
IEEE TRANSACTIONS ON PARALLEL ANI) DISTRIBUTED SYSTEMS. VOL. 4. NO. 1 I . NOVEMBER 1YY3 I185

Replication Algorithms in a
Remote Caching Architecture

Avraham Leff, Member, IEEE, Joel L. Wolf, Senior Member, IEEE, and Philip S. Yu, Fellow, IEEE

Abstract-We study the cache performance in a remote caching
architecture. The high performance networks in many distributed
systems enable a site to access the main memory of other sites
in less time than required by local disk access. Remote memory is
thus introduced as an additional layer in the memory hierarchy
between local memory and disks. Eficient use of remote memory
implies that the system caches the “right” objects at the “right”
sites. Unfortunately, this task can be difficult to achieve for two
reasons. First, as the size of the system increases, the coordinated
decision making needed for optimal decisions becomes more
difficult. Second, because the participating sites in a remote
caching architecture can be autonomous, centralized or socially
optimal solutions may not be feasible. In this paper we develop a
set of distributed object replication policies that are designed to
implement different optimization goals. Each site is responsible
for local cache decisions, and modifies cache contents in response
to decisions made by other sites. We use the optimal and greedy
policies as upper and lower bounds, respectively, for performance
in this environment. Critical system parameters are identified,
and their effect on system performance studied. Performance of
the distributed algorithms is found to be close to optimal, while
that of the greedy algorithms is far from optimal.

Index Terms- Autonomy, distributed systems, object replica-
tion, performance comparison, remote caching.

,

I. INTRODUCTION

N modern distributed systems, large numbers of computing I sites are connected together by fast networks. The availabil-
ity of high speed interconnection has created the potential for a
new type of resource sharing. In this environment, i t is possible
to develop efficient mechanisms that support request/response
exchanges for objects that reside on a remote site. This ability
to access objects cached at remote sites introduces a new level
in the classic memory hierarchy-main memory accessed
through the network-whose access time may be significantly
faster than that of local disks. We call this rcwote memory.
Unlike shared main-memory architectures, sites using remote
memory do not require the capability of direct readiwrite into
remote memory locations.

Remote memory is important because disk access perfor-
mance has been limited by seek time, stuck for decades in
the range of a few tens of milliseconds. In contrast, current
remote procedure calls (RPC) implementations over Ethernet
take only a few milliseconds for the round trip [27]. Moreover,

Manuscript received January 2, 1992; revised July 30. 1992.
A. Leff was with IBM Enterprise Systems, Poughkeepsie, NY. 12602. He is

now with the IBM Research Division, T. J. Watson Center, Yorktown Heights.
NY 10598.

J. L. Wolf and P. S . Yu are with the IBM Research Division, T. J. Watson
Center. Yorktown Heights, NY 1059X.

IEEE Log Number 0213475.

the bottleneck in communication protocols is CPU power
and software overhead. With RISC technology doubling CPU
speed every few years, we can expect even smaller ratios of
remote memory versus local disk access time in the near future.
Furthermore, faster gateways, higher network bandwidth, and
specialized hardware [11 will steadily bring down communi-
cation overhead over local and metropolitan area networks.
Implementations of systems using remote memory are already
being built [2], [6], [lo], [13], [19], [20], [26].

A remote caching architecture (RCA) makes use of remote
memory by allowing all sites in the system to take advantage of
each other’s local memory. The symmetric architecture blurs
the distinction between clients and servers because all sites
in the system can “serve” requests if their buffers (main-
memory) contain the requested data item. An RCA resembles
distributed shared virtual memory (DSVM) [20] in that both
types of system take advantage of the aggregate memory
that is available (through a network) in a distributed system.
There are two main differences, however, between the systems.
First. remote caching architectures emphasize the differences
between the memory levels (i.e., local, remote, and disk),
in contrast to the emphasis that DSVM places on a single
large, homogeneous, memory space. As a result, RCA research
focuses on such policy issues as what objects should be cached
at what sites instead of simply caching objects on a demand
basis as in DSVM. The systems also differ in impfementation.
In an RCA, remote memory need not be mapped into a single,
coherent, virtual memory space. Sites do not need to have the
same page sizes or memory architectures; all they require is
that they share a common naming scheme for objects in the
system (the distributed object model). Because an RCA does
not require the full functionality of a DSVM, system overhead
can be reduced. Of course, an RCA can also be implemented
in a DSVM: the key feature is that sites can request (and
receive) objects from remote sites with an order of magnitude
faster response time than even local disk access.

