
TDC problem. The algorithm constitutes a generaliza-
tion of the algorithm described in [9] dealing with
both the weighted and unweighted cases. For the un-
weighted case, it behaves as the improved algorithm
of Herz [8,9], whereas for the weighted case, where
Herz's algorithm breaks down, it behaves better than
the GG algorithm and MGG, the modified version of
this algorithm introduced by Beasley.

3. The algorithm

The algorithm is based on the recursive property
characterizing a guillotine unconstrained TDC prob-
lem. That is, the optimal solution, for a given rectan-
gle R and a set of pieces S, is deduced as the sum of
the optimal solutions of the two sub-rectangles pro-
duced by a guillotine cut. This observation permits us
to develop a recursive procedure as follows: consider
all possible vertical and horizontal dissections of the
initial rectangle. For each dissection, consider the two
sub-rectangles produced. For each sub-rectangle, con-
sider also all possible dissections and so on. A sub-
rectangle is not considered for further dissections if it
produces only one piece belonging in S. In this way,
the optimal solution for each sub-rectangle is found
and thus the optimal one for the initial rectangle.

Obviously, in order to deal with a finite number
of dissections we discretize the length and the height
of each rectangle or sub-rectangle, without however

losing the optimal solution. Such a discretization was
used in Refs. [3,8]. The adequate points for mak-
ing vertical dissections are the points which are lin-
ear combinations of lengths of the pieces entering a
given (sub-)rectangle, whereas for horizontal dissec-
tions the adequate points are linear combinations of
heights of the same pieces. However, the efficiency
of this recursive procedure remains considerably lim-
ited. In order to speed up the process, we take into ac-
count the implied symmetry and thus, the discretiza-
tion points are limited to half of the length or the height
of the (sub-)rectangle that we cut at each node of the
developed tree.

Next, we develop some optimality criteria, lower
and upper bounds, and branching strategies which in-
crease drastically the computational power of this pro-
cedure.

3.1. L o w e r bounds

A lower bound for the initial rectangle can be ob-
tained by applying the 0-cut phase of the "Best Strips
Cutting Algorithm" proposed in [5]. This algorithm
uses the one-dimensional knapsack for creating a set
of horizontal and vertical strips and then combines
them for constructing a feasible cutting pattern. By
using dynamic programming procedures for solving
the one-dimensional knapsack problem, it was shown
that all horizontal and vertical strips and even more,
the optimal ones with respect to a given height or
length respectively, can be created by solving only
two one-dimensional knapsack problems. A feasible
cutting pattern, then, is realized by solving two other
one-dimensional knapsack problems.

Consequently, an initial solution for the uncon-
strained weighted or unweighted TDC problem is
obtained by solving four one-dimensional knapsack
problems. Notice that the one-dimensional knapsack
problems which are involved are of small sizes even
for large size instances of the TDC problem. There-
fore, dynamic programming methods for solving
these one-dimensional knapsacks turn out to be quite
efficient. Moreover, as will be discussed later, they
supply optimal solutions for some sub-rectangles that
appear in some inner nodes of the developed tree.
Next, in order to make the paper self-contained and
for increasing clarity of the proposed algorithm, we

M. Hifi, V. Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564 557

recall briefly the procedure which creates horizontal
strips.

We reorder the elements of the set S in increasing
order such that hi ~< h2 ~< • .. ~< h,. Let r denote the
number of different heights of the set $ and (at, 13) de-
note a (sub-) rectangle. We define the one-dimensional
knapsack problem i (K~,~), for i = 1 r, as follows:

f i (at) = max ~ CjXj
i jE Ra# ()

such that ~ l jx j <<. at, xj E N, j C R~ a
jERaa

where R,~B is the set of rectangular pieces entering in
the (sub-)rectangle (at, 13), xj denotes the number of
times the piece j appears in the ith strip, cj the weight
associated to piece j of the set R,, B, and fi(at) the
solution value for ith strip.

