Journal of the Operationsl Ressarch Soclaty (1995) 46. 1260~ 1268 {© 1995 Operacionsl Research Society Lud, All ights reserved. 0160-5682/95 $1200 %

A New Efficient Heuristic For the Minimum Set
Covering Problem

MOHAMED AFIF!, MHAND HIFI2, VANGELIS TH. PASCHOS! and
: VASSILIS ZISSIMOPOULOS?

ILAMSADE, Université Paris-Dauphine, France; ICERMSEM, Université Paris 1, France and
LRI, Université d'Orsay, 91405 Orsay, France

We solve approximately the minimum set covering problem by developing a new heuristic, which is
essentially based on the flow algorithm originally developed by Ford and Fulkerson. We perform a
comparative study of the performances (concerning solution qualities and execution times) of the
flow algorithm as well as of the natural greedy heuristic for set covering originally studied by
Johnson and Lovész.

Key words: combinatorial analysis, computational apalysis, heuristics, integer programming, set
COVering

INTRODUCTION

Given a collection & (|$] = n) of subsets of a finite set C (|C|= m), a set covering is a
sub-collection &' C & such that every element of C belongs to at least one member of &', and
the minimum set covering problem SC is to find a set cover of minimum size. Recently, Lund .
and Yannakakis' proved a strong negative result for SC’s approximability: SC cannot be
approximated with the ratio clogm for any ¢ < 1/4 unless NP;D'I‘IME[RP"‘T"’B“] (a con-
jecture weaker than P = NP but highly improbable).

In this context, and since SC is, from both the theoretical and practical points of view, a
very interesting problem (for instance, problems on operating systems, databases, computer
aided systems and satellite photograph systems can be represented and treated in terms of
SC), we think that it is crucial (and challenging) to devise experimental algorithmic methods
that find ‘reasonable’ solutions for instances of SC.

We present in this paper a new polynomial time approximation algorithm relying on the
transformation of an instance of SC into an instance of a particular flow problem and, on
using an adaptation of the flow-algorithm of Ford and Fulkerson®® to solve this flow problem.
We also implement the naturally greedy SC-algorithm (studied theoretically by Johnson* and"
Lovészj) For these two methods, we perform numerical experiments and comparatwc studres
concerning solution qualities and execution times.

A NEW APPROXIMATION ALGORITHM FOR (UNWEIGHTED) SET COVERING

The transformation of SC into a flow problem relies on Definition 1.

Definition 1 e

The characteristic graph B = (S, C, E) of an instance of SC is a bipartite graph with vertex
set § corresponding to the family &, vertex set C corresponding to the ground set C, and
E = {sic;: c; € §;}. Given a bipartite B = (S, C, E) representing an instance of SC, a layered
network N = (X, A, ¢, b) can be constructed with vertex set X = S U CU 53 U ¢, where ¢,
is the source of the network, s, its sink and A = E U E¢U E. is the arc set of the network.

Correspondence: V. Th. Paschos, LAMSADE, Université Paris-Dauphine, Place du Maréchal De Laure de Tassigny,
75775 Paris Cedex 16, France

M. Afif et of.— Heuristic For the Minimum Set Covering Problem 1261

Here, Eg = {5,50: Vs; € §}, Ec = {cyc;: V¢, € C}, and the arcs are oriented from ¢, to So. The
vectors ¢ = (Ca)aen> & = (bo)aca, TEpresent the capacities and the lower bounds, respectively,
on the arcs of N and are defined as follows:

[1 ae E_g
= 1 a=C,‘Sj‘, l¢0V1¢0
G = 1r-(sj')"
~ EE ¢, a=cyc;, i=1,....,m E_ = {cs;:s€T"(c)},
. { 0 ae EgUE
k! min {c,:a’' € {¢s;:5; € [*(c)}} a = coc;, i=1...,m,

where I'(x) is the set of neighbours of x, [T*(x)| and |~ (x)| are the outer and inner degrees
of vertex x.