Simulation studies have shown that performance in an RCA
is better, over a wide range of cache sizes, than a distributed
clientiserver architecture [23]. The performance gains are due
to the large amount of remote memory made available by
the (symmetric) remote caching architecture. However, the
following tradeoff in object replication must be resolved in
order to use memory resources efficiently. On the one hand,
each site should replicate (i.e., cache) important objects in
main-memory, and store less important objects on disk. On
the other hand, such naive cache management in an RCA is
ineficienr in the sense that memory resources are not utilized

1186 lEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

as well as they would be in a centrally coordinated system
[17]. Some sites should instead cache less important objects,
and rely on remote memory to access important objects. This
counter-intuitive approach can improve both local and overall
system performance, because fewer objects must be accessed
on disk. The problem, of course, is to make this idea precise:
how many replicas of each object should be maintained?

We first devise optimal object replication algorithms for an
RCA. We consider both the cases of optimizing the aver-
age performance and of optimizing the performance of the
worst site. The former case is solved by reduction of the
problem to a capacitated transportation problem [151. The
optimal number of replicas is a function of the hot-set curve,
available cache storage, and differences among site access
patterns. However, sites in distributed environments might
not wish to be constrained by the decisions of other sites.
(This is known as autonomy [14].) Thus efficient use of RCA
system resources is especially difficult to accomplish. Even if
autonomy is not an issue, because optimal solutions require
that decisions be coordinated among the sites, they may not
scale up as the number of sites in the system increases. We
therefore investigate two distributed algorithms that partition
the cache management problem among the sites in the remote
caching architecture. Each site maintains a snapshot of the
system configuration, and as conditions change sites may
change their own (local) cache management decisions. The
same mechanisms that make remote memory possible (e.g.,
broadcast) are used to propagate dynamic state information
as well. Site autonomy is factored in implicitly, because sites
cannot directly affect the decisions of any other site. The two
distributed algorithms differ in their objectives on whether
to pursue local or global performance optimization. Also
considered are two simple greedy algorithms. The optimal
and greedy policies provide upper and lower bounds on the
performance for this environment, respectively.

In the next section, we describe our model of the RCA
system, and formalize the problem of cache management
in an RCA. Section 111 presents various cache management
strategies, and Section IV describes their implementation in
this environment. The performance of these algorithms (as a
function of various system parameters) is analyzed in Section
V. In Section VI we summarize our results and discuss some
future work suggested by this paper.

11. REMOTE CACHING ARCHITECTURE

A. The Model
The memory hierarchy of the RCA consists of local main-

memory, remote main-memory (accessed over the communi-
cations network), and disk. In terms of access time, there are
single order of magnitude differences between the local mem-
ory (tenths of a millisecond), remote memory (milliseconds)
and disks (tens of milliseconds). The RCA cache management
system must implement the following three components: 1)
an object location algorithm, 2) a replacement algorithm, and
3) a consistent update algorithm. A set of these algorithms,
together with a detailed discussion of execution paths for read

and write file/object access, can be found in [23]. (Algorithms
that maintain transaction serializability in such an environment
are discussed in [4], [8], [30].) Basically, if a site fails to find
a copy of an object in local cache, then the site broadcasts a
request, and at the same time sets a timeout. All sites with a
copy of the requested object queue for the network and reply:
the requesting site simply discards all replies after the first.’
Expiration of the timeout period indicates that the object is
not cached at any remote site. The object must then be fetched
from disk. In other words, when an object is needed at a given
site, the site traverses the memory hierarchy looking at local
cache, remote cache, and disk in turn.

Let ctJ denote the time needed to access the zth object at
the j th site (i = 1,. . . , M , j = 1,. . . . N) . The cost function
that we want to minimize involves c , ~ .