These r one-dimensional knapsacks generate r op-
timal strips with respect to the length at and the height
hi if they are solved exactly. Each strip i = 1 r is
characterized by its solution value f i (at) and its height
13i equal to some hi, j = 1 n. By selecting the best
of these strips we construct a feasible cutting pattern.
This can be realized, by solving the one-dimensional
knapsack problem (K,,#) defined as follows:

r

£(at , 13) = max ~-~f i (a t)Y i

(K.~) ~1
s u c h t h a t ~ hiYi <~ 13, Yi C N

i=1

where 13 is the height of (sub-)rectangle to cut and
Yi, i = 1 r is the number of occurrences of ith
strip. £(at,13) is a lower bound for (sub-)rectangle
(at, 13). This procedure, when (at, 13) is the initial rect-
angle (L, H) , is basically the two-phase procedure of
Gilmore and Gomory [6] for the unconstrained two-
dimensional guillotine cutting problem. Here, we ex-
tend it for vertical strips and we exploit intermediate
optimal solutions for easily obtaining lower bounds
for smaller rectangles (at,13), at ~< L, 13 ~< H. The
vertical strips are created by replacing in the previous
procedure: hi by li, li by hi, at by 13 and 13 by at. In this
way a second feasible cutting pattern (see also [5])
is obtained.

The best of these two cutting patterns is retained as
a lower bound for the initial rectangle. For the subse-

quent sub-rectangles, in order to obtain quickly lower
bounds, we limit ourselves to lower bounds corre-
sponding to horizontal strips. We have already men-
tioned that four one-dimensional knapsacks provide
a lower bound for the initial rectangle. In fact, if we
solve the problem (K/B) for at = L, fl = H and i = r,
by using dynamic programming techniques, the opti-
mal solutions of the r - 1 one-dimensional knapsacks
are known and the r - 1 optimal strips are already cre-
ated. Consequently, the parameters used in the (K,~)
problem are perfectly known. Thus, the first lower
bound /2(at, fl) produced by horizontal strips at the
zero level is obtained by two one-dimensional knap-
sacks. The same observations are made for the ver-
tical strips which provide the second lower bound at
the zero level, also by two knapsacks. As concerns
the inner nodes of the tree where we deal with a sub-
rectangle (at,/3), the lower bounds should be obtained
by solvingthe / problems, (K/B), i = 1 d , at <
L, fl < H, r ' < r (since some pieces are not en-
tering in (at, f l)) . Fortunately, the optimal values of
these problems are also available by the solution of
the (Kin) problem at the beginning of the process.
Therefore, each lower bound for each sub-rectangle
(at, 13) in the inner nodes is obtained by solving only
the (Kay) problem.

3.2. Upper bounds

An optimal cutting pattern for a (sub-)rectangle
(at, f l) , since it should not violate the area in which
it is performed, is obviously a feasible solution of
the following one-dimensional knapsack, with integers
bounded variables x j:

U (a , fl) = max CjXj

.iER,~13

such that ~ (l jh i)x j ~ (atfl)
(K.)

.jE R~.a

xj >/0, j c R,,~

where R~, B is the set of rectangular pieces entering a
(sub-)rectangle (or, 13), xj is the number of appear-
ances of jth piece into (sub-)rectangle (at, 13). How-
ever, in order to avoid the long computational time
required by a such large-dimension knapsacks, we re-

558 M. Hifi, E Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564

lax the integer requirement on the variables and we
quickly obtain a lower quality upper bound equal to
LH(a, fl)] by solving the (Ku) problem. This upper
bound has already been used in similar tree-search
procedures [14,2,10].

3.3. Effects of the bounds

Let now see how we can use the previously de-
scribed lower and upper bounds in a tree-search proce-
dure. We consider a sub-rectangle (a , /3) and a verti-
cal cut at point x. Let (x,/3) and (a - x , fl) denote the
produced two sub-rectangles. The horizontal cuts are
treated similarly. We denote V the best current value.

