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Abstract

We consider the problem of updating efficiently the minimum value b over a weighted
graph, so that edges with a cost less than b induce a spanning subgraph satisfying a k-edge
or 2-vertex connectivity constraint, when the cost of an edge of the graph is updated. Our
results include update algorithms of almost linear time (up to poly-logarithmic factors)
in the number of vertices for all considered connectivity constraints (for fixed k), and a
worst case construction showing that these algorithms are almost optimal in their class.

1 Introduction

On a weighted graph G(V,E) of n vertices and m edges we consider the problem of maintaining
efficiently a minimum value b in between updates of edge costs, so that the spanning subgraph
induced by edges with a cost at most b is k-edge (for fixed k) or 2-vertex connected. A graph
is k-edge/vertex connected if removal of k − 1 edge/vertices respectively does not disconnect
it or, alternatively, if every pair of verices is connected via at least k edge- or vertex-disjoint
paths respectively. It is assumed that G satisfies the same constraint. The value b is referred
to as the bottleneck value for k-edge- or 2-vertex-connectivity of the underlying graph.

We design efficient dynamic algorithms that update b, when the cost of an edge of the
underlying graph is updated. Our work falls in the field of dynamic graph algorithms, that
maintain efficiently the solution to a graph problem over a dynamic graph, changing by well
defined perturbations, most commonly edge insertions and deletions. A dynamic algorithm
encodes the dynamic graph along with supplementary information related to the problem
at hand into an appropriate data structure, and offers update operations for edge deletions
and/or insertions. It also offers an operation for querying the solution to the problem. Fully
Dynamic algorithms handle both kinds of operations, while incremental/decremental algo-
rithms handle exclusively edge insertions or deletions (see [6] for a survey).

Bottleneck optimization for graph connectivity models minimum energy consumption min-
imization in wireless adhoc networks subject to ensuring connected fault-tolerant topolo-
gies [12], and generalizes the problem of deciding whether a dynamic graph changing by edge
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insertions/deletions is k-connected (by usage of binary costs simulating absence/presence of
an edge). Previous work on bottleneck optimization problems includes a linear O(m+n) time
algorithm for finding a bottleneck simply connected spanning subgraph [2] (see also [4]), al-
gorithms for the directed bottleneck spanning tree, the bottleneck maximum cardinality match-
ing [8], and O(m + n) time algorithm for the bottleneck 2-vertex connected spanning sub-
graph [13]. To the best of our knowledge, no previous results concerned dynamic bottleneck
optimization.

In this paper we design efficient dynamic algorithms for bottleneck k-edge connectivity, for
arbitrary fixed k (section 3), and 2-vertex connectivity (section 4). We also give a justification
of the intuition that our developments are of near-optimal complexity (section 5).

2 Preliminaries

We talk of k-connectivity when our statements apply to both kinds (edge and vertex) of
connectivity. A vertex/edge whose removal increases the number of connected components of
a graph is referred to as cutvertex/bridge respectively. End-vertices of a bridge are cutvertices.
All graphs in this paper are denoted with their edge set and have n vertices. All set operations
between graphs are with respect to their edge sets. Given a minimum spanning forest (MSF)
F and two vertices u, v, [u · · · v]F denotes the edge set of the unique path connecting u
to v in F , if such a path exists, otherwise define [u · · · v]F = ∅. A bottleneck k-connected
(spanning) subgraph of a weighted graph G is a k-connected spanning subgraph of G, the
most expensive edge of which has a cost equal to the bottleneck value for k-connectivity of
G. Notation Õ hides polylogarithmic factors from the complexity expression. The notion of
sparse certificates has found extended application in designing dynamic graph algorithms [7].
We use the following definitions for certificates:

Definition 1 A sparse certificate for bottleneck k-connectivity of a weighted graph G is a
spanning edge-subgraph C of G with O(n) edges, such that the bottleneck k-connected subgraph
of C is a bottleneck k-connected subgraph of G.

Definition 2 A relaxed certificate for bottleneck k-connectivity of an arbitrary weighted graph
G is a (not necessarily spanning) subgraph C ⊆ G, such that, for every edge (u, v) ∈ G \ C
there are k edge- or vertex-disjoint paths (depending on the kind of connectivity in discussion)
that connect u and v in C and for each edge e on these paths c(e) ≤ c(u, v).