Using the construction implied by Definition 1, SC reduces to a minimum flow problem @
on N defined as follows (by I™(v;) (respectively I"(v;)) we denote the set of incoming
(respectively outgoing) arcs of vertex v;):

[min Y ¢,
aeEg
2 Qo = 2 @a b; € X\{Sﬂ, cl]}
D = J ael=(v) ael*(v)
b, < @, < c,, ae A
P, € {01 1}5 ae ES
@, € QF, ae EUEg.

It is easy to see that SC can be polynomially reduced to ®. In fact, given an instance I of SC,
the construction of B takes O(nm) steps; the construction of N also takes O(|E|) = O(nm)
steps, and the computation of the upper and lower capacities of the arcs of N can be
performed in constant time. Consequently, the whole of the wransformation of SC to ® can be
performed in O(nm).

Example 1

Consider the following instance of SC: & = {S,, 83, §3}, C = {c1, €3, €3, ¢4}, $; = {c1, 62},
S, = {¢1, €3, €4}, S3 = {c3, c4}. Figure 1(a) shows the characteristic bipartite graph B of the
above instance, while Figure 1(b) represents the layered network N.

s1 82 3

cl c2 c3 c4

.a)

Fic. 1. (a) Characteristic bipartite graph B of the set covering instance; (b) layered network N corresponding to B.

1262 Journal of the Operational Research Soclety Yol. 46, No. 10

Proposition 1 states the connection between the objective function values of the corresponding
solutions for SC and ®. In addition, in the proof of Proposition 1, the properties of solutions
of @ are stated.

Proposition 1

The (optimal) objective function values for the solutions of SC and ® are equal.

Proof

Suppose that a feasible solution for @ is given. Then, a feasible solution for SC can be
obtained by choosing exactly those sets of & corresponding to the vertices 5; of N (Definition
1) for which g, = 1.

The fact that the so-obtained solution &' is feasible for SC is deduced from the following
argument: suppose that there exists an element c; such that c; ¢ USI.EJ-S]-; then, in terms of @,
this would mean that the flow from all the arcs in E out of ¢; is equal to 0; and so, by flow
preservation, the flow on the arc coc; must also be equal to zero, violating the lower bound
on such arcs.

Suppose now that a solution &' is given for SC. Then, a feasible solution for ® on N can
be obtained by taking the following flow values in A(N):
® forthearcsa =550, i =1, ..., n: @, = Ligesy;

e forthearsa=cgs;, i=1,...,m, j=1,..., m

{ e 56
P = "
0 otherwise;

e for the arcs @ = coc;, i =1, ..., m, we take: @, = 2% I Etpqsf_.

Obviously, for the arcs in EgU E, the considered flow respects the capacities and the
bounds on the arcs, and moreover, for the arcs in E;, the integrity constraints. For the arcs
CoCin i=1, ..., m,we have 0< @, = D s cEPus, < ECQEEC% = ¢y, On the other hand, for a
VETteX ¢, of N, if Cisy = argminc,ﬁ;,s,e]"*(c,-){C:,-I:}’ then @Peoe, = Ecp;eE(pc,ﬁ- = 2{:,—:_,—:si-e$'} (pc,.rj » Cqs.,'

Concerning the flow preservation, it is easy to see that it holds for the S-vertices of N.
By the way the flow values are chosen, if §;e€d’, then ¢, =1= Er_,j_cr_,'.e (1T (s)) =
Eq,ﬂcjsie E®es; on the other hand, if §; ¢ &', then ¢, = 0, the same holds for the flow values
of arcs incoming in vertex s;. For the C-vertices of N, the flow preservation is more evident,
since @, = zc_r,_e E®.;- Consequently, given a feasible solution for SC, one can, in poly-
nomial time, find a feasible solution for ®.