Let p k H , p:H, and p y H denote, respectively, the Local Hit
probability, Remote Hit probability, and No Hit probability,
when accessing the ith object at the j th site. These probabil-
ities sum to 1.0 because they represent the traversal of the
memory hierarchy that is done in order to access an object.
Then,

where tl is the time required to access local main memory, t ,
is the time to access remote main memory (including network
delays), and td is the time needed to access the disk storing
the ith object.2 (Of course, these access times are cumulative.
For example, the time needed to test for a local cache hit adds
to the total t , because remote memory is only accessed after
attempting to access local memory.)

The probability of an object being cached by a given site
depends on 1) whether the object is considered important
enough to cache in the first place, and 2) how many other
objects are eligible for caching by that site. The second factor
determines the hit ratio for eligible objects. Let X;j = 1 when
the zth object is eligible for caching (i.e., it may be stored
in main memory) at the j th site, and Xij = 0 otherwise. Let
[H , j (X)] be the matrix whose z,j th term is the hit ratio of
object z at site j . This matrix specifies the configuration of the
system at a given moment. Then

N

P E H = (1 -

and

n (1 - H i k (x))) x (1 - H i j (x)) , (2)
k = l k # j

N

p N H = U(l- H i j (X)) . (3)
j = 1

These equations apply trivially in the situation where
H i j (X) is binary-valued (i.e., a site never allows more
objects to be cache “candidates” than it has storage for).

’ Alternatives to the broadcast mechanism can be devised. For example, in a
database environment with a centralized lock manager, lock retention schemes
can track the location of objects in the RCA system [9].

2Note that our model ignores the issue of queueing and contention at sites
in the system. These factors imply that the cost of accessing an object may
depend on the site at which the object is cached. We believe, however, that
these factors impose “second-order” effects which do not much change the
development of the caching algorithms for the RCA.

LEFF er al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE 11x7

They also apply in the situation where, because the site wants
more objects in cache than it can physically store, H 7 , (X)
varies between 0 and 1. Note that the matrix X (in theory)
completely determines the hit-ratio because, regardless of the
caching policy, once the system specifies the eligibility of
objects at a given site, the hit ratio for that object is implicitly
set as well. For example, if a naive replacement policy such
as “uniform replacement” is used, then H 2 , (X) can be
computed as M I S (where A4 is the number of objects and S
is the per-site cache size) for all objects i. Less trivially, cache
replacement algorithms such as LRU can also be approximated
as a function of the X matrix [7], [28].

In this paper, we shall assume, for the most part, that H7] is
indeed binary valued, with sites caching only those objects for
which they have space. Because the H 2 , (X) term is included
in the equations, our approach is easily extended to the case
of more complicated hit-ratio functions.

B. The Problem

The problem addressed in this paper is how, given the RCA
system parameters, can we best specify X so as to minimize
the “cost” of the system. The task of specifying the X,, is
a version of the File Allocation Problem (FAP) [l l] , [29].
Certain versions of the FAP problem are NP-complete [l l] ,
[25]. Heuristics which perform well have been proposed [5] ,
[21], [25], [31]. In our case, there are M objects and N sites
in the system, and each object can be cached at any site. There
are thus 2“”‘ possible values for X .

Let C be the average time needed to access objects, given
an RCA configuration X . This cost function will, in general,
be a function of the c,] of (1). The optimization approach
will require complete and centralized information, and use a
centralized algorithm to compute the file assignment. These
limitations suggest that distributed algorithms may be worth-
while-even if they do not yield optimal performance. The
issue of autonomy, however, is the major difference between
the classic FAP problem and the problem which arises in a
remote caching architecture context. Prior work in the area
of FAP assumes that the sites in the system are committed
to optimizing overall system performance. In an autonomous
[141 RCA environment, however, a given workstation is not
specifically interested in improving performance at another
workstation, but is rather concerned with decisions that affect
its own performance. Sites are willing to cooperate in servicing
requests for copies, but they are not willing to constrain
their caching decisions based on these requests. A given site
can only make caching decisions regarding its resources. No
site can make such decisions about another site’s resources.
In an autonomous environment, even if sites are willing to
cooperate in decision making, they will not agree to cache
items if the result is substantially worse performance than other
sites in the system. Autonomous sites may not even agree
to suffer performance penalties-even if a given allocation
policy results in better average performance for the system
as a whole. Because sites cannot unilaterally determine the
cache contents of other sites, classic FAP approaches will not
necessarily extend to an autonomous environment.