Apart from relaxed certificates, all other subgraphs will be spanning, unless otherwise stated.
Incremental Algorithms Throughout the paper we use incremental algorithms for main-
taining k-connected components of a graph changing by edge insertions. These algorithms
provide operations for inserting an edge and for querying whether two vertices of the current
graph belong in the same k-connected component (i.e. are k-connected to each other) or not.
In particular, for edge connectivity we will use the algorithms developed in [16, 15, 5], for main-
taining 2−, 3−, and 4-edge connected components of an initially 1-, 2-, and 3-edge connected
graph respectively, spending amortized times of order O(1), O(α(m,n)), and O(α(m,n)), per
insertion or query, where m denotes the total number of inserted edges, and α is the inverse
Ackermann’s function. For 2-vertex connectivity we will use the incremental algorithm de-
scribed in [16], which has amortized O(α(m,n)) complexity per edge insertion or query when
the initial graph is not known to be connected and O(1) amortized time when it is connected.
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Algorithm 1: Algorithm k-E-CONNECT.

Input: G, ~c, k
Output: E ⊆ G
E ← ∅;
for r = 1 . . . k do

for e = (u, v) ∈ G− E in order of non-decreasing cost c(e) do

if u and v not r-edge connected then

insert (u, v) in E;
end

end

end

return E;

3 Edge Connectivity

For k-edge connectivity we use the technique of sparsification introduced in [7]: we maintain
dynamically a sparse certificate for bottleneck k-edge connectivity per edge cost update, and
execute a static algorithm over the (updated) certificate for obtaining a bottleneck k-edge
connected subgraph. The bottleneck value for this subgraph will be the bottleneck value
for the underlying graph. As a certificate for bottleneck k-edge connectivity we use a slight
modification of the certificate proposed in [14, 3]. This certificate is the subgraphFk = ∪k

i=1Fi,
where Fi is a MSF of the subgraph G−(∪i−1

j=1Fj). As shown in [14, 3], Fk is a sparse certificate
of k-edge connectivity of G, that is |Fk| = O(n), for k = O(1) and G is k-edge connected if
and only if Fk is k-edge connected. This result is extended to our case as follows:

Lemma 1 If the weighted graph G is k-edge connected, then Fk ⊆ G is a sparse certificate
for bottleneck k-edge connectivity of G, for any fixed value of k.

Proof. Suppose that G is k-edge connected. Let C be a bottleneck k-edge connected
subgraph of G (that is, a certificate for bottleneck k-edge connectivity of G). We will transform
C into a subset of Fk, without increasing its bottleneck value. Replace every edge (u, v) ∈ C,
(u, v) 6∈ Fk, with the edge set (∪k

i=1[u · · · v]Fi
). Then we observe that since (u, v) 6∈ Fk, u and

v must be connected in every Fi, i = 1 . . . k through a unique path (otherwise (u, v) should
belong in exactly one Fi). Furthermore, by optimality of MSF Fi, (u, v) must be the most
expensive edge on the induced cycle (u, v) ∪ [u · · · v]Fi

for i = 1 . . . k. Thus (u, v) is replaced
by k edge-disjoint paths connecting u and v, while the bottleneck of C does not increase. 2

As mentioned in [7], maintenance of Fk can be performed by using k copies of a fully
dynamic MSF algorithm. For our purposes we use the dynamic algorithm proposed in [10] of
O(log4 n) amortized update time. Note that the algorithm of [10] handles edge insertions and
deletions, while in our case we want to maintain Fk under edge cost modifications. Therefore,
update of an edge’s cost is handled as deletion of that edge from the underlying graph and
re-insertion at the new cost. This is handled by the k copies of the dynamic MSF algorithm
as O(k) edge insertions and deletions.

The second ingredient of our dynamic algorithms for k-edge connectivity is a static al-
gorithm for extracting a bottleneck k-edge connected subgraph from Fk. Algorithm 1 is a
general algorithmic scheme for finding a bottleneck k-edge connected subgraph of G.
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We refer to algorithm 1 as k-E-CONNECT. It is easy to verify that k-E-CONNECT
produces a bottleneck k-edge connected subgraph of its input graph: in the r-th iteration,
right before insertion of the maximum cost edge, er, there are exactly two r-edge connected
components in E. Clearly insertion of any edge e with c(e) ≤ c(er) could not merge the
two components into one, thus er is optimum for the r-th iteration. Consequently the most
expensive edge inserted in E in the k-th iteration has cost equal to the bottleneck value for
k-edge connectivity of G.

Implentation of k-E-CONNECT for k ≤ 4 can be carried out using the incremental algo-
rithms discussed in section 2. The initialization time of each algorithm is O(m + n), m being
the number of edges of the graph on which the algorithm is initialized. The total time spent
in initialization is O(m + n) because k = O(1).