Before discussing the relation between the optimal solutions of the two problems, let us
first mention the following fact, which describes properties of solutions for the flow problem.
For a feasible solution of ®: (a) all C-vertices of N receive non-zero flow; (b) if an arc
a = 5,50 of Eg has a unit flow, then all arcs ¢;s;, ¢; € I (s;), are saturated (@, C)-

(a) In order to satisfy the constraints of ®, the flow ¢, on an arc ccj, j=1, ..., m has to
respect @, > 0.
(b) Clearly, the flow sum and the capacity over I'"(s;) equal 1. Let us suppose that an arc
a' outgoing from a vertex in I''(s;) has ¢, <c,; then, since e e=(s)Pe;s; =
. LT the quantity ¢, — ¢, would have to be sent via the other arcs, outgoing
from vertices of I'"(s;); hence, there would be at least one arc a” = ¢, ¢; € I (s;) such
that ¢,- > c,-, these violating the upper capacity constraint on a".

We are now prepared to prove the following assertion.

Assertion

A minimum solution for @ corresponds to a minimum solution of SC having the same value
and vice versa.

M. Aff et of. — Heuristic For the Minlmum Set Covering Problem 1263

In fact, whenever a minimum flow is given, the solution for SC, obtained as previously
described, has cardinality equal to the minimum flow value; moreover, it is minimum because
the hypothesis on the existence of a smaller solution A for SC would lead immediately, by
using part (a) of the above fact as well as the described construction of a feasible flow from a
SC solution, to a smaller solution for ® of cardinality |Al.

For the converse, let us suppose that the minimum flow for ® (let us denote by ¢ this
solution and by v(@) its value) is smaller than the minimum solution of SC. Using the above-
mentioned fact, @ sends flow throughout all the C-vertices of the network and, moreover, if a
vertex s; receives a unit flow, then all arcs ¢s;, ¢; € I (s;), are saturated. The way a solution
for SC is obtained from @ induces a new feasible solution for SC of cardinality equal to v(@).
This completes the proof of the proposition.

THE MINIMUM FLOW ALGORITHM, ITS COMPLETENESS AND ITS COMPLEXITY

The minimum flow algorithm used as a heuristic for SC is Algorithm 1.

begin
S*
repeat
CONSTRUCT(N);
@« {c,Vae A}
repeat
stop « false; &(cy) « 2, X'« {c}; A' <«
while (s, ¢ X') A —stop do
fda=xye A, xe X' Aye X\X' A @,> b, then
X'« X'U{yh A'(y) < a;
&(y) < min {6(x), @, — b,}; A’ < A’ U {a}
else stop « true
fi
od
if s € X' then 6 «— 6(s;) else 6 0 fi
if &+ 0 then x « s;
while x # ¢y do a — A'(x); ¢, — @, — §; x «—i(a) od
fi
until =0
S$* « §* U {s;: ;50 = argmax {g,: a € Eg}};
A — {s:50} U {a: t(a) = 5} U {cocj: ¢; e T (s));
Ce—C\(5); S<S\{s;}; A= A\A
until C =J
end.

ALGORITHM 1. Minimum flow aigorithm. By t(a), we denote the terminal extremity of arc a, while by ifa) we denote its
initial extremity.

Procedure CONSTRUCT comprises the application of Definition 1 either on the original
SC-instance or its surviving instance after the deletion of an S-vertex, and its C-neighbours on
the 14th and 16th lines of the outer repeat loop of Algorithm 1.

The inner repeat loop is the usual minimum flow algorithm® and computes a flow reduction
6 and a path along which the flow will be reduced by & (‘reducing path’). We start with a
feasible solution saturating all the arcs of N (it is easy to see that, from the way N is
constructed, this solution is feasible), and we try to reduce the flow from ¢, to s,. The
reduction step 6 along a path [coc;s;50] is defined recursively as follows: 8(cy) = , for each
arca=xy € A, 8(y) = min {6(x), @, — b,} and, finally, & = &(s,).

1264 journal of the Operational Research Society Vol. 46, No. |0

Once a minimum flow has been found, if the flows on the arcs of Eg are not integral, and
given that flows are rational numbers, we choose the S-vertex through which the maximum
(closest to 1) flow is sent. We then delete this vertex and its neighbours in C and we
re-calculate the upper and lower capacities in the survived network. Thus, at the end of each
iteration of the repeat loop of Algorithm 1, a number of C-vertices of N are deleted and,
consequently, after a number of steps, all C-vertices will be removed: this fact meaning that
they are covered by the S-neighbours that have entailed their deletion.