(i) Consider an upper bound Ll(x ,y) and the op-
timal value Opt(x, y) for a sub-rectangle (x, y). Set
Opt(x, y) = cxD, if the optimal value is not yet known.
Set

v0 = V - min{b/(x, fl) , Opt(x, fl) }.

Clearly, if v0 > /b l (o t -x , / 3) then it is not necessary to
investigate the dissection for the sub-rectangle (a -
x,/33). The value v0 can not be attained by cutting
(a - x,/3). Similarly, if the sub-rectangle (a - x,/3)
is chosen and v0 /> H(x , fl), then further dissection
of (x, fl) is avoided.

(ii) If min{H(x , /3) ,Opt (x , f l)} + min{H(a -
x,/3), Opt (a - x,/3) } <<. f-. (t~, /3) , then a cut at x can
be skipped without loss of optimality, since the best
patterns for the sub-rectangles (x,/3) and (a - x,/3)
cannot improve the already known pattern /:(ct, fl)
for the (sub)rectangle (a , /3) .

(iii) A lower bound/~(t~,/3) for a (sub-)rectangle
(or,/3) is always updated when the next produced two
sub-rectangles, provide a better lower bound. That is,
if £(x , /3) + £ (a - x,/3) > / ~ (a , fl), then/~(cr, fl)
is replaced by E(x , fl) + ~.(a - x, fl).

Consequently, if both optimal values for the next
two sub-rectangles are already found, then we stop
the branching and the current lower bound £ (a , / 3) is
updated by the new value max{/~(ot, f l) , Opt(x, /3) +
Opt(ee - x,/3) }.

(iv) I f the sum of the two lower bounds for the
two sub-rectangles produced by a cutting at a point
x exceeds the known upper bound H(a , /3) for the
current (sub-)rectangle (a , /3) i.e. ~(x , /3) + £ (a -
x,/3) /> H (a , / 3) then the branching on the resulting
sub-rectangles is stopped.

3.4. Branching strategy

The procedure which creates lower bounds, as was
confirmed in [5] for the unweighted TDC problem
and by the experimental justification reported here for
the weighted TDC problem, is particularly efficient
for large size instances. Therefore, the cuts made on
a (sub-)rectangle (a , fl) are examined from the mid-
dle to the left of the length for the vertical cuts and
from the middle to the bottom for the horizontal ones.
This branching strategy in the tree-search procedure
permits us to deal firstly with large sub-rectangles, in
order to take profit of the high quality lower bounds.
For the same reasons, after a cut has been made, the
largest produced sub-rectangle is systematically cho-
sen in the algorithm for further dissections.

As was already mentioned, in order to deal with a
finite number of dissections without loss of optimality,
the cuts are made at points in the horizontal axis which
are linear combinations of lengths of pieces entering a
sub-rectangle to cut. Similarly, the cuts on the vertical
axis are linear combinations of the heights. In this
way, the patterns that are produced have a structure
with pieces always at the left and the bottom of the
rectangle. These patterns are the so-called normalized
cutting patterns used also by Herz [8] and Christofides
and Whitlock [3]. A function which generates these
points can be found in [3]. In the sequel, the set of
points on the horizontal axis, for a (sub-)rectangle
(re,/3) is denoted by

Pail = {x I x = ~ lizi ~ or, zi E N, hi ~ /3},
i=-I

and the set of points on the vertical axis is denoted by

Q~I3 = {y I Y = ~ hizi <~ /3, Zi E ~ , li ~ oz}.
i=1

3.5. Optimality criteria

During the search, some branches are discarded by
virtue of optimality for some sub-rectangles. In fact, if
we consider the sets P,,# = {xl, x2 xk} and Q,~t~ =
{yl, y2 yk, }, where k and k' are the cardinalities
of the sets P~# and Q,,# respectively, then the optimal
solutions are already known or are obtained when we

M. Hill, V. Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564

Box 2. Recursive algorithm

Input: an instance of unconstrained two-dimensional cutting.
Output: The optimal solution value denoted by Opt and its structure
1. Construct the sets PLn and QLH
2. Compute lower bound/~(L, H) at zero level; set v0 = Z~(L, H)
3. Opt=max{v0, ~ (L , H, v0) }
4. Function ~(ot , 13,t0) : integer;

