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Abstract

This work concerns average case analysis of simple solutions for random set covering (SC) instances. Simple solutions a
constructed via an O(nm) algorithm. At first an analytical upper bound on the expected solution size is provided. The
in combination with previous results yields an absolute asymptotic approximation result of o(logm) order. An upper bound o
the variance of simple solution values is calculated. Sensitivity analysis performed on simple solutions for randomSCinstances
shows that they are highly robust, in the sense of maintaining their feasibility against augmentation of the input d
additional random constraints.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Given aground setX, |X| = m, and a familyF of
subsets ofX, |F | = n, the uniform costSet Covering
Problem(SC) involves finding a minimum cardinalit
set S ⊆ F , such that:

⋃
A∈S A = X. The SC is well

known to be NP-hard. The problem is not appro
imable within a constant factor. Recently Feige
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has shown that,(1 − o(1)) logm is the lowest achiev
able approximation ratio, unless NP has slightly
perpolynomial time algorithms. Many approximatio
algorithms have appeared [8] for theSC and severa
special cases of it.

Perhaps the most widely celebrated algorithm
solving theSC is the O(logm) approximationgreedy
algorithm, of O(nm2) complexity, independently stud
ied by Lóvasz [6] and Johnson [5]. The greedy al
rithm’s performance has proved to be satisfactory
comparison to several other well elaborated heu
tics [7]. The greedy algorithm achieves an O(logm)

approximation for both, uniform cost and weightedSC
.
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problems [1]. The tightest known so far analysis of
greedy algorithm was developed in [9].

Random instances ofSC have largely been use
throughout the literature as testbed for experime
tions and evaluation of novel heuristics. Previous t
oretical work on random instances was carried
in [11], where several asymptotic results of strong a
weak convergence were presented, in a spirit of exp
ing the advantages incurred by the distribution of
input data.

In this work we present an algorithm for rando
SC, and study the expected solution values and t
variance, thus concluding the analysis of [11]. O
analysis contributes to the understanding of the r
dom SC hardness and the advantages incurred
the input data distribution, through experimenta
testable theoretical results. Elaboration of previous
sults from [11] leads to approximability properties. W
also apply sensitivity analysis of simple coverings p
duced by the described algorithm, with respect to
put data perturbation via augmentation with additio
random constraints.

Section 2 comments on the random instance mo
and discusses a simple O(nm) algorithm for the ran-
dom SC. Analysis is developed in Section 3. Som
experiments illustrating our theoretical results are p
sented in Section 4, and we finally conclude in S
tion 5.

2. The random model and the simple algorithm

A randomSCinstance will be from now on denote
with (m,p), wherem is the cardinality of the groun
set X = {x1, x2, . . . , xm}, |X| = m. The quantityp

suggests probability measure in(0,1). A family F
of n subsets ofX is assumed,F = {A1,A2, . . . ,An},
|F | = n, Aj ⊆ X. The parametern does not appea
in the instance prescription, because it is determi
uponm by certain conditions explained below, that e
sure nontriviality of an instance. The construction o
randomSC instance is done by letting a ground e
mentxi belong to a subsetAj with probabilityp (that
is through a Bernoulli trial):

Pr[xi ∈ Aj ] = p, xi ∈ X, Aj ∈ F .

Thus the instance is constructed by performingmn

such independentBernoulli Trials. In deriving asymp-
totic results on the instance size, a discrimination
tween two models is made in [12] concerning the g
eration of random instances of increasing size:
independentmodel, where an entirely new instan
is generated, and theincrementalmodel where each
instance of greater dimensions is generated by an
tension of an instance of smaller dimensions. In
sequel we consider only the independent model.

At first a condition is needed, that establishes f
sibility of random instances. Indeed, not all rando
instances are feasible. The following theorem for
nately holds for all theinterestinginstances, occurring
in real world applications:

Theorem 1 [11, Theorem 2.2]. If the following con-
dition is satisfied, then the corresponding random
instances are feasible almost everywhere(with proba-
bility 1):

lim
m→∞

n

logm
= ∞.

In [11] a second condition is assumed to ho
namely that there existsα > 0, such thatn � mα : the
number of subsets is polynomially bounded by
number of ground elements. This condition holds
most real worldSC instances, and ensures that t
instance is nontrivial with high probability: e.g., a
exponential inm number of random subsets creat
through independent Bernoulli trials, subsumes a h
probability of existence of a subsetA, A = X, which
makes the instance trivial. We will assume that th
conditions are satisfied, and in the sequel we will c
sider m to be the leading parameter of our analys
assuming thatn behaves appropriately.

