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Abstract 

It is shown that for any positive E the strip-packing problem, i.e. the problem of packing 
a given list of rectangles into a strip of width 1 and minimum height. can be solled within 
I c 2: times the optimal height, in linear time, if the heights and widths of these rectangles 
are all bounded below by an absolute constant 2 >O. @ 1998 Elsevicr Science B.V. All rights 

reserved. 

K~YIYJY~/S: Strip packing; Approximation algorithms 

1. Introduction 

Let L be a list of n (not necessarily distinct) pairs of positive numbers (I,,)?,). I < 

i < n. Each of these pairs specifies the dimensions, say width and height, of a rectangle. 

In the strip-packing problem we want to find (or to approximate) the minimum height 

of a vertical strip of width 1 into which all these rectangles. which we will also 

call pieces. can be packed, i.e. from which these rectangles can be obtained using 

only horizontal cuts (for each “width” side ) and vertical cuts (for each “height” side). 

It is assumed that all the widths are bounded from above by I. This model applie:, 

to certain scheduling and stock-cutting problems [2]. Let us consider, for instance. the 

multiprocessor scheduling problem. Here, the pieces may represent jobs to be executed 

on an unlimited number of processors with a limited common memory. The width of 

each piece represents the amount of memory required by the corresponding job and 

the height represents the required processing time. The question addressed here is then 

equivalent to asking for a schedule for which the total execution time is minimum. 

For any list L of rectangles let OPT(L) denote the minimum height needed to pack L 

and for any algorithm A let A(L) denote the height used by A to pack L. If the inequality 
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holds for some fixed constants CI and p and for every list L of rectangles with heights 

at most a fixed constant h and OPT(L) sufficiently large, then CI is called an asymptotic 

worst-case performunce bound of A. The best asymptotic bound obtained so far for a 

polynomial time algorithm is i and is due to Baker et al. [l] who improved previous 

results of Coffman et al. [4] and Golan [6]. 

Let S(L) denote the total area of the pieces in L. Let the performance ratio of a 

packing algorithm A be the infimum of the Cos for which (1) holds for every list L 

with sufficiently large S(L). The purpose of this paper is to show that, for any given 

8 > 0 and S > 0, there exists a linear time algorithm which has performance ratio d 1 + c 

when restricted to lists of rectangles with both dimensions bounded below by 6. We 

shall prove the following theorem. 

Theorem. For any given c > 0, h > 0 und 6 with 0 < 6 < min{ 1, h} there is an algorithm 

which pucks any list L of rectangles with heights bounded above by h and heights 

and widths bounded below by 6, into a strip qf width 1 and height at most 

(1 +a)OPT(L)+B, 

where /I is an absolute constant. This algorithm has a time bound of the jbrm Cln_tC2 

where n is the length of L and Cl and C, are constunts which depend only on E, h 

and 6 

The hypothesis that the heights are bounded above is standard in the strip-packing 

problem. Kenyon and Remila have shown recently that our additional hypothesis that 

the widths and the heights are bounded below is not necessary, i.e. the strip-packing 

problem is now known to have a polynomial time approximation scheme [9]. 

A similar approximation scheme was obtained by Femandez de la Vega and Lueker 

[5] for the one-dimensional bin-packing problem, without any restriction on the sizes 

of the pieces. In [5] and in the present paper, the execution time grows worse than 

exponentially as a function of l/c. Johnson [7] observed that, by letting t: depend on the 

instance L, one could use any such scheme to construct a polynomial time algorithm A 

such that A(L) < OPT(L) + o(OPT(L)). Johnson’s observation applies, in particular, to 

the scheme defined in this paper. Karmarkar and Karp [8] gave several algorithms with 

execution time growing only as a polynomial function of l/c for the one-dimensional 

bin-packing problem. 

2. Proof of the theorem 

As in [5], the main idea of the proof consists of reducing the problem to a restricted 

case where the number of distinct rectangles is bounded (by a function of E, 6 and 

h) and which can be approximately solved in constant time. However, an important 

difference is that in the case of one-dimensional bin packing it is almost trivial to 

deal with the small pieces whereas in the present case there does not seem to be a 



simple way to do so. This is why we need the condition that the heights and widths 

be bounded below. We will need the following propositions. 