For the general case of fixed k > 4 we use a different implementation of k-E-CONNECT,
which makes use of an incremental algorithm proposed in [9], that answers queries regarding
the minimum edge cut of a graph changing by edge insertions. k is the value of the minimum
cut in this case. Edge insertions are supported in O(k log n) time, while queries regarding the
minimum cut are answered in O(1) time. The algorithm for extracting a bottleneck k-edge
connected subgraph scans the edges of the input graph in order of non-decreasing weight and
propagates an edge to the output subgraph if the minimum cut is less than k. For what
follows we assume this scheme as a part of k-E-CONNECT (by adding a check for the value
of k) for ease of presentation.

In order to execute k-E-CONNECT over the certificate Fk we need to maintain the edges
of Fk sorted in order of non-decreasing cost. Therefore we also use a balanced binary tree,
to encode Fk. During update of Fk when dynamic MSF insertions/deletions take place, each
deleted edge is also deleted from the balanced binary tree, while each inserted edge is also
inserted to the tree. Using the tree we can always scan the edge set of Fk in order of ascending
cost when executing k-E-CONNECT. We can now state the following result:

Theorem 1 A bottleneck k-edge connected subgraph can be maintained in at most O(n log n)
complexity per edge cost update and in O(n log4 n) time per O(n) edge cost updates, for any
fixed value of k. In detail the complexity is:

• O(n) per edge operation for k = 2.

• O(nα(n, n)) per edge operation for k = 3, 4.

• O(n log n) per edge operation for fixed k > 4.

Proof. Recall that we update Fk per edge operation and run k-E-CONNECT on the updated
Fk. A single edge cost update causes O(k) edge deletions and insertions to happen during
update of Fk, each of them taking O(log4 n) amortized time. Furthermore, it causes O(k)
removals and insertions of edges, each of O(log n) time, in the balanced binary tree storing
edges of Fk. Thus the total time for updating the certificate for a single edge cost update
is O(log4 n), given that k is a fixed constant. Thus, updating of Fk takes O(log4 n) time
for a single edge cost update and O(n log4 n) time for O(n) edge cost updates. Execution of
k-E-CONNECT over the updated certificate Fk is of Õ(n) time, with polylogarithmic factors
given by running times of incremental algorithms [16, 15, 5, 9], and because |Fk| = O(n). 2
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Algorithm 2: Algorithm 2-V-CONNECT.

Input: G, ~c
Output: B ⊆ G
Find a MSF F ⊆ G;
B ← F ;
for e = (u, v) ∈ G in order of non-decreasing cost c(e) do

if e 6∈ B and u,v not 2-vertex connected in B then

insert (u, v) in B;
end

end

return B;

4 2-Vertex Connectivity

For 2-vertex connectivity we convert the static algorithm 2, referred to as 2-V-CONNECT,
into a dynamic one, using sparsification. 2-V-CONNECT grows a bottleneck 2-vertex con-
nected subgraph of G by first computing a MSF of G, which it augments with additional edges
so as to 2-vertex connect it. Provided that edges are sorted in order of non-decreasing cost,
a MSF is found by Kruskal’s algorithm, while insertions and 2-vertex connectivity queries
are implemented by the incremental algorithm of [16]. We prove two properties of 2-V-
CONNECT:

Lemma 2 Algorithm 2-V-CONNECT produces a sparse (O(n) size) subgraph of its input
graph.

Proof. In 2-V-CONNECT B is initialized to be a MSF of the input G, containing at most
O(n) edges. An edge (u, v) is inserted during the loop of 2-V-CONNECT, if and only if the
unique path connecting them in B prior to insertion of (u, v) contains at least one cutvertex
and/or at least one bridge (because u,v are simply connected, but not 2-vertex connected). An
edge inserted during the loop cannot become a bridge, because its removal does not increase
the number of connected components of B. There are at most O(n) cutvertices and at most
O(n) bridges (edges of F ), thus at the end of the loop |B| = O(n). 2

Lemma 3 Algorithm 2-V-CONNECT produces a relaxed certificate for bottleneck 2-vertex
connectivity of its input graph (which is not required to be 2-vertex connected).