The simple algorithm is described as Algorithm
The parameterk0 depends onp andm = |X|, and its
value will be determined later. The algorithm pic
k0 arbitrary subsets fromF and updatesX with re-
spect to their union. Any ground element not cove
by thesek0 subsets, is subsequently covered by an
propriately selected subset fromF . The algorithm’s
complexity is O(nm) due to the O(nm) X update by
the union of the firstk0 subsets.

The simple algorithm is obviously deterministic.
what follows, we apply an average case analysis
the algorithm’s behavior on the class of randomSC
instances. We shall prove that, on average, the a
rithm provides solutions with o(logm) absolute de-
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simple(X,F ,p)

1. S ← ∅
2. k0 ← k0(|X|,p)

3. store inS k0 arbitrary distinct subsets fromF
4. F ←F − S

5. X ← X − ⋃
A∈S A

6. while X �= ∅
7. pickx ∈ X andA ∈ F : x ∈ A

8. S ← S ∪ A

9. F ← F − {A}
10. X ← X − {x}
11. return S

Algorithm 1. The simple algorithm.

viation from the optimum, exhibiting O(1) variance.
Furthermore, simple solutions remain feasible un
augmentation of the instance withω(m) random con-
straints.

3. Analysis

In order to derive an upper bound on the expec
size of the solution produced by the simple alg
rithm, some definitions are introduced. Assuming t
k0 � m, the simple algorithm picks at mostm subsets
from F . We divide the progress of the algorithm
steps. At each step a subset is selected. Each of
first k0 steps corresponds to selection of an arbitr
subset, whereas each of the subsequent steps (w
the while loop) corresponds to selection of a sub
covering a specific ground element. Letk ∈ {1, . . . ,m}
denote thekth selected subset (on thekth step). Al-
though the algorithm may select less thanm subsets,
k is extended to the range 1. . .m, assuming that if a
feasible solution has been constructed before thekth
step, then no subset is selected during this step an
subsequent ones. Some definitions follow:

• {Sm} is a sequence of random variables,Sm being
the simple solution size, i.e., the number of su
sets used by the simple algorithm for covering
ground set ofm elements.

• {optm} is a sequence of random variables, w
optm being the optimum solution value of a ra
domSCinstance(m,p).

• Let {Ck}, k ∈ {1, . . . ,m}, be a sequence of rando
variables withC being the number of ground e
k
ements newly covered by thekth subset entering
the solution set. Fork > Sm we defineCk = 0.

• Let {Uk}, k ∈ {1, . . . ,m} be a sequence of ran
dom variables withUk denoting the number o
elements remaining uncovered after entrance
the kth subset in the solution set. Fork > Sm we
defineUk = 0.

• The indicator random variablesaij , for i ∈ {1, . . . ,

m}, j ∈ {1, . . . , n}, denote whether the ground e
ementxi ∈ X is covered by the subsetAj ∈ F .
Obviously for a randomSC instance (m,p),
Pr[aij = 1] = p.

By the description of the simple algorithm one c
observe that:

Uk � Uk−1, Uk +
k∑

l=1

Cl = m.

The following lemma determines such a value
k0 thatE[Ck] � 1 for all k � k0:

Lemma 1. Consider a random SC instance(m,p).
Then:

E[Uk0] <
1

p
, k0 =

⌊
1− log(pm)

log(1− p)

⌋
.

Proof. From the description of the simple algorithm
just before thekth step,Uk−1 ground elements remai
uncovered, so that the following random sum of i.i
Bernoulli variables expresses the number of ground
ements to be covered at thekth step:

Ck =
Uk−1∑
r=1

air jk
.