Procedure CONSTRUCT takes a time linear to the number of edges of B. On the other
hand, Algorithm 1 treats every path of N only once because of the way the quantity & is
defined on the vertices of N and also to the way ¢, and b, are computed fora € E.

In fact, let us suppose that a path A’ = [c,c;, c;5), 580), (i, j) # (0, 0) has been selected for
the flow reduction (inner repeat loop). Let us suppose also that the flows on the arcs and the
quantities & on the vertices of A’ are @, @, P00 &(cy), 6(c;), O(s;) and &(s,), respectively.
Then, the inner repeat loop determines &= min {&(c,), &c;), &(s;), 8(so)}. Let us note
here that &+ &(c;) because &(cy) = <. We then have to examine the following cases
concerning 9. -

(i) 6= &(c;); in this case, &(c;) = @, — b, and the reduction of flow along the path
considered gi"'es Ceye; = Pege, — 6(Cf)' i bcac,-: Pes; = Pes; — 6("‘:') = (pc,-s_,- — @, + bcnqs Pspso =
Ps s = (c;) = @, 50— Pee, + beye,- It is clear that the bound b, is attained for the arc coc; and
thus, Algorithm 1 cannot re-use this arc without violating the constraint on the capacity.
Moreover, the neutralization of this arc also neutralizes a number of paths of N.

(i) 6= 6(s;); then, with a similar reasoning, ¢, = b, and the lower bound is attained for
the flow on arc ¢;s;, this arc being neutralized, and consequently, a (maximal) path of N is
also neutralized.

(iii) 6= &(so); the same reasoning as in case (i) implies that @, = b,,, and thus the
neutralization of some paths containing arc s;s;.

We conclude that each path of N is treated at most once, the number of paths being equal
to the number of edges of B. So, the complexity of Algorithm 1 is of O(mn).

Example 2

Let us consider Example 1. In Figure 2(a), the flow values on the arcs of N computed by
the algorithm are shown. As one can see, Algorithm 1 fails to send integral flow values
through the arcs of N; consequently, it selects vertex s,, arc s,5, realizing the maximum flow
value on arcs of E;. The ‘reducing path’ is the path cyc35,5,. During the second (and last)
iteration, the algorithm includes vertex s, in the solution and, thus, finally $* = {s,, s,}.
Figure 2(b) shows the network of the surviving instance of SC constructed by the Procedure

cd

®)

Fic. 2. (a) The nerwork N of Figure 1(b) with the flow values computed by Algorithm 1; (b) the surviving network
(constructed by the Procedure CONSTRUCT), together with the upper and lower capacities and the flow passing
through its arcs.

M. Afif et al. —Heuristic For the Minimum Set Covering Problem 1265

CONSTRUCT, the upper and lower capacities on its arcs (the couple between the paren-
theses), and the flow passing through the arcs.

In fact, in the case where non-integral flow values are allowed the minimum flow problem is
polynomial. The NP-completeness of ® (that is, the discussion preceding Proposition 1
together with the proposition, constitute a proof for the NP-completeness of @) is due exactly
to the 0-1 requirements of the Eg-arcs. :

SOME REMARKS ON THE APPROXIMATION PERFORMANCE OF ALGORITHM 1

One can easily remark that, if every time we choose to reduce the flow along the path
[coc;siso] such that the arc coc; has the smaller lower capacity and the arc ¢;s; the smaller
upper one, then we produce Johnson's algorithm®. It is easy to see that such a path exists;
moreover, the way the capacities are computed implies that choosing such a path introduces,
in the solution of SC, the maximum cardinality set. If, on the other hand, we let Algorithm 1
choose arbitrarily the ‘reducing path’, then the solution for SC given by Algorithm 1 is not
always similar to the one provided by Procedure 1.

S T
repeat
choose a set S; of maximum cardinality;
S'<S'US;
C < C\S;
until C=J
end;

ProcepURE 1, Johnson's Heuristic. Its complexity is O{nm).