Compute upper bound f = H(ot, 13)
if v0 7> f then exit with ~ = 0 {effect 1 }
else let of 0 = sup{x I x ~< of, x E P,~#} and 130 = sup{y I Y ~< 13, Y C a,~,~}

if the optimal solution for (a0,130) is already known then exit with this value {OPT 3}
else

if min {hi} > 13o/2 then exit with the value of the optimalstrip {OPT 1}
hl/lj<~ao

else find a lower bound/~(a0,130) {if it is not the zero level}
if £(a0,13o) /> U(ao,13o) then exit with ~" = Z:(a0,130)
else

if min {l j } > a0/2 then exit with the optimal solution {OPT 2}

else V =/2(o~0,130)
for all x E P~a

compute Opt(x , 13) = ~ '(x, 13, max(V, v0) - bl(ot - x, 13))
and record solution's structure
i fmin{Ll (x ,13) ,Opt (x ,13)} + min{H(a - x ,13) ,Opt (a - x, 13)} ~</:(or, 13) {effect 2}

then exit with best known value V
else
set ~ = Opt(x,13) + ~ (a - x,13, max (V, v0) - Opt(x,13))
and record solution's structure

if l,~ /> H (a , 13) then exit with .~" = Vl {effect 4}
else I/1 = max(V, ~) and record solution's structure {effect 3}
repeat for all y E Q,~

exit with the best solution.

559

solve the K,~# problem for many sub-rectangles. For
example, the following sub-rectangles:

{(L, yl), (Xk, Y l) , (Xk-I , Y l) (xl,Yl)},
{(L, y2), (Xk,Y2), (xk-~ ,Y2) (xl , y2)},

{(L, y~), (xk, ye), (xt:-i , ye) (x l , ye) }

with Yi < 2hs, i = 1 /~ and hs, s <~ n, the mini-
mum height of the pieces entering each of these sub-
rectangles are known to be solved to the optimum at
the beginning of the algorithm, after we have solved
the (K[H) problem. This is because the optimal so-

lution of these sub-rectangles are composed by only
one strip and the strips considered here are optimal
(OPT 1).

Also, the following sub-rectangles are solved to the
optimum after we have applied the K,~ problem:

{(Xl, H) , (xl , Yk'), (xl , Yk'-)) (Xl, Yl) },

{(x2 ,H) , (x2 ,y t ,) , (x2, yk,-I) (x 2 , y l) } ,

{ (xe,, H), (x t , , yk ,) , (xe , , yk , - l) (x e , , y l) }

with xi < 21s, i = 1 £r and Is the minimum length
of the pieces entering each of these sub-rectangles.

560 M. Hifi, V. Zissimopoulos/European Journal of

This is, because their optimal solution can not con-
tain more than one pieces horizontally and therefore
its structure is a vertical strip (i.e. trivial horizontal
strips) obtained by the (K,~) problem (OPT 2).

When a sub-rectangle of dimensions d and/~ has
been solved to the optimum, we record its optimal
value and its dimensions in order to avoid to compute
it again at other nodes. Remark, however, that each
sub-rectangle (d, fl) has the same optimal solution
as the sub-rectangle (d0, rio) where do = sup{x/x <~
d, x E P ~ } and flo = sup{y/y <~ a , y E Q~I3}.
Therefore, in order to better exploit the optimality ob-
tained for the sub-rectangle (d, fl) we record the di-
mensions a0 and fl0 instead of d and ft. Hence, sub-
rectangles larger or smaller than (d, fl) but with the
same d0 and/3o are not treated (OPT 3).

We remark that the effectiveness of optimality crite-
ria will be significant at lower levels of the developed
tree. Moreover, the effectiveness of lower and upper
bounds will be more significant at the upper levels.

