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Abstract

This work concerns average case analysis of simple solutions for random set cog&)imgs(ances. Simple solutions are
constructed via an @m) algorithm. At first an analytical upper bound on the expected solution size is provided. The bound
in combination with previous results yields an absolute asymptotic approximation resdib@#« order. An upper bound on
the variance of simple solution values is calculated. Sensitivity analysis performed on simple solutions for$&hidstances
shows that they are highly robust, in the sense of maintaining their feasibility against augmentation of the input data with
additional random constraints.
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1. Introduction has shown that,1 — o(1)) logm is the lowest achiev-
able approximation ratio, unless NP has slightly su-
Given aground setX, | X| = m, and a familyF of perpolynomial time algorithms. Many approximation

subsets ofX, |F| = n, the uniform cosSet Covering  algorithms have appeared [8] for ti%C and several
Problem(SQ involves finding a minimum cardinality =~ special cases of it.

setS C F, such that| J,.¢A = X. The SCis well Perhaps the most widely celebrated algorithm for
known to be NP-hard. The problem is not approx- solving theSCis the Qlogm) approximationgreedy
imable within a constant factor. Recently Feige [2] algorithm of O(nm?) complexity, independently stud-
ied by Ldvasz [6] and Johnson [5]. The greedy algo-
rithm’s performance has proved to be satisfactory in
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problems [1]. The tightest known so far analysis of the totic results on the instance size, a discrimination be-

greedy algorithm was developed in [9].
Random instances d&C have largely been used

tween two models is made in [12] concerning the gen-

eration of random instances of increasing size: the

throughout the literature as testbed for experimenta- independenimodel, where an entirely new instance

tions and evaluation of novel heuristics. Previous the-
oretical work on random instances was carried out
in [11], where several asymptotic results of strong and

weak convergence were presented, in a spirit of expos-

ing the advantages incurred by the distribution of the
input data.
In this work we present an algorithm for random

is generated, and thiecrementalmodel where each
instance of greater dimensions is generated by an ex-
tension of an instance of smaller dimensions. In the
sequel we consider only the independent model.

At first a condition is needed, that establishes fea-
sibility of random instances. Indeed, not all random
instances are feasible. The following theorem fortu-

SC and study the expected solution values and their nately holds for all thénterestinginstances, occurring

variance, thus concluding the analysis of [11]. Our

analysis contributes to the understanding of the ran-

in real world applications:

dom SC hardness and the advantages incurred by Theorem 1 [11, Theorem 2.2]If the following con-

the input data distribution, through experimentally

testable theoretical results. Elaboration of previous re-

sults from [11] leads to approximability properties. We
also apply sensitivity analysis of simple coverings pro-
duced by the described algorithm, with respect to in-
put data perturbation via augmentation with additional
random constraints.

dition is satisfied, then the corresponding random SC
instances are feasible almost everywh@véh proba-
bility 1):

=00
logm

m—0oQ

In [11] a second condition is assumed to hold,

Section 2 comments on the random instance model namely that there exists > 0, such thak < m*: the

and discusses a simple(#an) algorithm for the ran-
dom SC Analysis is developed in Section 3. Some
experiments illustrating our theoretical results are pre-
sented in Section 4, and we finally conclude in Sec-
tion 5.

2. Therandom model and the simple algorithm

A randomScCinstance will be from now on denoted
with (m, p), wherem is the cardinality of the ground
set X = {x1,x2,...,x,}, |X| = m. The quantityp
suggests probability measure {A,1). A family F
of n subsets ofX is assumedF = {A1, Ao, ..., A,},
|F|l=n, A; € X. The parameter does not appear

number of subsets is polynomially bounded by the
number of ground elements. This condition holds in
most real worldSC instances, and ensures that the
instance is nontrivial with high probability: e.g., an
exponential inm number of random subsets created
through independent Bernoulli trials, subsumes a high
probability of existence of a subsat A = X, which
makes the instance trivial. We will assume that these
conditions are satisfied, and in the sequel we will con-
siderm to be the leading parameter of our analysis,
assuming that behaves appropriately.