The experimental results we present in the section entitled ‘Discussion on the performance
of the three heuristics’ show that the two solutions are usually different. In Reference 4,
Johnson presents a counter-example, proving that the expression for the approximation ratio
of Procedure 1 is tight (the ratio of Procedure 1 is bounded above by 1+ max,.s{|S{}. It is
easy to see that Algorithm 1, when operating on this example, may perform a good sequence
of set choices, leading to the optimal solution.

NUMERICAL RESULTS

We perform here two types of experiments. The first type consists of measuring the
approximation ratio (this is a usual quality measure for an approximation algorithm?) of
Algorithm 1, and the second of comparing Algorithm 1 with the greedy SC-algorithm
(Procedure 1) from the points of view of execution time and solution quality efficiency.

We have produced three main groups of instances, the small, medium and large ones.

Concerning the small-size instances, we have produced ten groups of 20 instances per group
(in total 200 instances), the size of each group (size, n, of the set family) being in {10, 20,
..., 100}. The density of the instances, defined as the maximum cardinality of a set in the
instance, was less than or equal to 7 for all the problem instances produced. The number of
the sets, in which a given element of the ground set is contained, varied between 5 and 10
(again for all the problem instances produced). The cardinalities of the ground set varied from
5 to 45, for all instances.

For the exact solutions of the tested instances, we have developed a branch-and-bound
method for SC; the basic methodology is given in Reference 2.

1266 journal of the Operational Research Society Yol. 46, No. 10

For every group of instance sizes, we have evaluated two kinds of approximation ratio, the
worst case and the average case. For both methods the worst ratio equals 1.5. On the other
hand, the corresponding average case ratios are 1.17 for Johnson’s algorithm, and 1.09 for the
flow algorithm. As can be seen from Figure 3—where the worst and the average ratios for the
two heuristics per instance size are shown—by increasing instance sizes we have a good
approximation to the behaviour of both methods tested. Moreover, Algorithm 1 always
dominates Procedure 1 on both the worst and the average behaviours. Note also that the flow
algorithm has optimally solved 51% of the tested instances while, for Johnson’s algorithm, the
percentage of the optimally solved instances was 21.5% . Consequently, a first conclusion that
can be drawn is that Algorithm 1 seems to be very efficient and, therefore, a further
theoretical study of it is quite challenging.

Ratio

"0 20 a0 40 50 60 70 80 90 100
instance size

Fic. 3. Average and worst approximation ratios as functions of instance sizes. By rJ_w, rJ_a, rf—w, rf—a, we
denote the worst and the average case ratios of Procedure I and Algorithm 1, respectively.

In Table 1, a study of the mean execution times (in milliseconds) for the two heuristics for
each of the tested problem sizes is shown, while in Table 2 the average values of the main
performance parameters of both heuristics are summarized (all the experiments have been
performed on an IBM PS/2 286; the heuristics are implemented in PASCAL). Finally, in
Figure 4, the execution times as functions of instance sizes are shown). The two algorithms

TasLE 1. Mean execution times in milliseconds for Procedure I and Algorithm I
when solving small-size instances

Instance size Procedure 1 average time Algorithm 1 average time
10 44 43.1
20 65.6 57.7
30 105.8 98.9
40 123.4 124.3
50 132.6 137.4
60 175 -177.8
70 212.3 200.2
80 252.2 243.7
90 298.4 310.1

99 348.6 3723

M. Afif et ol — Heuristic For the Minlmum Set Covering Problem 267

TaBLE 2. Percentage of optimal solutions, average ratios and aver-
age execution times for Procedure 1 and Algorithm 1 on small-size
instances

Procedure 1 . Algorithm 1

% Optimal solutions 21.5 51 _
Average ratio 1.17 1.09
Average time 175.79 177.45

300
©
E 200
E

100

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Instance size

F1G. 4. Execution times as functions of instance sizes. By tJ, t_f, we denote the execution times of Procedure 1 and
Algorithm 1, respectively.

have comparable mean execution times (Algorithm 1 being 0.9% slower than Procedure 1),
but Algorithm 1 has substantially better approximation performance.

