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Abstract. On a complete weighted graph that changes dynamically by edge
weight updates, we consider the problem of maintaining efficiently a minimum
value b, such that the set of edges with weights less thanb induces a2-vertex
connected graph (in the undirected case) and a strongly connected graph (in the
directed case) on the same vertex set. These problems find application in mini-
mizing power consumption of wireless networks. We design a dynamic algorithm
of O(nα(n) log n) complexity per edge weight update for the first problem, and
a dynamic algorithm for the second one, whose experimental analysis shows its
appropriateness for use in practice.
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1 Introduction

We consider the following two problems on a complete weighted graphKn: determine
the minimum weight valueb (referred to as thebottleneckvalue) such that there is a set
of edges{e ∈ Kn|w(e) ≤ b} (abottleneck subgraph) inducing:

– a2-vertex connected (biconnected) spanning subgraph on the initial set of vertices,
when the input graph is undirected,

– a strongly connected spanning subgraph on the initial set ofvertices, when the input
graph is directed.

These problems find direct application in minimizing energyconsumption of wireless
adhoc networks [1, 2] and are solvable in polynomial time by well known greedy algo-
rithms. In this work we consider their dynamic versions, where we have to re-evaluate
the bottleneck valueb efficiently after an edge weight has been updated. Our targetis
to develop algorithms that re-evaluateb in less time than the time required to solve the
problem from scratch.

Our work falls in the field of dynamic graph algorithms. A dynamic graph algorithm
maintains a graph property when the underlying graph changes by edge insertions and
deletions (or equivalently edge weight decreases and increases). Dynamic maintenance
of graph connectivity properties has been extensively dealt with (see e.g. [3]). Dynamic
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network optimization problems include minimum cost spanning tree (MST) [4], short-
est paths tree [5], and all-pairs shortest paths. Dynamic transitive closure (which is
related to strong connectivity) on digraphs has recently seen progress [6].

We design dynamic algorithms for the biconnectivity (section 2) and strong connec-
tivity (section 3) bottleneck. In section 4 we present some experimental results for our
algorithms and conclude. Throughout the paper graphs are represented with their edge
set and set operations over graphs are with respect to their edge sets, unless otherwise
stated. Subgraphs are also edge-induced unless otherwise stated.

2 Biconnectivity

A graph is biconnected if removal of1 vertex (along with its incident edges) does not
disconnect the graph. Alternative characterization stemsfrom Menger’s theorem: the
graph is biconnected iff there are2 (internally) vertex-disjoint paths connecting every
pair of vertices. It is known that a bottleneck biconnected subgraph (if it exists) can be
found in linear time with respect to the input graph’s edges [7]. We review here a simple
static algorithm for obtaining the biconnectivity bottleneck. This algorithm, although of
superlinear complexity, it will be useful for our purposes.

A Static Algorithm. The algorithm ”grows” a bottleneck biconnected subgraph ofa
complete weighted graphKn by first finding a minimum weight spanning tree (MST)
of Kn, and subsequently augmenting it with additional edges to biconnect it:

1. Find a MSTT of Kn, and setB = T .
2. foreach (u, v) ∈ Kn −B in order of non-decreasing weightdo:
3. if u andv not in the same biconnected component, insert(u, v) in B.
4. return maxe∈B w(e).

This algorithm is referred to withb-biconnect. The final subgraphB produced
by b-biconnect is sparse, i.e.|B| = O(n). Indeed, the MSTT contains exactly
n − 1 trivial biconnected components (the MST edges), and since each edge insertion
in a second phase always merges at least two different biconnected components into
one, at mostO(n) insertions take place. The algorithm is implemented using the in-
cremental algorithm of [8] for maintaining the biconnectedcomponents under edge
insertions: each insertion incursO(α(n)) amortized time and a query of whether two
vertices are in the same biconnected component also incursO(α(n)) time. α denotes
the inverse of Ackermann’s function. A simple implementation ofb-biconnect in-
cursO(n2 log n) complexity (due to sorting the edges). We introduce a definition:

Definition 1. A Bottleneck Spanning Biconnector(BSB) of a weighted (not necessarily
biconnected) graphG is an edge subgraphB ⊆ G, such that for every edge(u, v) 6∈ B

there are two internally vertex-disjoint paths inB connectingu to v, and for every edge
e on these pathsw(e) ≤ w(u, v).

We show that ifG is biconnected, a BSBB ⊆ G contains a bottleneck biconnected
subgraph ofG. If G is biconnected,B is also biconnected (otherwise the definition is
contradicted). LetG have biconnectivity bottleneckb. Let B+ ⊆ B contain edges with
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weight> b and assume that,B − B+ is not biconnected. Then there are some edges
B− ⊆ (G − B), with weight≤ b, such that(B − B+) ∪ B− is biconnected. Edges in
B− weigh less than edges inB+, thus there is at least one edgee ∈ B− ⊆ (G−B) with
w(e) weighing less than some edge on one of the two vertex-disjoint paths biconnecting
the endpoints ofe in B: a contradiction to the BSB definition.