The simple algorithm is described as Algorithm 1.
The parameteky depends orp andm = | X|, and its
value will be determined later. The algorithm picks
ko arbitrary subsets fronf and updates{ with re-

in the instance prescription, because it is determined spect to their union. Any ground element not covered

uponm by certain conditions explained below, that en-
sure nontriviality of an instance. The construction of a
randomSC instance is done by letting a ground ele-
mentx; belong to a subset ; with probability p (that

is through a Bernoulli trial):

Pix;cAjl=p, xieX, AjecF.

Thus the instance is constructed by performing
such independetBernoulli Trials In deriving asymp-

by thesekg subsets, is subsequently covered by an ap-
propriately selected subset frofi. The algorithm’s
complexity is Qnm) due to the Qum) X update by
the union of the firskg subsets.

The simple algorithm is obviously deterministic. In
what follows, we apply an average case analysis of
the algorithm’s behavior on the class of rand@@
instances. We shall prove that, on average, the algo-
rithm provides solutions with @ogm) absolute de-
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simpleX, F, p) ements newly covered by thigh subset entering
1 S<0 the solution set. Fat > S, we defineC; = 0.
2. ko< ko(IX]. p) e Let (U}, k € {1,...,m} be a sequence of ran-
3. storeinS kg arbitrary distinct subsets froth dom variables withU; denoting the number of
451. §<_f—s elements remaining uncovered after entrance of
: X =Uses4 the kth subset in the solution set. Fbr> S,, we
6. whileXx #¢ defineU; =0.
;- g"f_k’;zi andA e F: x €A e The indicator random variables;, fori € {1, ...,
9 Fe FoiA) m}, j € {1,...,n}, denote whether the ground el-
10. X <X —(x} ementx; € X is covered by the subset; € F.
11. return S Obviously for a randomSC instance (m, p),
Pl[a,'j = 1] =Pp.
Algorithm 1. The simple algorithm.
By the description of the simple algorithm one can
viation from the optimum, exhibiting @) variance. observe that:
Furthermore, simple solutions remain feasible under x
augmentation of the instance withim) random con- ¢, <, ,, Ui + ZCZ —m.
straints. -1
The following lemma determines such a value for
3. Analysis ko that E[Cy] > 1 for all k < ko:

d Lemma 1. Consider a random SC instance:, p).

In order to derive an upper bound on the expecte Then

size of the solution produced by the simple algo-
rithm, some definitions are introduced. Assuming that
ko < m, the simple algorithm picks at most subsets
from F. We divide the progress of the algorithm in
steps At each step a subset is selected. Each of the Proof. From the description of the simple algorithm,
first ko steps corresponds to selection of an arbitrary just before thekth step,U;_1 ground elements remain
subset, whereas each of the subsequent steps (withinuncovered, so that the following random sum of i.i.d.
the while loop) corresponds to selection of a subset Bernoulli variables expresses the number of ground el-
covering a specific ground element. lket {1, ..., m} ements to be covered at thth step:

denote thekth selected subset (on th¢h step). Al- Uiy

though the algorithm may select less tharsubsets, Cp = Z ai i

k is extended to the range. 1 m, assuming that if a = rlk

feasible solution has been constructed beforekthe

step, then no subset is selected during this step and the 0" Ux We haveUy = Ug—1 — Cy. Observe that
subsequent ones. Some definitions follow: Uy-1 is pretty independent od;, j, (see [3], Chap-
ter 12), so that because of the binomial distribution of

the ground elements to subsets:

E[U,] < 17 ko= \‘1 MJ
P

~ log(1— p)

e {S,,} is a sequence of random variabl§g, being
the simple solution size, i.e., the number of sub-  E[C,] = pE[Uc_1], @
sets used by the simple algorithm for covering a .
ground set ofn elements. ElU == p)ElUk-1]-

e {opt,} is a sequence of random variables, with AssumingUp = m, E[Ug] = m, one easily derives
opt,, being the optimum solution value of a ran- the closed forms:
domSCinstance(m, p). .