Next, in order to study the performances of the two algorithms on medium-size instances,
we have randomly generated ten large instances including 800 subsets drawn from a ground
set of 300 elements. The density of these instances is the same as the density of the small
ones, and the number of the sets in which a given element of the ground set is contained,
varies between 2 and 14. The cardinalities of the solutions, as well as the execution times, in
ms, for the two sequential heuristics (second members of the pairs in the second and third
columns), are shown in Table 3.

TasLe 3. (Solution cardinalities, execution times) for Procedure 1 and
Algorithm 1 on ten medium-size (n = 800, m = 300) instances

Instance Procedure 1 Algorithm 1
1 (35,2909) (33,3368)
2 (25,2959) (25,2828)
3 (28,5823) (26,5556)
4 (16,3631) (14,3914)
5 (26,2938) (26,2769)
6 (39,2122) (37,2080)
7 (30,1916) (29,1513)
8 (19,1929) (16,2144)
9 (26,4782) (26,4836)

10 (26,3927) (24,3798)

1268 journal of the Operational Research Society Yol. 46, No. 10

Algorithm 1 always dominates Procedure 1 from the point of view of the solutions’
cardinality; moreover, on average, it is 0.4% faster than Procedure 1 (the average execution
time of Procedure 1 is 3.293 s, while for Algorithm 1 the average execution time is 3.28 s).

Finally, we have generated ten large instances, including 2000 sets drawn from a ground set.
of 800 elements, of the same density as previously. As one can see in Table 4, where the
solution cardinalities and the execution times for these instances are given, Algorithm 1
(being on average 0.465% faster) always dominates Procedure 1 from the points of view of
both the solution quality and the execution time. For Procedure 1, the average execution time
is 22.29 s, while for Algorithm 1 this average time is 22.18 s.

TaBLE 4. (Solution cardinalities, execution times) for Procedure 1 and Algorithm 1 on
ten large (n = 2000, m = 800) instances

Instance Procedure 1 Algorithm 1
1 (658,19490) (649,22566)
2 (661,20234) (647,19338)
3 (656,23790) (653,25645)
4 (648,13170) (634,10384)
5 (604,32972) (583,33344)
6 (585,39067) (491,37275)
7 (688,20008) (609,18857)
8 (633,14290) (632,14007)
9 (592,13005) (556,14455)

10 (467,26850) (441,25968)

Concerning execution speeds, we think that for small-size instances, Procedure 1 is slightly
faster than Algorithm 1 because the latter performs capacity and flow computations which, in
the case of small sizes, have total computational time comparable to mn. But when mn
increases, the time needed for capacity computations becomes negligible (in comparison with
the quantity mn). This, in our opinion, informally explains why, for large mn values, the
average execution times for the two heuristics become almost identical.

CONCLUSIONS

We have proposed a new heuristic treating SC as a restricted version of a flow problem.
Our experiments show that this new heuristic is very efficient from the points of view of both
the execution time and the approximation quality, and it dominates the naturally greedy
algorithm which, however, is very efficient. An interesting theoretical problem arising from
this paper seems to be the study of theoretical approximation bounds for Algorithm 1.

Acknowledgements —Many thanks to an anonymous referee for pertinent suggestions and useful remarks, which
contributed to improving the presentation of this paper.

REFERENCES

ey

. C. Lunp and M. Yannakakis (1993) On the hardness of approximating minimization problems. In Proc.
Symposium on the Theory of Computing 1993. Pp- 286-293. Association for Computing Machinery, San Diego.

- C. H. Papabmrrriou and K. SteicLitz (1981) Combinatorial Oprimization: Algorithms and Complexity. Prentice
Hall, New Jersey.

. M. Sakarovitch (1984) Optimisation Combinatoire, Programmation Discréte. Hermann, Paris.

. D. 8. Jounson (1974) Approximation algorithms for combinatorial problems. J. Comp. Sys. Sci. 9, 256-278.

+ L. LovAsz (1975) On the ratio of optimal integral and fractional covers. Discr. Math. 13, 383-390.

bW (]

Received September 1992; accepted February 1995 after four revisions