Proof. Given a MSF T , for every edge (u, v) 6∈ T it is known that there is a u − v path
in T with c(e) ≤ c(u, v) for every edge e on this path. Since u is 2-vertex connected with
v in B, there must be a set of edges in B \ T , that 2-vertex connected u and v and were
selected by 2-V-CONNECT before (u, v) was examined. Since edges are examined in order
of non-decreasing cost, the result follows by definition 2. 2

We prove a property of relaxed certificates next:

Lemma 4 A relaxed certificate B ⊆ G for bottleneck 2-vertex connectivity of G is a certificate
of G for bottleneck 2-vertex connectivity, if G is 2-vertex connected.
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Proof. If G is 2-vertex connected, then B is also 2-vertex connected by definition 2. Suppose
that G has a bottleneck value b for 2-vertex connectivity. Suppose that B+ ⊆ B contains
all edges with cost > b and assume that B \ B+ is not 2-vertex connected. Then there is a
set of edges B− ⊆ (G \ B), with cost ≤ b, such that (B \ B+) ∪ B− is 2-vertex connected.
Edges of B− cost less than the ones of B+, thus there must exist an edge e ∈ B− with cost
c(e) less than the cost of an edge on the one of the two vertex-disjoint paths connecting the
endvertices of e in B, which is a contradiction to definition 2. 2

4.1 Dynamic Algorithm

We elaborate on sparsification so as to convert 2-V-CONNECT into a dynamic algorithm.
We encode the weighted graph G into a Sparsification Tree as follows. For each edge e ∈ G
the tree has a leaf-node xe representing the graph G(xe) of n vertices and a single edge e.
Every internal node x of the tree has two child-nodes y and z, and represents the graph
G(x) = G(y) ∪ G(z). The root-node r of the tree represents the graph G(r) = G. At some
level of the tree there may be an odd number of nodes, thus at most one of the internal nodes
may have three children. We assume a fully binary tree, without loss of generality.

Let x be a node of the Sparsification Tree, and y, z its child-nodes. We store in x the
subgraph C(x) ⊆ G(x), that emerges as output of algorithm 2-V-CONNECT when executed
on C(y) ∪ C(z). For leaf-nodes we set C(xe) = G(xe). We show that C(r) is a sparse
bottleneck 2-vertex connected subgraph of G(r) = G:

Lemma 5 (Monotonicity of relaxed certificates) Let G = G1 ∪ G2 be an arbitrary edge
partition of a (not necessarily 2-vertex connected) weighted graph G, and C1 ⊆ G1, C2 ⊆ G2

be relaxed certificates for bottleneck 2-vertex connectivity of G1, G2 respectively. Then C1∪C2

is a relaxed certificate for bottleneck 2-vertex connectivity of G.

Proof. For every edge e = (u, v) ∈ G\(C1∪C2) there are two internally vertex-disjoint paths
either in C1 or in C2, connecting u to v, and for every edge e′ on these paths c(e′) ≤ c(e), by
definition. 2

This leads inductively to the fact that C(r) is a relaxed certificate for bottleneck 2-vertex
connectivity of G(r) = G, thus a sparse bottleneck 2-vertex connected subgraph of G by
lemma 3. When the cost of an edge e is updated, the dynamic algorithm follows a path
from xe towards the root r of the sparsification tree (where xe is the leaf-node containing e),
and computes C(x) for all nodes on this path. Then C(r) is an updated bottleneck 2-vertex
connected subgraph of G.

Theorem 2 The bottleneck value for 2-vertex connectivity can be maintained in O(nα(n) log n)
time per edge cost update of the underlying graph.

Proof. The sparsification tree is of O(log n) height. Algorithm 2-V-CONNECT outputs
selected edges sorted in order of non-decreasing cost. Therefore we can merge-sort edges of
relaxed certificates that are stored in the child-nodes of a node in O(n) time to the cardinality
of their edges. UNION-FIND data structures can be used for computing a MSF, while
augmentation to 2-vertex connectivity is done via the incremental algorithm of [16]. The
result stems from the fact that at most O(n) edges are input to every execution of 2-V-
CONNECT. 2
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The Sparsification Tree has at most O(n2) nodes, and computation of a C(x) for every
node x has O(nα(n)) complexity. A bottom-up construction of the tree incurs O(n3α(n))
complexity. Furthermore the dynamic algorithm requires O(n3) space, since every node stores
at most O(n) edges. We were unable to generalize this technique for 3-vertex connectivity:
this constitutes an open question.