e Let{Ci},ke{1,...,m}, be asequence of random E[Ux]=1=p)'m, @)
variables withC; being the number of ground el-  E[C] = p(1 — p)f~1m. (3)
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We identify an upper bounkh on the step index,
so thatE[Cy] > 1 for all k < ko. By Eq. (3):

log(pm)
o {1 log(1 — p)J' @
Now observe thatg > —log(pm)/log(l — p).
Thus we get an upper bound f&{Uy,l, by substi-
tuting — log(pm)/log(1 — p) for k in Eq. (2) and this
completes the proof. O

3.1. Approximation

At this point we prove an analytical tight upper
bound on the expected cardinality of solutions con-
structed by the simple algorithm for random instances:

Theorem 2. Given a random SC instancen, p),

|X| = m, |F| = n, the simple algorithm returns a so-

lution S of cardinality S,,,, E[S,,] being bounded hy
log(pm) log(pm)

1
— P R[Syl < =41 P
og1—p) ~ F= o g

Proof. Observe that by the simple algorithm’s de-
scription, S,, = ko + Uy, = ko. Thus:
E[Sn]=ko+ E[Ug]. (5)

Substituting in Eq. (5) the values obtained from Lem-
ma 1 the result follows. O

The central result of our work makes use of the fol-
lowing theorem:

Theorem 3 [11, Theorem 3.1]The sequence of ran-
dom variableqopt, } satisfies

op, 1
logm ~ log(1— p)
almost everywherga.e).

lim

m—0Q

By combining Theorems 2 and 3 it is shown:

Theorem 4. Random SC is on average approximated
within a term ofo(logm) from the optimum almost
everywhere.

Proof. The proof follows by Theorem 2:
jim £l =1
m—oo logm  log(1— p)
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By Theorem 3:
E[Sn] — opt,
logm
thusE[S,,] =opt, + o(logm) a.e. O

lim

m—0oQ

=0 a.e,

The result of Theorem 4 would be of diminished
value if solutions built by the simple algorithm exhib-
ited large variance. This does not hold however. The
following is proved:

Lemma?2. V[Ui] = E[Uy], for k < ko.

Proof. It is possible to calculate the variance @f,
becausd/;_;1 is independent of;, ;, (see [3], Chap-
ter 12):

Uk-1

Uk = Z 1 —ai, ;)
r=1
= V[Uk] = V[(L - aiyj) | E[Uk-1]

+ (E[a- ailjk)])ZV[Uk—l]
= V[Ur]l = p(1 — p)E[Uj-1]
+ 1 - p)?V[Up-1l.

This is a recurrent relation, with a fortunate ter-
minating condition:U1 is the number of ground ele-
ments remaining uncovered after the first step (selec-
tion of the first subset), and is binomially distributed.
ThusV[U;1] = p(1— p)m.Lemma 1 and, in particular,
Eq. (2) givesE[Uy] for k < ko. The following closed
form is thus obtained:

k—1
ViU =p ) (1-p?*DE[WU)]
=1
+ 1= p)**Pvivl.

Manipulation of this equation after substitution
of E[U;] and V[U1] yields V[U;] = (1 — p)km =
E[Ux]l. O

Theorem 5. For the class of random SC instances
(m, p) the simple algorithm yields solution values with
O(1) variance.

Proof. The variance of produced solutions is first cal-
culated:

VISu]= E[S2]1— (ELSn])>. (6)
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m

BecausesS,, = ko + Ui, Eq. (6) becomes: E[T,] = Z(E[Tmlsm — 5]PIS,, = S])

VISul = E[(ko+ Usy)?] — (ko + El[Us])° =
= VISal = ELUZ] - (ELUs))” = E[Ty]=Y (1= p) ™" PIS, =)
= V[Sp] = VU] @ =1
By Lemmas 2 and 1V[S,,] = E[Ui,] <1/p. O Z m PSSy, = s]