In summary, the algorithm we propose is a recur-
sive tree-search procedure, similar to the procedure of
Herz. Its particularities are that at the beginning it ap-
plies a powerful heuristic to obtain an initial solution,
by solving four one-dimensional knapsack problems.
For each inner node it solves a one-dimensional knap-
sack for obtaining a lower bound and also a relaxed
bounded one-dimensional knapsack for obtaining an
upper bound. Box 2 gives a detailed description of the
algorithm. P~# and Q,~ in the algorithm denote sub-

sets of PaB and Qaa respectively, including points less
or equal to half of the length or the height of the sub-
rectangle (d , fl) , in order to avoid effects of symme-
try.

4. Computational results

This section presents empirical evidence for the per-
formance of the new algorithm by comparing it to GG
and MGG algorithms. As is already mentioned, the
power of the algorithm is arising from the high quality
lower bounds and the way they are calculated (solv-
ing only one one-dimensional knapsack at each node
of the tree). Before studying the performance of the
algorithm let us see the effectiveness of these lower
bounds.

Operational Research 91 (1996) 553-564

Table 1
Lower bounds quality

Instances size Group 1 Group 2 Total

Av. time (s) for GG 4.03 12.07 8.05
Av. time (s) for MGG 3.69 10.71 7.20
Av. time (s) for lower bounds 0.43 0.79 0.61
Percentage time 11.65 7.38 8.47
Av. approximation ratio 0.993 0.997 0.995
(%) Lower bound
= Optimal solution 76 72 74

We consider two groups of randomly generated
instances. The first group includes 150 instances,
with sizes L and H taken in the interval [30, 80] and
the number of pieces to cut are taken in the interval
[10,40]. The second group includes also 150 in-
stances. The parameters L and H range in the interval
[80, 150], whereas the number of pieces to cut ranges
in the interval [20, I00]. The first group includes
small or medium instances, whereas the second group
includes rather large instances for exact algorithms.
The dimensions L and H of the initial rectangle and
the number of pieces to cut are taken uniformly on the
fixed interval, while the dimensions of the pieces to
cut are picked up uniformly in the interval]0, L] and
]0, H] , respectively. The weight associated to a piece
i is computed by c i ---- I~ /Tr i l , where rri, i = 1 n,
is the piece's area and y is a number uniformly dis-
tributed in the real interval [1,5].

In Table 1 we observe that MGG performs bet-
ter than the standard version GG. Also, lower quality
bounds at the zero level as well as the required com-
putational times are given. For all treated instances,
excellent quality lower bounds are obtained within av-
erage time representing 8.47% of the average time
required by MGG algorithm. Moreover, 74% of the
lower bounds are equal to the optimal values.

In particular, for group l, the lower bounds rep-
resent feasible solutions very close to the optimal
ones. The average approximation ratio (lower bound
value/optimal solution value) is 0.993. The required
average computational time represents 11.65% of the
time required by MGG algorithm. The percentage
of the bounds equal to the optimal values is 76%.
In the case of group 2 the efficiency of the lower
bounds is still increasing: the average approximation
ratio is equal to 0.997, whereas the average required

M. Hifi, V. Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564 561

Table 2
Computational time performance of the new algorithm compared to GG and MGG algorithms on some particular instances. The number
n of pieces to cut is 5, 7, 10, 20, 10 and 10, respectively.

Instances size (127, 98) (15, 10) (40, 70) (40, 70) (70,40) (70, 40)

Value of optimal solution 12348 249 3076 2240 2758 2776
GG (Av. time (s)) 3.19 0.051 0.44 1.17 0.51 0.48
MGG (Av. time (s)) 2.70 0.053 0.32 0.98 0.53 0.47
New algorithm (Av. time (s)) 1.42 0.047 0.21 0.69 0.43 0.42
(%) time gain versus MGG 47.41 11.32 34.37 29.59 18.87 10.64

computational time represents 7.38% of the MGG
algorithm. In the last case, the percentage of bounds
which are optimal solutions is 72%. Moreover, it is
worth noticing the time gain in relation to instances
size. For increasing instances size we obtain bet-
ter lower bounds whereas the computational gain
becomes more important.