Proposition 2.1. Anj* list L of rectungles sotisjies 

OPT(L) <2S(L) + h. 

This proposition is a partial result of CoRman et al. [4] obtained in the course of 

their proof that a certain algorithm A, when applied to a list L of maximum height I, 

gives a packing of this list with height A(L) <20PT(L) + 1. (See [4, Theorem I I). 

However, this algorithm requires sorting the list in the order of non-increasing height, 

and is not fast enough for our purposes. The next proposition gives a performance 

bound for a linear time algorithm on lists with a given minimum height. 

Proposition 2.2. There is u linrur time crlqorithm A ~lhich packs un~’ li.vt L of’ II 

wctunglcs ,i-ith masimum height h aizd minimum IztJiyht ij into a strip of’ heicqht 

A(L)<h(2iSF’S(L) + 1). (2) 

Proof. Pack the rectangles in L in the order in which they appear, using successive 

layers each of height h. Any two successive layers contain rectangles whose total area 

exceeds fi. Therefore, A(L) satisfies 

A(L)<h[2S(L)F’l <h(26-‘S(L) -t I). 

The outline of the rest of this section is as follows. The reduction of a general 

list L to the case where the number of distinct rectangles is bounded is presented in 

Section 2. I. In Section 2.2 we present another reduction (independent from the previous 

one) to a (non-standard) bin-packing problem. In Section 2.3 we show how this bin- 

packing problem can be solved in constant time on lists with a bounded number of 

distinct rectangles. Next, we conclude the proof by deriving from the previous results an 

algorithm with the properties stated in the theorem. Finally, we present some remarks 

and open problems. 

2.1. hilsduction to the case of’ a houndr>d number qf distinct rectungles 

In the sequel we occasionally treat lists as multi-sets. For instance, the intended 

meaning of the notation K = U,,,, K, where the K,‘s are lists is that K is a list con- 

taining each piece belonging to some K, with a multiplicity equal to the sum of its 

multiplicities in each K,. Assuming that the Kj’s are sorted. it is not hard to see that 

the list K can be constructed from the Kj’s in linear time. Similarly, L\K denotes a list 

containing each piece x in L with multiplicity equal to max{O,pr(x) - ,uK(s)}, where 

1.11.(.x) (resp. /(K(X)) denotes the multiplicity of x in L (resp. K). 



Let us define the type of a rectangle as the ordered pair (I, h) where 1 is the width 

and h is the height of this rectangle. Let Y(n, h,6) denote the set of lists containing 

n rectangles with heights bounded above by h and heights and widths bounded below 

by 6. The purpose of this section is to prove the following proposition. 

Proposition 2.3. Let el > 0 he given. There is a linear time algorithm nhich, ,zahen 

applied to a list L E 9(n, h, 6) bvith sz(ficiently large S(L), gioes two lists L1 and L2 

with 

(i> 
(ii) 

(iii) 

(iv) 

the f~liowing properties: 

LI satisfies S(L, ) d (cl/3)S(L); 

L2 contains no more than u constunt number C = C(EI, 6, h) of distinct types of 

rectangles; 

any pucking P of LI u L2 can be converted in linear time into a packing qf L 

whose height is at most (1 + EI ) times that of P;. 

OPT(L2) <( 1 + c,/3)0PT(L). 

Property (ii) is essential. It insures (see Section 2.3) that Ll can be packed optimally 

in constant time depending only on 15, h and ~1. 

Proof. For any rectangle x we denote its width by w(x). Let q satisfy 0~ q < 1. Let 

m denote a positive integer to be fixed later. Define 

I = [log,,-, (h/6)1. 

For each j with 2 <j < 1, let M, denote the list obtained from the sublist of L containing 

the pieces with heights in the interval [h$, hqj-‘) by setting the heights of all these 

pieces equal to hqi. Let A41 be defined similarly, but by choosing the heights in the 

closed interval [hII, h]. 