An improved randomized implementation We show how it is possible to spare the α(n)
factor from the complexity of the dynamic algorithm and its initialization, by modifying the
implementation of the sparsification tree and 2-V-CONNECT. We assume that the underlying
graph G is complete: if it is not, then we can add missing edges at an infinite cost, without
affecting the validity of our results. Then we can use the following:

Theorem 3 (B. Bollóbas [1], Theorem 12) The edge set of a complete graph with n vertices
can be partitionied in: n

2 Hamilton paths if n is even, or n−1
2 Hamilton cycles if n is odd.

Assume that the graph consists of vertices v0, . . . , vn−1. For the case where n is odd, it is
easy to partition the edge set of G in n−1

2 Hamilton cycles: for i = 1 . . . n−1
2 the i-th cycle is

defined by the vertices permutation v(j·i) mod n, j = 0 . . . n−1. For the case when n is even we
can partition the edge set of G in n

2 Hamilton paths with a slightly different practice, that for
i = 1 . . . n

2 defines the i-th path as follows: it starts from vertex vi−1 and the next of vertex
vj is vj+i, if j + i < n, or v(j+i−1) mod n if j + i ≥ n.

Correctness analysis of the described partitioning methods can be easily carried out. We
let every leaf-node of the sparsification tree represent a part of the partition of the complete
graph G. We observe that every part has at most O(n) edges and it also is connected. Internal
nodes of the tree are defined as before (representing the union of edge sets represented by
their child-nodes). For each leaf-node its edges are stored in a separate balanced binary tree,
so that we can always traverse them in order of non-decreasing cost.

The second modification concerns implementation of 2-V-CONNECT for producing cer-
tificates. In the description of 2-V-CONNECT a MSF is found by the linear time algorithm
described in [11]. This takes O(n) time with probability 1 − exp(−Ω(n)). Subsequently the
algorithm of [16] is assured to be initialized over a connected MSF (the leaf-nodes of the
sparsification tree contain connected subgraphs, cycles or paths), thus O(1) amortized time
is spent per query/insert operation An additional O(log n) cost is incurred due to usage of
balanced binary trees in the leaf-nodes. We conclude that production of a certificate is of
O(n) complexity with probability 1− exp(−Ω(n)) in the worst case. Thus:

Theorem 4 The bottleneck value for 2-vertex connectivity can be maintained in O(n log n)
time with probability 1 − exp(−Ω(n)) per edge cost modification of the underlying complete
weighted graph. The dynamic algorithm can be initialized in O(n3) time with high probability.

5 A Worst-Case Example

We examine the difficulty of dynamic maintenance of the bottleneck value of k-connectivity,
for the class of algorithms that encode and maintain explicitly a bottleneck k-connected
subgraph. We show that:
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Figure 1: Worst case construction for proposition 1

Proposition 1 There is a weighted graph G, and a sequence of edge cost updates, such that
the underlying subgraph has always a unique sparse bottleneck k-connected subgraph, which
differs by Θ(n) edges in between edge cost updates.

Proof. Here is our construction of G. Partition the vertex set V (G) in r = ⌊n/(k + 1)⌋
disjoint sets Vi, i = 1 . . . r. Place the remaining O(k) vertices in any of these sets. Then
V (G) = ∪r

i=1Vi, where |Vi| ≥ k + 1, |Vi| = O(k). Let Ei be the edge set of the clique induced
by Vi. Set w(e) = 0 for every e ∈ Ei. Number the vertices in each subset Vi, so that vi

j is the

j-th vertex of Vi. Define Ui = {(vi
j , v

i+1
j )|j = 0 . . . k − 2}, i = 1 . . . r− 1, and set w(e) = 0 for

every e ∈ Ui. Let C = {(vi
k−1, v

i+1
k−1)|i = 1 . . . r− 1} and set w(e) = 1 for every e ∈ C. Finally

let e⋆ = (v1
k, v

r
k) and w(e⋆) will be defined appropriately below. The construction is depicted

in fig. 1. The subgraph H = (∪r
i=1Ei)∪ (∪r−1

i=1 Ui) is (k−1)-vertex/edge connected: it consists
of r cliques with at least k + 1 vertices (thus they are k-connected), and every clique Vi is
connected to the next Vi+1 through k− 1 edges. Thus deletion either of these k− 1 edges, or
of vi

j, j = 0 . . . k − 2 from any Vi disconnects H. Let w(e⋆) = 0. Then the subgraph:

• H ∪ {e⋆} is k-connected with bottleneck value 0.

• H ∪ C is k-connected with bottleneck value 1.

A sequence of updates of the cost of e⋆ from 0 to 2 and vice versa causes changes of
|C| = r − 1 = Θ(n) edges to the bottleneck subgraph (considering k = O(1)). 2

Every algorithm that maintains the edge set of a bottleneck k-connected subgraph has Ω(n)
complexity of handling updates. The algorithm for handling O(n) edge cost updates (theo-
rem 1) for k-edge connectivity is indeed optimum up to a factor of O(log4 n).
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