Lemma 1. Algorithmb-biconnect produces a BSB of its input graph.

Proof. It is an MST property that for every edge(u, v) 6∈ T there is au − v path in
T with w(e) ≤ w(u, v) for all edgese in the path. Sinceu is not biconnected tov
in T , it must be the case that a set of edges inB − T picked prior to examination of
(u, v) biconnectedu to v. Examination of edges in non-decreasing weight order gives
the result. ut

The dynamic algorithm. The complete weighted graphKn is encoded in asparsifica-
tion tree[3] in the following way. For eache ∈ Kn the tree has a leaf nodexe, which
represents the graphG(xe) of n vertices and of a single edgee. Each internal nodex
has two children, sayy andz, and it represents the graphG(x) = G(y) ∪ G(z). The
root noder of the tree represents the complete weighted graphG(r) = Kn. Since at
some level of the tree there might be an odd number of nodes, atmost one of the nodes
in the upper level may eventually have three children. In thesequel we consider nodes
with two children, without affecting generality.

Let x be a node of the sparsification tree andy, z be its children. Store atx the
edge subgraphC(x) ⊆ G(x), which is the output ofb-biconnect when executed
onC(y)∪C(z). For leaf nodesxe setC(xe) = G(xe). It is shown thatC(r) is a sparse
bottleneck biconnected subgraph ofG(r) = Kn:

Lemma 2. (Monotonicity of BSBs) LetG = G1 ∪ G2 be an arbitrary edge partition
of a weighted (not necessarily biconnected) graphG, andC1 ⊆ G1, C2 ⊆ G2, be BSBs
of G1, G2 respectively. ThenC1 ∪ C2 is a BSB ofG.

Proof. For every edgee = (u, v) ∈ G − C1 ∪ C2 there exist two vertex-disjoint
paths, either inC1 or in C2, connectingu to v, and for every edgee′ of these paths
w(e′) ≤ w(e), by definition. ut

This implies thatC(r), being the output ofb-biconnect is a BSB ofG(r), and
clearly a bottleneck biconnected subgraph ofKn, by lemma 1. Consider updating the
weight of an edgee. The dynamic algorithm is as follows: letxe be the leaf node that
containse. Starting fromxe and following the path fromxe towards the rootr of the
sparsification tree recomputeC(x) for all nodesx on the path. ThenC(r) is a novel
bottleneck biconnected subgraph ofKn.

Theorem 1. The biconnectivity bottleneck can be maintained inO(nα(n) log n) time
per edge weight update.

Proof. The sparsification tree is ofO(log n) height. Algorithmb-biconnect outputs
edges sorted in order of non-decreasing weight. Thus merge-scanning the BSB edges
stored at a nodes’s children provides them in order of non decreasing weight.Union-find
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data structures are used for computing the MST, while augmentation towards biconnec-
tivity is performed using the incremental algorithm of [8].Since at mostO(n) edges
are merge-scanned for each tree node, the result follows. ut

The sparsification tree hasO(n2) nodes, and findingC(x) for each nodex incurs
O(nα(n)) complexity. Bottom-up construction incursO(n3α(n)) complexity. Further-
more, the dynamic algorithm is ofO(n3) space, since each node storesO(n) edges.
One intriguing question is whether lower complexity can be achieved per edge update.
In the context of maintaining explicitly a bottleneck biconnected subgraph the proposed
algorithm is optimal up to polylogarithic factor:there is a complete graph with appro-
priately set edge weights and an infinite sequence of updatessuch that the bottleneck
biconnected subgraph is sparse and unique and each update causes it to change by
O(n) edges.We omit a formal proof of this due to lack of space.

3 Strong Connectivity

For the strong connectivity bottleneck we design a lazy dynamic version of a well
known static algorithm. A lazy algorithm encodes the execution of a static algorithm in
an appropriate data structure, and when an update of the input data occurs, it efficiently
invalidates encoded information relevant to the updated portion of the input data. The
static algorithm is then executed to complete a partial solution. The lazy algorithmic
approach does not generally improve on complexity, but doesimprove on running time
in practice. There are partial arguments against existenceof improved complexity dy-
namic algorithms for strong connectivity [9]. Such a lazy algorithm is the only known
alternative for dynamic shortest paths [5, 10].

We assume a complete weighted digraphKn with arc weightsw(a) ≥ 0. For each
arc a = (u, v), t(a) = u is the tail vertex ofa, while h(a) = v is its head ver-
tex.Weakly/strongly connected componentsare abbreviated to WCC/SCC. For a vertex
subsetS let δ(S) = {a ∈ Kn|h(a) ∈ S, t(a) 6∈ S} (exactly the “in” cut-set ofS).