We define now a grouping of the pieces, which are similar to the one used in 

Femandez de la Vega and Lueker [S]. 

For 1 <j < 1, let us denote by nj = IM, 1 the length of the list Mj, and let us define 

qj by nj=mq,+rj, Odr,<m- I. 

For 1 <j < 1, let Kj = yj, 1 Qj, 1 yj,IQi.l. yi,nlQ,i,mRj be any list obtained by rearrang- 

ing M, in such a way that the following conditions (a)-(c) are satisfied. 

(a) IQj,1I=lQi,2l=...=lQi,nll=q, ~ 1; 
(b) for 1 di<m - 1, each piece x in the list Qi,; satisfies ~(~,~~)~w(x)~w(y,~,+~); 

(c) each piece x in Qj,mR, satisfies W(X)> W(,vj,n,). 

Let J = {j: S(A4,)3clS(L)/31}. (Notice that, for each ,j EJ, q, tends to infinity with 

S(L)). 
Finally, for j E J, set K3,, = y::, yy:*. . _v$~ and I& = yy;,yp3 . . ~y;~y/ql+~~, where y, 

denotes the rectangle with width 1 and height hyj. 

Let 

LI = u K,, L2 = u K2,,> L; = IJ K3,j, K= U K,. 

.iGJ iE.I itJ I S/G1 

Assertion (i) is implied by the definition of LI . 



Notice that, in going from K3j to Kz,j, we add q, + Y, pieces of width 1 and height 

h@ (and suppress some other pieces). Observe that we have K, = Mi. Again for j t J. 

we have q, <HI-‘/M,/ =m-‘IKII, w h ere the first inequality follows from the definition 

of 4,. We have also S(K2.j) >Sh~fmq~. This implies. with the previous inequality. 

for sufficiently large S(L) if we choose 172 = [S;(t:,ii)l and use the fact that y, tends to 

infinity with S(L). This implies 

Clearly, 

0PT(Lz)<OPT(L3) + 0PT(L2\L3). 

This gives, using Proposition 2.1 applied to the list L2\L3 and the obvious inequality 

XL; ) < OPT(L; ) 

OPT(tz )<OPT(Ll) + (2&,/7)OPT(L3) + h<( 1 + E:,‘~)OPT(L~) 

for sufficiently large S(L) and assuming ~1 < 1. This implies, of course, 

OPT(L?)<( 1 + c,;3)OPT(L) 

concluding the proof of assertion (iv). 

Clearly, there exists a one-to-one mapping from the multiset L, u Ll to the multiset 

K which is non-increasing on both coordinates. Thus, a packing containing the two 

lists LI and Lz gives trivially a packing of K. We can then obtain in an obvious 

way, a packing of L from a packing of L1 U L? by making a linear transformation in 

the vlzrtical direction with parameter rl _I. Therefore, assertion (iii) will be true if we 

choose q=(i +f:1)-‘. 

In order to conclude the proof of Proposition 2.3, it remains to verify that the 

involved computations can, indeed, be done in linear time. This is clear for the com- 

putations which follow the construction of the K,‘s (since m and ?I are constants for 

given 12. ii and ~1). Concerning the construction of the K,‘s. it suffices to observe as 

in [5j, that finding for some fixed index j a list satisfying the conditions imposed on 

K,, amounts essentially to find the elements J’j, 1,. . y,,nz in the list M,. i.e. to solve 

a fixed number of instances of the “selection problem” which is well known to be 

linear [3]. C- 

Proposition 2.4. Let h and e > 0 he gi~n. Considt~r u list L qf’rectanyles a-it11 lzei~ghts 

hounded uhore by h and jrith S(L) suffic’iently lur.ge. There is N nurnher H SWII thtrt 
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any packing of L into bins of height H using no more than (1 + E/~)OPTBINH(L) 

bins, (OPTBINH(L) denotes the minimum number of such bins into which L packs), 

can be converted into a strip-packing of L whose height is at most (1 + E) OPT(L) in 

linear time. 