C. Dimensions of the Problem

There are quite a few dimensions to the problem of deter-
mining the optimal X . We discuss some of them here, and
then show where this work fits into the large state space.

Cost Function
We obviously need to specify the nature of the cost function
C, which must be minimized. At one extreme, sites can be
interested solely in local performance. At another extreme,
sites can be interested in improving global performance.
Alternatively, sites can implement a fair policy, in which
no site does “much” worse than any other site. The issue
of eflciency is closely related to that of the cost function.
Under a global optimization policy, sites cooperate with one
another, so that the number of object replicas in the overall
system results in optimal (overall) performance. Thus, a site
may cache an object that it rarely accesses, simply because
other sites access it often. Under a local optimization policy,
however, sites face the following tradeoff. On the one hand,
a site can be “greedy” and simply cache as many of the
most valuable objects as it can. On the other hand, if
many sites replicate the same objects, then a given site
is “wasting” cache storage because it could have used
the space to cache an unreplicated object, and rely on
other sites when it needs to access the replicated object.
The key point is that even if a site caches relatively less
important objects, and pays more (because it must go over
the network) for more valuable objects, not only may overall
system performance improve (because storage is used more
efficiently), but local performance may improve as well.

Eligibility for Replication
When a site caches an object, this has a number of conse-
quences. If the object is “read-only,” then the site obviously
gains from reducing object access time. The only issue that
must be resolved is how to trade-off the presence of one ob-
ject in cache against the crowding out of another object from
the cache. However, when objects are “read/write” the
situation becomes far more complicated. Although the site
still benefits in read situations, writes require the application
of a consistency maintenance algorithm. The system must
somehow ensure that replicas of an object maintain the same
value: this process requires inter-site communication, inter-
rupting the sites so as to receive the messages, and finally the
update propagation. This cost of consistency maintenance is
such that a site may actually incur a performance penalty
by caching an object replica.
In this paper, our approach is based on the following
observation. A major reason for sites to cache read-write
objects-despite the associated overhead for consistency
maintenance-is that the object is so important that it must
always be readily available for read access. In other words,
the “delta” between disk and local memory access is so
large that it makes sense to maintain replicas of “write”
objects-despite the additional overhead. In an RCA, this
motivation is not as strong-as long as a single copy of
the object can be accessed from some site in the system.
In such a case the delta that motivates object replication is
only between local and remote memory, and the overhead

1188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

of consistency maintenance usually outweighs the smaller
delta.
This intrinsic characteristic of an RCA architecture there-
fore suggests the following heuristic. Read-write objects
are constrained to have at most one copy available in a
site’s main-memory, eliminating the need for replication
decisions. Sites do, of course, benefit from cached read-write
objects; replication decisions, however, are only made about
read-only objects. This paper investigates the more clear-cut
tradeoffs involved with an object’s read value.
9 Local Object Value
The “value” (i.e., performance benefit) that a cached (read-
only) object gives to the caching site, is proportional to
the frequency that the object is accessed by transactions
executing at the site. Sites can thus rank objects based on
their access f r eq~ency .~ Access frequencies can be estimated
with varying degrees of accuracy. At one end of the spec-
trum, sites have perfect information. More realistically, sites
can dynamically estimate these values (with an exponential
weighting term, for example). At the other extreme, sites
may not bother to calculate values explicitly, and simply
manage cache with an LRU policy. (This dimension relates
to the issue of whether object access rates vary over time.
For example, in a “static’ ’ environment, perfect information
is a much more reasonable assumption than in a dynamic
environment .)