So, by including these good quality bounds in a tree-
search procedure, one expects also a good behavior
of the resulting algorithm. Notice also that the lower
bounds in the inner nodes of the tree require less com-
putational time, since only one one-dimensional knap-
sack of small size is solved at each node. We return
now to examine the performance of the algorithm.

We consider (see Table 2) some instances taken in
the literature and we compare computational time re-
quired by MGG (which in general behaves better than
GG) algorithm to the time of new algorithm. The first
instance is taken from [8]. The weight associated to
each piece is exactly the area of the piece, i.e. c i =

lihi for i = 1 n. The three following instances
are taken from [3], where we have relaxed the up-
per bounds on the number of repetitions of each type
of piece. The weights associated to each piece are as-
signed independently of the piece's area. The two other
instances are taken from [11]. For all these instances
the new algorithm is faster than GG and MGG algo-

Table 3
Computational time performance of the new algorithm compared
to the MGG algorithm on randomly generated instances

Instances size Group 1 Group 2 Total

Av. time (s) for MGG 3.69 10.71 7.20
Av. time (s) for new algorithm 3.13 8.38 5.755
Percentage time gain 15.17 21.75 20.07

rithms. The computational time gain is at least 11.32%
(second instance), and for some instances it is very
important, i.e. 47.41% (first instance) and 34.37%
(third instance).

In Table 3, we can see the computational perfor-
mance of the new algorithm on the randomly gener-
ated instances described above. The average gain on
the total number of treated instances is 20.07%.

An important point is that the average time gain is
increasing with instances size. This can be explained
by the efficiency of lower bounds especially on the
large size instances (Table 1), and also by the fact that
the GG algorithm performs poorly for large instances.
However, for instances of group 1, the GG algorithm is
sufficiently efficient. For this reason, we have decided
to exploit the efficiency of the GG algorithm on small
instances in order to increase even more the efficiency
of the new algorithm on large instances. This has been
done by developing a hybrid algorithm which still uses
the tree-search GG algorithm, but only on a quarter of
the initial rectangle. So, at the beginning of the new
algorithm, we apply the procedure of GG on the sub-
rectangle ([L/2], [/-//2/). Next, at each node of the
tree when we deal with a sub-rectangle smaller than
a quarter of the initial rectangle we know its optimal
solution by virtue of the dynamic programming basis
of the GG algorithm.

Table 4
Computational time performance of the new hybrid algorithm
versus MGG algorithm on randomly generated instances

Instances size Group 1 Group 2 Total

Av. time (s) for MGG 3.69 10.71 7.20
Av. time (s) for the hybrid algorithm 2.71 7.32 5.015
Percentage time gain 26.56 31.65 30.35

562 M. Hifi, V. Zissimopoulos /European Journal of Operational Research 91 (1996) 553-564

Pt Pl Pl

P5 PI Pl Pl

Pl Pl Pl Ps
Pl Pl Pl

P5 Pl Pl Pl

P5 Pl Pl Pl

(a)

Pl Pl P 1

Pl Pl Pl

Pl Pl P 1

~ Pl Pl Pl

(b)

Fig. 2. An instance of the weighted TDC problem with (L, H) = (99, 80) and 5 pieces to cut. (a) the solution structure corresponding
to the lower bound at zero level. (b) the structure of the optimal solution provided by the exact algorithms.

Table 5
Lower bounds quality and performance of the new algorithm on 5 instances taken in [10]. "'*" denotes the optimal value

Instance (100,156) (253,294) (318,473) (501,556) (750,806)

Optimal value 15024 73176 142817 265768 577882
Time (s) Herz's algorithm 3.91 9.92 7.49 6.53 7.47
Time(s) for new algorithm 3.07 6.83 5.81 4.21 3.75
Time for lower bound 0.16 0.43 0.60 0.71 1.22
Value of lower bound * 72172 141810 * •

Consequently, we have three alternatives for prun-
ing branches in the hybrid algorithm: the lower
bounds, the upper bounds and the optimality criteria
provided either by the one-dimensional knapsack or
the GG algorithm. We recall here that on high lev-
els of the developed tree one-dimensional knapsacks
are more important, since we deal with large sub-
rectangles, whereas on lower levels optimality criteria
play a particular role.