For Uk we haveUk = Uk−1 − Ck . Observe tha
Uk−1 is pretty independent ofair jk

(see [3], Chap-
ter 12), so that because of the binomial distribution
the ground elements to subsets:

E[Ck] = pE[Uk−1],
E[Uk] = (1− p)E[Uk−1]. (1)

AssumingU0 = m, E[U0] = m, one easily derives
the closed forms:

E[Uk] = (1− p)km, (2)

E[C ] = p(1− p)k−1m. (3)
k
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We identify an upper boundk0 on the step indexk,
so thatE[Ck] � 1 for all k � k0. By Eq. (3):

k0 =
⌊

1− log(pm)

log(1− p)

⌋
. (4)

Now observe thatk0 > − log(pm)/ log(1 − p).
Thus we get an upper bound forE[Uk0], by substi-
tuting− log(pm)/ log(1− p) for k in Eq. (2) and this
completes the proof. �
3.1. Approximation

At this point we prove an analytical tight upp
bound on the expected cardinality of solutions c
structed by the simple algorithm for random instanc

Theorem 2. Given a random SC instance(m,p),
|X| = m, |F | = n, the simple algorithm returns a so
lution S of cardinalitySm, E[Sm] being bounded by:

− log(pm)

log(1− p)
< E[Sm] <

1

p
+ 1− log(pm)

log(1− p)
.

Proof. Observe that by the simple algorithm’s d
scription,Sm = k0 + Uk0 � k0. Thus:

E[Sm] = k0 + E[Uk0]. (5)

Substituting in Eq. (5) the values obtained from Le
ma 1 the result follows. �

The central result of our work makes use of the f
lowing theorem:

Theorem 3 [11, Theorem 3.1]. The sequence of ran
dom variables{optm} satisfies:

lim
m→∞

optm
logm

= − 1

log(1− p)

almost everywhere(a.e.).

By combining Theorems 2 and 3 it is shown:

Theorem 4. Random SC is on average approxima
within a term ofo(logm) from the optimum almos
everywhere.

Proof. The proof follows by Theorem 2:

lim
E[Sm] = −1

.

m→∞ logm log(1− p)
By Theorem 3:

lim
m→∞

E[Sm] − optm
logm

= 0 a.e.,

thusE[Sm] = optm + o(logm) a.e. �
The result of Theorem 4 would be of diminish

value if solutions built by the simple algorithm exhi
ited large variance. This does not hold however. T
following is proved:

Lemma 2. V [Uk] = E[Uk], for k � k0.

Proof. It is possible to calculate the variance ofUk ,
becauseUk−1 is independent ofair jk

(see [3], Chap-
ter 12):

Uk =
Uk−1∑
r=1

(1− air jk
)

⇒ V [Uk] = V
[
(1− ai1jk

)
]
E[Uk−1]

+ (
E

[
(1− ai1jk

)
])2

V [Uk−1]
⇒ V [Uk] = p(1− p)E[Uk−1]

+ (1− p)2V [Uk−1].
This is a recurrent relation, with a fortunate te

minating condition:U1 is the number of ground ele
ments remaining uncovered after the first step (se
tion of the first subset), and is binomially distribute
ThusV [U1] = p(1−p)m. Lemma 1 and, in particula
Eq. (2) givesE[Uk] for k � k0. The following closed
form is thus obtained:

V [Uk] = p

k−1∑
l=1

(1− p)2(k−l)−1E[Ul]

+ (1− p)2(k−1)V [U1].
Manipulation of this equation after substitutio

of E[Ul] and V [U1] yields V [Uk] = (1 − p)km =
E[Uk]. �
Theorem 5. For the class of random SC instanc
(m,p) the simple algorithm yields solution values w
O(1) variance.

Proof. The variance of produced solutions is first c
culated:

V [S ] = E[S2 ] − (
E[S ])2

. (6)
m m m



O.A. Telelis, V. Zissimopoulos / Information Processing Letters 94 (2005) 171–177 175

on
in-
ility
the

The
af-

t in
lity
s to

p-
m

r-
ew

of
of

the
t

t
ons

of

fect
nts

om
solu-
fea-
ach
BecauseSm = k0 + Uk0 Eq. (6) becomes:

V [Sm] = E
[
(k0 + Uk0)

2] − (
k0 + E[Uk0]

)2

⇒ V [Sm] = E[U2
k0

] − (
E[Uk0]

)2

⇒ V [Sm] = V [Uk0]. (7)

By Lemmas 2 and 1,V [Sm] = E[Uk0] < 1/p. �
3.2. Sensitivity analysis

In this section we perform sensitivity analysis
simple solutions with respect to increments of the
stance’s data. That is, examination of the possib
that an existent solution remains feasible despite
instance’s augmentation with random constraints.
situation of the instance’s input data being altered
ter a solution has been calculated is of interes
several contexts such as in evaluation of reliabi
bounds [10]. Here we prove a theorem analogou
the result of [4], where O(logm) element insertions in
a SC instance do not alter the existent solution’s a
proximation properties with respect to the optimu
value of the novel instance.