Degree of Coordination
If a site has no knowledge about the contents of other sites’
caches, then the site should simply cache as many of its
most valuable objects as it can (see above). By contrast,
if a site knows what objects are cached at other sites,
it can rely on remote sites for those objects and instead
cache objects that would otherwise be only accessible on
disk. At one extreme, sites may make cache decisions in
a completely coordinated fashion (this leads to optimal
global performance). More realistically, sites may make
decisions in a sequential (or synchronous) fashion. Only
one site at a time makes a set of decisions. Information
about decision outcomes are then passed to the next site.
Alternatively, sites may make decisions in asynchronous
fashion. Although sites make the results of their decisions
available to other sites, these other sites may be making their
own decisions simultaneously. (This dimension is related to
the question of what information is communicated between
sites. Useful analogies have been drawn to research in load
sharing-for example ‘ ‘sender-initiated” versus “receiver-
initiated” cache management [24].)

D. The Problem, Revisited

Given the discussion of the many issues implicit in deter-
mining the optimal X, it is important to state which issues are
addressed in this paper. We assume, as indicated above, that
sites only make cache replication decisions about “read-only”
objects. For the most part (except for the dynamic greedy

’Note that, for simplicity of exposition, we assume that all objects have
the same size so that the value does not need to be scaled by the amount of
cache storage the object occupies. This is not a serious restriction since the
algorithms can be modified to take varying size objects into account.

algorithm), we also assume that sites have perfect information
about object access rates. Because of these assumptions, the
dimensions of replication eligibility and local object value
do not pose especially difficult problems. However, because
autonomy can be very important in an RCA environment, we
focus on its implications for the dimensions of cost function
and degree of coordination. In other words, we examine the
problem of how performance is affected by 1) different cost
functions that sites can use and 2) the different ways that sites
can coordinate their decisions with one another.

In the next section, we describe a set of cache allocation
policies that use a variety of cost functions and have different
degrees of coordination. Implementations of these policies,
and their performance, are studied in Sections IV and V,
respectively.

111. RCA CACHE MANAGEMENT STRATEGIES

Cache management requires that a system first determine
which objects are eligible for caching, and then, when cache
storage is full, determine which object should be swapped out
to make room for an incoming object. As discussed in Section
11-A, this paper focuses mainly on the eligibility issue and
assumes that eligible objects are always available in cache.
This is achieved by simply limiting the number of eligible
objects to the amount of cache storage available. In other
words, the hit ratio is always 1, so that the term H i j (X) in
(2)-(4) is either 0 or 1. (The performance of a dynamic greedy
algorithm, which uses the classic LRU replacement algorithm,
is also examined.)

We investigate three classes of policies: centralized, dis-
tributed, and isolationist policies. These classes are distin-
guished by the amount of remote caching information that
is used when making cache decisions. At one extreme, sites
operating with isolationist policies make decisions in complete
ignorance of the decisions made by other sites. At the other
extreme, sites that centralize the decision-making for the
entire system operate with optimal policies, because they
make decisions in complete coordination with other sites.
In distributed policies, sites make decisions independently
of other sites, but also utilize information about previous
decisions made by other sites.

Within a single class-e.g., optimal policies (that make
decisions in coordinated fashion)-policies can differ based
on the performance goal. Performance goals affect an object’s
eligibility for caching. The goal of the first optimal strategy
is fairness: although sites want to achieve good overall per-
formance, they insist that no site should suffer “unduly” in
achieving such performance. The goal of the second strategy
is simply to maximize overall (average) performance, without
regard to how individual sites will do under a given object
allocation. These strategies are both examples of global op-
timization polices. In contrast, we examine both a local and
global performance policy in the class of distributed policies.

Each of the optimal strategies shares the following as-
sumptions. First, all sites have complete knowledge about
the access patterns at every other site. Second, eligibility
decisions are completely coordinated, so that at any moment

LEFF c3f al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE I I89

the best decision is always made. Clearly, these assumptions
are not realistic in real-world RCA environments. We are
interested in these strategies because they give an upper-
bound on RCA performance. The aggregate resources in an
RCA are very large: it is important to determine the best
performance that can be achieved through efficient use of
system resources. The performance of the isolationist policy
shows how important some degree of inter-site cooperation
is for RCA efficiency. This policy does not completely ignore
the benefits of the RCA architecture because sites will respond
to requests from other sites-if the object is resident in cache.
The point is that sites do not have (or ignore) information about
remote cache contents that could guide local decisions about
object eligibility. By investigating the differences between the
optimal and greedy strategies, we gain insight into the problem
of devising caching policies that can operate in distributed
fashion. Our goal is to develop distributed strategies with
performance between the optimal and greedy strategies. (In
addition, the distributed algorithms are more adaptable to
changes in system state than the optimal. Because the deci-
sions are localized rather than centralized, sites make fewer
changes to the cache configuration after detecting that, for
example, access frequencies have changed.) Although these
strategies require cooperation among sites, we believe that this
requirement is not necessarily a violation of site autonomy.