A static algorithm. A contractionalgorithm, also used for calculating a minimum
weight directed minimum spanning forest [11, 12] is discussed. A contraction opera-
tion applies to a directed cycle of vertices and replaces thecycle by a single vertex
(called thecontraction vertex), maintaining all arcs incident to cycle vertices if one
their endpoints do not belong in the cycle. The algorithm is as follows:

1. H ← ∅
2. while Kn is not a single vertexdo:

(a) pick a vertexv with δ(v) ∩H = ∅ andδ(v) 6= ∅.
(b) leta? ← arg mina∈δ(v) w(a) and inserta? in H .
(c) if a directed cycle has occurred,contractthe cycle into a single vertex.

3. return maxa∈H w(a)

This algorithm is referred to withb-str connect. One can easily verify that it
produces a bottleneck strongly connectedH . At most O(n) contractions take place,
hence|H | = O(n). Every contraction vertex in some iteration corresponds toa SCC of
H having emerged in that iteration, as a directed cycle between smaller SCCs. Hence
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a contraction vertex corresponds to a set of vertices of the initial graph, having formed
a SCC with respect to the currentH of some iteration. We refer to these sets asactive
sets. The vertices of the initial graph are trivial SCCs and trivial active sets. In each
iteration ofb-str connect an active setS (represented with a contraction vertex)
is associated with auniquearc, which is denoted witha(S). Accordingly letS(a) be
the active set which caused insertion ofa in H . Implementation ofb-str connect
is discussed in [13, 12, 11], and for a complete digraph its complexity isO(n2).
Data Structure. A natural tree data structure, namely theActive Sets Tree(AST), en-
codes the contractions performed byb-str connect. Its vertices are referred to as
’nodes’ in order to distinguish them from the digraph’s vertices. The AST is defined as
follows:

– Each contraction vertex (also an active set) is representedwith a single AST node
S. Each initial digraph vertexv is also represented with a ’trivial’ node denoted
with {v}.

– An AST nodeS stores:a(S), children(S), parent(S).
– If S is not trivial children(S) holds pointers to AST nodes representing contrac-

tion vertices which formed a directed cycle and were contracted to the vertex rep-
resented byS.

– parent(S) is a pointer to an AST nodeR which represents a vertex to which
the vertex represented byS was contracted. IfS is not contractedparent(S) =
{t(a(S))}.

These definitions imply a tree data structure, i.e. the AST, becauseparent(S) is
unique: theS-vertex was either contracted to a unique vertex, or not, in which case
a(S), hence{t(a(S))} is unique. The AST hasO(n) nodes. From each nodeS the
active setS can be constructed by a breadth first search (BFS) starting fromS towards
its trivial descendants. Implicit access to active supersets of S is given by following a
path fromS towards the AST root.TS will denote the AST-subtree rooted at nodeS. A
straightforward augmentation ofb-str connect can provide the AST along withH :
each time an arc incoming to some vertex (with AST node representationS) is selected,
seta(S) andparent(S) = {t(a(S))}. When a directed cycle is contracted place a new
AST nodeS, and make it the parent node of the cycle’s nodes, while appropriately
settingchildren(S).

3.1 The dynamic algorithm

Let H be a bottleneck strongly connected subgraph. Then, increasing the weight of
an arc at a value less than the current bottleneckb or if the arc does not belong in the
maintained bottleneck subgraph, the optimum bottleneck isnot affected. This is the case
also when decreasing the weight of an arc at a value greater than the current bottleneck.
The overall structure of the dynamic algorithm is the following:

increase(a,w′(a))

1. if a ∈ H and w′(a) > b do:
2. invalidate part ofH relevant toa
3. updatew(a) to w′(a)

4. update data structures
5. executeb-str connect

decrease(a, w′(a))

1. if w′(a) < b anda replacesa′ ∈ H do:
2. invalidate part ofH relevant toa′

3. updatew(a) to w′(a)

4. update data structures
5. executeb-str connect
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We discuss the important parts of the two operations, namelyinvalidating part ofH
with respect to an arca (for increase), the replacement testperformed bydecrease,
which decides whethera 6∈ H should replace some arc ofH , and usage and update of
data structures. Note thatincreaseanddecreasediffer only in thereplacement test.

Invalidating H . Invalidation of part ofH with respect to an arca ∈ H , consists of
removing fromH a(R) for all R ⊇ S, and deleting the corresponding AST nodes
for all R ⊃ S. Deletion of the AST nodes results in a re-arrangement of theAST. In
particular, starting fromS(a) and following a path towards the AST root, the following
operations are performed:

1. RemoveR from the AST anda(R) from H .
2. All childrenC of R change their parent: setparent(C) = {t(a(R))} and addC to

children({t(a(C))}).