Proof. We claim that 

(H - h)(OPTBINH(L) - 1) <OPT(L) d H OPTBINH(L). (4) 

The right-hand side inequality is trivial (just pile the bins one above the other). For 

the left-hand side inequality, observe that from any strip packing of L of height I, say, 

we can deduce a packing into k = [l/(H - h)] < (1/(H - h)) + 1 bins of height H: just 

put in the (j + 1)th bin all the pieces which are stictly contained between the levels 

j(H - h) and j(H - h) + H in the strip packing, 0 <j d k - 1. This concludes the proof 

of the claim. 

Now, assume that a bin packing of L using no more than (1 +a/2) OPTBINH(L) bins 

of height H has been found. It gives a strip packing of height (1 +E/~)H OPTBINH(L) 

which, by the left-hand side of (4), will be optimal within 1 + t’ as desired if the 

inequality 

(1 + c,‘2)H OPTBINH(L) d (1 + E)(H - h)(OPTBIN&) - 1) 

holds. This will be true if 

1 + a/2 ~ H - h OPTBIN - 1 

lfe H OPTBIN ’ 

which clearly holds for large enough H and OPTBIN( Since OPTBINH(L)> 

HP’S(L), once H is selected we can make OPTBINH(L) large enough by picking 

S(L) large enough. 0 

2.3. A constant time algorithm for bi-dimensional bin pucking with a bounded 

number of distinct rectangles 

Proposition 2.5. Let 6 > 0, h > 0, H 2 h and m E M be given. There is an algorithm 

which,for any sequence oftriples (l,,h,,nl),...,(lm,hm,n,) with 6,<li<l, 6<hidh, 

ni E N, 1 <i <m, finds in constant time an optimal packing of the multiset oj’rectun- 

gles (1,) h, )“I,. . . , (I,, h,)“lP1 into bins of height H. 

Proof. Given the set of types of rectangles {(Li, hk ), . . . , (l,n, h,)} define a bin type as 

an m-tuple of non-negative integers (kl, k2, , k,) with the property that the multi-set 

of rectangles (11, hl )kl,. . . , (I,, h, )km can be packed into a bin of height H. 

Notice first that, because of the lower bounds imposed on both dimensions, at most 

q = jH/J2] rectangles can enter into the same bin and thus the number of bin types is 



bounded above by 

which is the number of ways one can choose tn non-negative integers which add 

to q. 

Now, it remains to select within the multisets which are not discarded by this obvious 

area argument, those which are actually bin types. Let us show first that the problem 

of deciding whether or not some set K of rectangles whose cardinality is bounded by 

a fixed integer 4, can be packed into a bin of width 1 and fixed height can be solved 

in constant time. Let us say that a packing into a bin is lqji-bottom ,ju.vtified if no 

rectangle in this packing can be moved downwards or to the left without overlapping 

other rectangles. Clearly, if K packs into a bin B, there exists a left-bottom justified 

packing of K in B and we can therefore consider only such packings. Let lk” = II 

with II <(I. We claim that if P = P,, is a left-bottom justified packing of K, there exist 

left-bottom justified packings P, = 0, PI, , P,, = P. where for each 0 <k <II ~ I. Pi , 

is obtained from PX by adding a new piece (and leaving the positions of the pieces 

in PA unchanged). Using induction, it suffices to prove that P contains a (left-bottom 

justified) piece p whose upper- and right-hand side are in contact with no other piece 

so that the packing obtained by removing p is also left-bottom justified. To this end. 

let us define the sequence of pieces pr . , pk.. where pr is the rightmost piece of P 

with highest upper side and, for each k, pkLl is the highest piece with has a vertical 

contact with the right side of pk. Thus, the upper side of pk+t has no contact with 

any other piece. Clearly, this sequence is finite, ending with a piece p = pi, say. which 

has neither upper nor right-hand side contact. We can thus choose y = /7~,, and this 

concludes the proof of the claim. 