A. Optimal Strategies

Equations (1)-(3) show that the cost of accessing a single
object at a given site depends on the probability of 1) the
object being in local cache and 2) the probability of the
object being in at least one other site’y cache. Let P,3 denote
the robability of read-access for object I at site , I . Then

c l I P I I represents the overall time needed to access
objects at site , I . Given the access probability distribution for
all objects 2 at all sites , I , two cost functions can be specified
to evaluate the performance of a given configuration X .
(These definitions of the cost functions assume that sites have
equal amounts of activity. Section V-G discusses the effect of
different degrees of site activity.)

2

A policy that determines a configuration which minimizes
(4) implies that the “worth” of the overall system is no better
than the performance of the worst-performing site in the sys-
tem. The goal of this policy is to use the combined resources
of the sites in the RCA efficiently, and at the same time ensure
“fairness.” If sites insist on overall “fairness” criteria, then
other strategies cannot surpass the performance of the optimal
fair policy. A policy that determines a configuration X which
minimizes (5) corresponds to solving the basic file allocation
problem (FAP) because it minimizes average (overall system)
response time, without allowing individual sites to impose any
specific constraints on object allocation. If site autonomy is

not an issue, then other strategies cannot surpass the RCA
performance achieved by the optimal “average” policy.

B. Distributed Strategies

The key feature of the distributed strategies is that sites do
not make decisions in a completely coordinated fashion, but do
use information about other sites when making local decisions.
Recall from Section 11-A that cll is the cost of accessing object
1 at site j , and is composed of the costs of accessing each
of the memories in the storage hierarchy, weighted by the
probabilities of needing to access a given memory. Assume
that site k E sites{ 1.. . . , N } is making caching decisions. If
site k turns object ,i ‘‘on,’’ this has two effects. First, there
is a local effect because site k now has object i in the fastest
media. Second, there is a global effect because object i is now
available to all the other sites in the second fastest media.
Note that while the first effect always improves performance,
the second effect will tend not to effect performance if some
other site j has already cached object %.4 If site k turns the
object “off” then the magnitude of the first effect depends on
whether site k can already access the object through remote
memory at some other site. Even if site k has remote access,
performance will always get worse because the object is no
longer available in local main-memory. Other sites will only
suffer if the copy maintained at site X: was the only replica.

If a strategy is concerned with local optimization, then
only the first effect is relevant. If a strategy does global
optimization, then both effects are important. Because we are
dealing with read-only objects, the marginal value, m z k , of
caching object ,i can be calculated independently of cache
decisions regarding other objects.5 The value, 7 n i k , is always
positive and is based on the difference between the (local or
overall) access time for object i when it is cached at site k:
and the (local or overall) access time for the object when it
is not cached. Under either type of strategy, the magnitude
of the marginal benefit depends on 1) the ‘‘local’’ importance
of the object and 2) the presence of the object in some other
site’s memory. The value of m , k . must, of course, be weighted
by the (local or overall) probability of accessing the object.
Notice that these strategies differ from the greedy strategy
described below in that an object which, from a purely local
context, is valuable, will have less value when the site realizes
that the object is cached in remote memory. Under the local
distributed strategy, sites also operate in a greedy fashion, but
the marginal value calculations factor in information about the
state of other sites’ caches.

The strategies discussed here make cache decisions in
synchronous fashion, and then broadcast the results of the

‘If site is closer (or faster) than site .I to other sites in the system, then
there will be a global effect when site k also caches the object. This effect,
however, is minimal compared to the local effect. More importantly, in this
paper we examine RCA performance in the context of a LAN environment.
In consequence, remote sites are “symmetric” in the sense that all sites are
equally distant from one another.