Table 4 shows the computational power of the hy-
brid algorithm. The average computational time gain
over the MGG algorithm, for all treated instances, is
considerably increased, being now 30.35%. Also, the
average time gain continues to increase with instances
size.

In Fig. 2 we give the structure of the solutions cor-
responding to the lower bound at zero level of the
tree (2a) and the optimal solution provided by the ex-
act algorithms (2b) , for the following instance. The
set of the rectangular pieces is ,S = {Pl = (21 ,13) ,
P2 = (54 ,20) , P3 = (24 ,23) , P4 = (18 ,35) , P5 =

(36, 17)}, the corresponding vector of weights is c =
(285, 1083, 556,273,729) and the dimensions of the
initial rectangle L and H are respectively 99 and 80.
The lower bound is equal to /Z(L,H) = 7934 giv-
ing an approximation ratio for this instance equal to
0.964. The required calculation time is 28 ms on a PC
386. The value of the optimal solution found by the
exact algorithms is 8226. The GG algorithm found it
in 445 ms, the MGG algorithm found it in 371 ms.
The new algorithm found it in 265 ms, whereas the
hybrid algorithm required only 193 ms.

In Table 5 we consider five instances taken in
Ref. [10] . They are described by (L , H) equal to
(100, 156), (253 ,294) , (318 ,473) , (501,556) and
(750,806) respectively, and 10 pieces to cut with
weights equal to the surface. The execution of GG
and MGG on these instances was impossible with
the resources at our disposal. Thus, we compare the
new algorithm with Herz's algorithm. The average
percentage time gain on the five instances is 32.21. It
is worthwhile to notice the impressive quality of the

M. Hifi, V Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564 563

lower bounds. For the problems 1, 4 and 5 the lower
bound is equal to the optimal solution. The heuristic
of Morabito et al. gives the same solutions as the
lower bound except for the third instance where it
is superior (142817). The required execution time
by the Morabito et al. heuristic, on a IBM PC-AT
(see [10]) is 3, 3, 5, 4 and 3 seconds for the 5 prob-
lems respectively. In [1], a large instance was given
described by (L, H) = (3000, 3000) with 32 pieces
to cut and weights associated to each piece equal to
its surface. The best value found by the heuristic of
Morabito and al. is equal to 8944026 (99.378% of
the initial rectangle surface) within 36 s. Our initial
lower bound is equal to 8997780 (99.975%) and it is
obtained in 18.6 s.

In conclusion we can state that the new algorithm
performs very well, especially for large instances size
for the weighted version of the problem. As con-
cerns the unweighted cases, the algorithm is easily
adapted by assigning weights equal to the piece's area
and replacing the upper bound by the area of the
(sub)rectangle. Then, the algorithm behaves as the
improved algorithm presented in [9]. There it was
concluded that the gain over Herz's algorithm is 25%.
Notice that for the unweighted cases Herz's algorithm
is superior to the GG algorithm by 20% (see [8]).

The gain of the new algorithm over the other
algorithms will be more important in parallel im-
plementations of these algorithms. For example,
consider a straightforward approach as follows: pro-
cessors simultaneously deal with each dissection at
a (sub)rectangle and use the same current solution.
If one of the processors finds a better solution, then
the current solution is replaced by the newly found
solution and this solution is communicated to all pro-
cessors. In this way, load distribution to all processors
can be achieved while the high quality lower and
upper bounds preserve from going deep down in the
tree. The parallelization however of the algorithms
presented here constitutes a field for future work.
Another important point for further investigation is
the generalization of the new algorithm for solv-
ing bounded two-dimensional cutting problems. The
lower and upper bounds described here can be used
in Christofides and Whitlock's exact algorithm. An
important gain is expected, since the transportation
routine which makes the algorithm heavy will be exe-
cuted less frequently. Also, the heuristic of Morabito

et al. [10] can easily be adapted to the algorithm
proposed here, with important benefits.