For any left-bottom justified packing P let us call a comer defined by the right side 

of a piece (or the left side of the bin) and the upperside of another piece (or the 

bottom side of the bin) an “active comer”. Such comers and only such comers may 

be occupied by an other piece to extend P. Note that 

(a) the horizontal component of the left edge of the new piece must match the hor- 

izontal component of the left edge of the bin or the right edge of some piece 

already packed, and 

(b) the vertical component of the bottom edge of the new piece must match the vertical 

component of the bottom edge of the bin or the top edge of some piece already 

packed. 

It follows immediately that a packing with k pieces has at most (k + 1 )’ active 

comers. This assertion together with the previous claim imply that we can decide in 

time < (q!)j whether or not some given multi-set of pieces can enter into a bin. (To 

see t.his, order the pieces in every possible way and observe that a left-bottom justified 

packing with k pieces can be extended to a left-bottom justified packing with I, + I 

pieces in at most (k + 1)2 ways.) The total time needed to find the distinct possible 
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types of bins is thus bounded above by the constant 

It remains to show that, having found the (bounded) set of possible types of bins, we 

can find an optimal packing of our multi-set of rectangles in constant time. Exactly as 

in [5], this problem amounts to solving an integer linear program in which both the 

number of variables and the number of constraints are bounded above by constants. 

This can, indeed, be done in constant time (see [lo]). 0 

2.4. End of the proof 

In order to get a packing of a list L with approximation ratio 1 + E get first the 

lists L1 and L2 with the properties stated in Proposition 2.3 with cl = &/lOh (and 

q =( 1 + &I)-‘). By using the algorithm of Proposition 2.2, pack the list LI within 

height at most 

&s(L) 
2hX’S(L,)+hd-- 15 + h <(46)0PT(L). 

Then, use the algorithm described in Section 2.3, with H = 7&-l, to obtain in constant 

time (since the number of distinct types in L2 is bounded) an optimal packing of L2 
into bins of height H. Convert this packing in the obvious way into a strip packing 

of L2 with height bounded by (1 + a/6)0PT(L2) <( 1 + c/6)(1 + ct/3)0PT(L) where 

the first bound results from Proposition 2.4 with s/3 in place of c and the second 

bound is obtained by using assertion (iv) of Proposition 2.3. Using assertion (iii) in 

Proposition 2.3, we can deduce from these packings of L1 and Lz a packing of L whose 

height is bounded above by 

(1 + aI )( 1 + a/6)( 1 + s,/3)0PT(L) + (e/6)0PT(L) < ( 1 + c)OPT(L) 

for E < l/2 and EI <cc/2 (by a routine check). This concludes the description of the 

algorithm and the proof of the theorem. 0 

3. Summary and conclusions 

We have shown that the strip-packing problem can be solved within 1 + E in linear 

time if the dimensions of the pieces to be packed are bounded below by a positive 

constant. Our work raises the following questions and remarks. 

- The reduction to two-dimensional bin-packing problem with a bounded number of 

pairwise distinct pieces is possible here because we can stretch slightly the pieces 

in the vertical direction with only a small loss in the objective function. Apparently, 

a similar reduction is not possible in the standard two-dimensional bin-packing 

problem. As it was mentioned by Fernandez de la Vega and Lueker [5], a basic 



obstruction comes from the fact that there is no natural order in the set Rh for any 

k>-2. 

The search for the allowable bin types is done in Section 2.3 by a brute lot-cc 

method which suffices for our needs. It would be interesting to find a more efficient 

algorithm. More specifically we ask if there exists an algorithm which, given a list 

of II rectangles, decides in exponential time, i.e. in time bounded by c‘” whcrc C‘ 

is an absolute constant, whether or not this list can be packed into a rectangle wtth 

given dimensions. 

~ Consider the following “bi-dimensional knapsack” problem: given a list L of rectan- 

gles. what is the maximum of the total area of a sublist of rectangles in L which can 

be packed in the unit square. Can this problem be solved within I t:: in polynomial 

tinte? 
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