‘We use the term “marginal value” to emphasize the fact that we are not
examining the net effect of caching one object while swapping out another
object. We examine only the performance benefit that results from caching
the object. The constraint of having only a given amount of cache available
is factored in later (see Section IV-B).

1190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

decisions to other sites. As a result, when site k makes
local cache decisions, the information that determines marginal
benefit is up-to-date. The key point here is that a single, hard
problem is partitioned into N smaller problems. Instead of
the overall system trying to solve the problem in centralized
fashion, each site tries to minimize the given cost function on
its own. Of course, the composition of N individually optimal
pieces may be suboptimal. The hope is that the distributed
solution will not differ greatly from the optimal solution.

C. Isolationist Strategies

I) Static Greedy Strategy: The static greedy strategy repre-
sents an extreme of autonomous (“isolationist”) behavior in
an RCA: essentially, each site ignores all other sites’ caching
decisions when making its own caching decisions. Each site
simply caches the objects that maximize the percentage of
access probability distribution available in its own cache. The
greedy algorithm can result in much system replication, as
heavily accessed objects are replicated at each site. On the
other hand, each site is guaranteed to get its most heavily
accessed objects with minimal cost. In contrast, under the
optimal strategies and under the distributed strategies, sites
are aware of other site’s decisions. Under the distributed local
policy a site may well cache a relatively unimportant object
because it relies on other sites for access to more valuable
objects.

2) Dynamic Greedy Strategy: The final strategy examined
in this paper uses no knowledge of Pij at all, but otherwise
resembles the static greedy strategy in that sites simply cache
(what they perceive to be) their most valuable objects. It is
a “greedy” strategy in that sites do not attempt to avoid
caching highly replicated objects by snooping on other sites.
Essentially, sites assign LRU-based values to objects, and use
these values to determine which objects should be swapped
out to make room for incoming objects.

D. Performance Issues Between the Strategies

Before discussing the implementation of the strategies, we
summarize the issues that differentiate them. Three degrees of
coordinated decisions (through exchange of state information)
are examined: centralized, distributed, and isolationist. Three
performance goals are examined: maximizing average, fair,
and local performance. Two ways of assigning local object
values are examined: exact access frequency and LRU-based.6
Table I lists, for each strategy discussed in this paper, where
the strategy lies on the spectrum.

IV. STRATEGY IMPLEMENTATIONS
In this section, we develop implementations of the RCA

6Although most of the algorithms analyzed here make use of Q priori
knowledge of object access rates, this does not imply that the algorithms
are not “implementable.” In practice, sites would periodically do dynamic
estimation of the access frequencies based on previous history (e.g., through
exponential weighting). After some period of time sites would do a fresh
determination of the optimal configuration. Because we do not consider that
dynamic frequency estimation imposes any difficulty (as opposed to the use
of exact knowledge), we chose to reduce simulation time by using static
knowledge.

TABLE I
DIFFERENCES AMONG THE STRATEGIES

~~

RCA Performance Dimensions

Strategies Coordination Goal Object Value

Optimal Average centralized average access frequency
Optimal Fair centralized fair access frequency
Distributed Local distributed local access frequency
Distributed Global distributed average access frequency
Static Greedy isolationist local access frequency
Dynamic Greedy isolationist local LRU stack position

cache strategies. Solutions for the optimal object configura-
tions can be determined analytically; the solution approach is
detailed in Section IV-A. The configurations for the distributed
strategies are obtained through event driven simulations of the
algorithms described in Section IV-B. The dynamic greedy
strategy is also evaluated through simulations. For the static
greedy strategy, determining the configuration is trivial: the
most frequently accessed objects at each site are cached in its
memory.

A. Implementing the Optimal Strategies

The problem of determining the optimal RCA configura-
tion given by (6) involves a nonlinear binary programming
problem. We want to solve for minimal

where cij is a nonlinear function of X ; j [note the product term
in (2)-(3)]. The X i j , of course, are binary valued. We now
show that this problem is, in fact, reducible to the capacitated
transportation problem [15]. As a result, the optimal solution
can be determined fairly easily [3]. First we define an objective
function that differs from the RCA function by a constant, so
that the optimal solutions are identical, Then we show that the
optimal solution to the new function will necessarily meet the
constraints of the RCA problem.