This process is precisely the reverse of the one followed forthe construction of
the AST in the previous paragraph. It should also be noted that S is not entirely in-
validated: it only loses itsparent(S) anda(S), but it is subject to processing from
b-str connect when it is re-executed (i.e. it will be a SCC vertex set of the up-
datedH). One can verify that this process rearranges the AST in sucha way, thatS
becomes its new root. Furthermore the AST does not become disconnected: all nodes
changing their parent are hanged under the subtreeTS, by definition of contractions (a
more formal proof is omitted due to lack of space). During invalidation each AST node
is touched at most once. Hence invalidation is ofO(n) complexity.

Replacement Test.Consider an arca 6∈ H , decreasing its weight tow′(a) < b. This
may cause the replacement of an arca′ ∈ H . This happens if an active setS with
a(S) = a′ hasw′(a) < w(a′) anda ∈ δ(S). We care for theearliest (lower lying in
the AST) such active setS, which should replace itsa(S).

Such an active set is identified by following a path from{h(a)} towards the AST
root and checking for each nodeS visited whetherw(a(S)) > w(a). If no such nodeS
is found the test fails. Otherwisea ∈ δ(S) is tested: for this purposeS is constructed by
a BFS onTS as explained previously. If this test is positive also, thenAST information
related toa(S) = a′ is cancelled, data structures are updated, andb-str connect is
executed. Identifying a candidate active set and constructing it takesO(n) time.

Notably, the strategy of re-executingb-str connect from scratch per arc weight
decrease (below the current bottleneck) has no way of performing areplacement test,
because active sets are not maintained.

Data Structures and Complexity.All known implementations ofb-str connect
[13, 11, 12] handle contraction usingunion-finddisjoint set representations of SCCs
and WCCs ofH . For each (contracted) SCCS unionable priority queues implement
δ(S) [11]. For a complete digraph the achieved complexity is optimumO(n2). These
data structures must be initialized so as to reflect the stateof H after invalidation related
to some arca. As explained previously,H invalidation results in a tree rooted atS(a) =
S, hence invalidatedH remains weakly connected (a single WCC). A singleO(n) time
BFS of the AST can provide all the SCCs with respect to the currentH set. Simply store
for eachS node of the AST its trivial descendants. Hence disjoint setsrepresentation of
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Gain in Execution Time per Weight Update
Sequence Type Biconnectivity Strong Connectivity

Decrease Only 90% − 92%

Mixed Õ(n) vs.O(n2) 62% − 65%
Increase Only 39% − 41%

Table 1.Summary of results.
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Fig. 1. The proposed dynamic algorithms against executing the static ones per edge update. Bi-
connectivity is examined on the left, while strong connectivity on the right diagram.

the SCCs can be found inO(n) time. A priority queue is then initialized for each such
SCC, by scanning the arcs incoming to its vertices in a total of O(n2) time.

4 Experimental Evaluation

Both dynamic algorithms were evaluated experimentally against re-execution of the
static ones per weight update. Implementations were grown in standard C++, using the
gcc 3.3.2 compiler.CPU time was acquired by thegetrusage() system call on
a P4 2.4GHz, 512MB machine underLinux Kernel 2.6.11. AverageCPU
time per weight update was measured over 100 sequences with 10000 weight updates,
of differing initial complete graphs of 100 to 1000 verticesand edge weights drawn uni-
formly in 1. . . 10000. A weight update was decided to be anincreaseor decreasewith
1

2
probability. Weight increase raises the weight of a randomly selected edge belonging

in the maintained subgraph beyond the bottleneck valueb, while weight decrease was
performed on a randomly selected edge not belonging in the maintained subgraph and
below b. Hence the algorithms could not ignore an update (without executing at all).
Table 1 summarizes the gain in execution time per weight update.

The dynamic algorithm for the biconnectivity bottleneck was compared against the
algorithm of [7] withO(n2) complexity per update on sequences of mixed weight in-
crease/decrease operations selected with probability1

2
. The graph on the left of fig. 1

depicts the averageCPU time per operation taken by each strategy and confirms the
asymptotic superiority of our dynamic algorithm.
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The dynamic algorithm for the strong connectivity bottleneck handles weight in-
creases and decreases in an asymmetric manner, because it employs an additionalre-
placement testfor weight decreases, before invalidating the data structure. For this rea-
son the algorithm was tested on three types of sequences: increase-only, decrease-only,
and mixed operations. AverageCPU times per operation are compared on the right of
fig. 1 for each type of sequence against the average executiontime ofb-str connect
(it was roughly the same for all three sequence types, hence an average is depicted). As
shown in table 1 an impressive stability of gain inCPU time over all graph sizes is
evident. The discussed replacement test for weight decrease operations amplifies the
performance of the algorithm and contributes to the averageof mixed sequences.
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