The constraints of theSCcorrespond to the cove
age of all ground elements. Augmentation with n
constraints essentially corresponds to introduction
new ground elements, and their insertion to each
the subsets ofF with the same probabilityp.

Theorem 6. A simple solutionS for a random SC in-
stance(m,p), |X| = m, remains feasible underω(m)

element insertions on average.

Proof. Assume augmentation ofX with still one
ground element, and appropriate insertion of
element in some subsets ofF under independen
Bernoulli trials of probabilityp. Let S ⊆ F be a so-
lution produced by the simple algorithm, with|S| =
Sm = s. Furthermore,Tm is a random variable tha
counts the number of new ground element inserti
before the existent solution becomes infeasible. Ifx is
the newly inserted element:

Pr

[
x /∈

(⋃
A∈S

A

)∣∣∣∣Sm = s

]
= (1− p)s

⇒ E[Tm|Sm = s] = (1− p)−s .

In order to estimateE[Tm], since 1� Sm � m, we
have:
E[Tm] =
m∑

s=1

(
E[Tm|Sm = s]Pr[Sm = s])

⇒ E[Tm] =
m∑

s=1

(
(1− p)−s Pr[Sm = s])

=
m∑

s=1

mPr[Sm = s]
(1− p)sm

⇒ E[Tm] = m

[
k0∑

s=1

Pr[Sm = s]
(1− p)sm

+
m∑

s=k0+1

Pr[Sm = s]
(1− p)sm

]
. (8)

By Lemma 1, fors � k0 + 1 we have:

(1− p)sm � (1− p)k0+1m = (1− p)E[Uk0]
⇒ (1− p)sm <

1− p

p
.

On the other hand, fors � k0, (1 − p)sm =
E[Uk] � m. So, expression (8) becomes:

E[Tm] > m

[
k0∑

s=1

Pr[Sm = s]
m

+ p

1− p

m∑
s=k0+1

Pr[Sm = s]
]

⇒ E[Tm] > c
p

1− p
m,

c =
m∑

s=k0+1

Pr[Sm = s] �= 0.

Thus E[Tm] has a strict lower bounding order
ω(m). �

4. Experimental illustration

We present some experiments that are in per
concordance with the theoretical results. Experime
were conducted for instances withm ∈ {200,600,
1000,3000,5000} and 0.05� p � 1.0, with a step of
10−2. For each parameter combination 1000 rand
instances were generated. We report on average
tion values and on the average number of extra
sibility preserving random constraints added to e
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Fig. 1. Averages for simple solution values, variance, and average number of extra feasibility preserving constraints.
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instance. The unbiased variance estimator of solut
produced by the simple algorithm is also depicted
the aforementioned classes of instances, and is sh
to be bounded by 1/p.

The upper two diagrams of Fig. 1 depict average
solution values for instances(200,p) and (5000,p),
and the corresponding curves obtained by Theore
The curves upper bound the averages produced b
experiments as was expected. The unbiased vari
estimator of experimental simple solution values
shown to be bounded by 1/p on the lower left dia-
gram, whereas the linear dependence onm of average
number of feasibility preserving random constraints
depicted on the lower right graph.

5. Conclusions

In this work we have developed the first (to the b
of our knowledge) average case absolute error bo
in approximating the class of random set covering
stances. The value of this bound was further stren
ened by the favorably low variance of solution valu
produced by the simple algorithm. Simple solutio
were also shown to be extremely robust with resp
to perturbation of input data incurred by augmentat
of additional random constraints.

It appears that on average, the simple algorit
produces solutions with a small deviation from the o
timum. It is a matter of future work to show that th
smarter greedy algorithm performs even better (it d
so in practice) by lessening or possibly eliminati
the deviation. Our results provide strong intuition th
randomSC instances may constitute a broad class
instances for which the greedy algorithm proves to
optimum on average. It was empirically shown in [
that random instances are the field of weak per
mance of several intelligent heuristics, outperform
by the greedy algorithm. Although random instan
seldom occur in practice, they present a challenge
complex heuristics, whereas they are well appro
mated by the greedy algorithm and, as this work
trigues, by the simple algorithm.

It seems that the analysis for the random set c
ering can extend to handle average case analys
maximumk-covers, where the target is to maximi
the number of covered ground elements when a s
tion consists of preciselyk subsets.
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