1—=p)ym
3.2. Sensitivity analysis

In this section we perform sensitivity analysis on
simple solutions with respect to increments of the in-
stance’s data. That is, examination of the possibility = PiS, =s]
that an existent solution remains feasible despite the + Z A-pym
instance’s augmentation with random constraints. The
situation of the instance’s input data being altered af- By Lemma 1, fors > ko + 1 we have:
ter a solution has been calculated is of interest in s ko1
several contexts such as in evaluation of reliability (= 2)'m < d—p)""m =1 — p)E[Us]
bounds [10]. Here we prove a theorem analogous to = (1—p)* 1—_17

. . X p)ym < .

the result of [4], where Qogm) element insertions in p
a SCinstance do not alter the existent solution's ap- 5 the other hand, fos < ko, (1 — p)*m =

proximation properties with respect to the optimum E[Ui] < m. So, expression (8) becomes:
value of the novel instance.

o PHS, =]
= E[Tu]=m [Z —r
o A=p)¥m

8

s=ko+1

The constraints of th€Ccorrespond to the cover- o pys,, = s]
age of all ground elements. Augmentation with new E[Tx]> m|:2 —
constraints essentially corresponds to introduction of s=1
new ground elements, and their insertion to each of
the subsets aof with the same probability. Z PILS, }

s=ko+1
Theorem 6. A simple solutio.nS for a_random SCin- = E[T,]>c m,
stance(m, p), | X| = m, remains feasible undes (m) 1-p
element insertions on average. m
c= Y PAS,=s]#0.
Proof. Assume augmentation oK with still one s=ko+1

ground element, and appropriate insertion of the
element in some subsets ¢f under independent
Bernoulli trials of probabilityp. Let S € F be a so-
lution produced by the simple algorithm, witl| =

Sn» = s. Furthermore,T,, is a random variable that
counts the number of new ground element insertions
before the existent solution becomes infeasible.id

the newly inserted element:

Thus E[T,,] has a strict lower bounding order of
w(m). O

4. Experimental illustration

We present some experiments that are in perfect
concordance with the theoretical results. Experiments
Pr[x ¢ < U A) were conducted for instances with € {200 600

ot 100Q 300Q 5000 and 005 < p < 1.0, with a step of
s 10~2. For each parameter combination 1000 random
= ElTn|Sm=s1=Q0-p)". instances were generated. We report on average solu-
In order to estimateE[T;,], since 1< S, < m, we tion values and on the average number of extra fea-
have: sibility preserving random constraints added to each

Sm =Si| =(1- P)S
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Fig. 1. Averages for simple solution values, variance, and average number of extra feasibility preserving constraints.

instance. The unbiased variance estimator of solutionswere also shown to be extremely robust with respect
produced by the simple algorithm is also depicted for to perturbation of input data incurred by augmentation
the aforementioned classes of instances, and is shownof additional random constraints.

to be bounded by /p. It appears that on average, the simple algorithm
The upper two diagrams of Fig. 1 depict average of produces solutions with a small deviation from the op-
solution values for instancg®00, p) and (500Q p), timum. It is a matter of future work to show that the

and the corresponding curves obtained by Theorem 2. smarter greedy algorithm performs even better (it does
The curves upper bound the averages produced by theso in practice) by lessening or possibly eliminating
experiments as was expected. The unbiased variancethe deviation. Our results provide strong intuition that
estimator of experimental simple solution values is randomSCinstances may constitute a broad class of
shown to be bounded by/p on the lower left dia- instances for which the greedy algorithm proves to be
gram, whereas the linear dependencenoof average optimum on average. It was empirically shown in [7]
number of feasibility preserving random constraints is that random instances are the field of weak perfor-
depicted on the lower right graph. mance of several intelligent heuristics, outperformed
by the greedy algorithm. Although random instances
seldom occur in practice, they present a challenge for
5. Conclusions complex heuristics, whereas they are well approxi-
mated by the greedy algorithm and, as this work in-
In this work we have developed the first (to the best trigues, by the simple algorithm.
of our knowledge) average case absolute error bound It seems that the analysis for the random set cov-
in approximating the class of random set covering in- ering can extend to handle average case analysis of
stances. The value of this bound was further strength- maximumk-covers, where the target is to maximize
ened by the favorably low variance of solution values the number of covered ground elements when a solu-
produced by the simple algorithm. Simple solutions tion consists of precisely subsets.
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