5. Conclusion

A new recursive algorithm is presented for solv-
ing weighted two-dimensional cutting problems. The
algorithm uses efficient lower and upper bounds and
some important optimality criteria which considerably
reduce the searching effort. Empirical evidence for the
power of the algorithm is given by comparing it to the
best known exact algorithm. The key of the algorithm
is the exploitation of dynamic programming proce-
dures for solving a series of one-dimensional knap-
sack problems. When the algorithm is slightly modi-
fied by applying Gilmore and Gomory's algorithm on
small sub-rectangles we obtain more efficient a hybrid
algorithm especially for large size instances. Another
important feature of the algorithm is that it can be
applied also to solving unweighted two-dimensional
cutting problems. In this case the new algorithm is
still better than the best actually known algorithm of
Herz. Finally, the new algorithm could be generalized
for solving bounded two-dimensional cutting prob-
lems where the actually known algorithms suffer by
heavy computational time. In particular, the lower and
upper bounds introduced here should considerably in-
crease the computational power of Christofides and
Whitlock's algorithm.

Acknowledgements

Many thanks to an anonymous referee for helpful
comments and suggestions.

References

[1] Beasley, J.E., "Algorithms for unconstrained two-dimensional
guillotine cutting", Journal of the Operational Research Society
36/4 (1985) 297-306.

[2l Beasley, J.E., "An exact two-dimensional non-guillotine
cutting tree search procedure", Operations Research 33/I
(1985) 49-64.

I31 Christofides, N., and Whitlock, C., "An algorithm for two-
dimensional cutting problems", Operations Research 25/1
(1977) 30-44.

[4] Dowsland, K., and Dowsland, W., "Packing problems",
European Journal of Operational Research 56 (19920 2-14.

564 M. Hifi, V Zissimopoulos/European Journal of Operational Research 91 (1996) 553-564

[5] Fayard, D., and Zissimopoulos, V., "An approximation
algorithm for solving unconstrained two-din~nsional knapsack
problems", European Journal of Operational Research 84
(1995) 618-632.

161 Gilmore, E, and Gomory, R., "Multistage cutting problems of
two and more dimensions", Operations Research 13 (1965)
94-119.

[7] Gilmore, E, and Gomory, R., "The theory and computational
of knapsack functions", Operations Research 14 (1966) 1045-
1074.

{8] Herz, J.C., "A recursive computing procedure for two-
dimensional stock cutting", IBM Journal of Research and
Development 16 (1972) 462-469.

[91 Hifi, M., and Zissimopoulos, V., "Une am61ioration de
l'algorithme r6cursif de Herz pour la r6solution du probl~me de
d6coupe h deux dimensions", to appear in RA1RO, Recherche
Opdrationnelle.

[10] Morabito, R., Arenales, M., and Arcaro, V., "An and-
or graph approach for two-dimensional cutting problems",
European Journal of Operational Research 58/2 (1992) 263-
271.

[! 1] Oliveira, J.E, and Fcrreira, J.S., "An improved version
of Wang's algorithm for two-dimensional cutting problems",
European Journal of Operational Research 44 (1990) 256-
266.

[12] M. Syslo, N. 13¢o and J. Kowalik, Discrete optimization
algorithms, Prentice-Hall, New Jersey, 1983.

[13] Sweeney, P., and Patemoster, E., "Cutting and packing
problems: A categorized application-oriented research
bibliography", Journal of the Operational Research Society
43/7 (1992) 691-706.

[14] Zissimopoulos, V., "Heuristic methods for solving
(un)constrained two-dimensional curing stock problems",
Methods of Operations Research 49 (1984) 345-357 (S.O.R.
Osnabriick, Germany, August, 1984).