Recall that there are M objects and N sites. Construct an
augmented M by N + 1 matrix, 2, in the following way.
The entries in the first N columns are Pij (tr - ti), and
the entries in the last column are {Ej x i P i j } (t r - t d) .

(Here i = 1, . . . , M , j = 1,. . , N.) The Pij terms are the
(normalized) object access rates discussed above. The ti, t,,
and t d terms denote the access time for local memory, remote
memory, and disk, respectively. Consider the optimization
problem of determining the maximum value of ZI, xi ZikXik
(k = 1,. . , N + 1) subject to the constraints that

1) c~,x ik 2 1.
2) xi XiI, 5 B (B = site cache size) for k 5 N .
3) xi Xik < cc (for k = N + 1).
4) XiI, is binary.
Constraints 1-4 correspond exactly to the model of the

capacitated transportation problem [15]. The first is a row
constraint; the second and third are column constraints. We
first show that this objective function differs from the RCA

LEFF er al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE 1191

function by a constant. The first N columns represent an initial
state in which all objects can be accessed, by all sites, from
remote memory. The idea is that we then solve for maximum
incremental benefit from the initial state. The last column
allows us to model the situation of having to access an object
from disk (because of memory constraints). An X,k. = 1 entry
in the last column means that no copy of the ith object is in
main-memory. As a result, sites have to pay the incremental
(with respect to remote memory access) cost of accessing the
object on disk.

We now show that the optimal solution to the transportation
problem is also the optimal solution to the RCA problem. Note
that the optimal transportation solution will never have both an
X7k = 1 for some k 5 Nand also X,[.y+l~ = 1, since entries
in the last column represent “negative” benefit. Also, because
all elements in the first N columns are positive, the sum of
each column 5 N (in the optimal solution) will equal B.
The optimal solution will therefore correspond to the optimal
solution for the RCA. First, sites do not access an object on
disk if it is present in main-memory. Second, each site uses all
of its available main-memory for cache storage in the RCA.

B. Implementing the Distributed Strategies

The distributed strategies were discussed in Section 111-C.
Under the FAP constraint of H , , (X) = 1 for all “on” objects,
the equations needed for calculating marginal value have a
very simple form. Let R,., = 1 iff there is a remote (with
respect to site , j) replica of object ‘i (0 otherwise). Say that site
k: is making a caching decision with respect to object %. Under
the local optimization strategy, the local marginal value is

nl,,~. = Pik((trRik) + (f (l (1 - RTk)) - f /) . (7)

This follows because site k: is only concerned with the locul
effect of caching object i . Under a global optimization strategy,
site A; is also concerned with the overall system improvement
that results from the caching decision.

The marginal value of site k: caching object i for another
site , j # I; is

(8)
if R;, = I , and (“ P,,(f,l - t r) otherwise.

Then, under the global optimization policy, the overall value
of site k: caching object i is

‘rr l ,k . =P,k.((t,.R,I.) + (f r i (l - R,A.)) - t ,)
.\-

+ (1 - R,,/)P,J(f<l - f ,). (9)
/= 1 ../ # I ~

Each of the distributed algorithms contains the following
steps. When a site I; makes a set of caching decisions, it
has a snapshot X which gives the state of the other sites in
the system at a given time. X is the same eligibility matrix
discussed in Section 11-A-except that the cache contents of
site I; is uninitialized. Site k then uses a greedy algorithm
which proceeds as follows.

1) For all objects i , site k: calculates m , k .

2) Site k: orders the objects by decreasing m.,k..

3) For cache size B, site k: then simply sets x& = 1 for the

The distributed algorithms are implemented in a detailed
discrete event simulation. In the simulation, each site main-
tains a table of its cache contents. One simulation module
implements the cache management algorithms, while the other
one generates the object requests and determines whether a
local hit or remote hit occurs. In the simulation, the distributed
algorithms execute the cache eligibility algorithm periodically:
we found that the rate of convergence was very rapid (see
Section V-F). (The simulation does not “charge” when sites
swap objects in and out of memory. Again, this is to facilitate
comparison with the optimal algorithms, which do not change
the configuration after it is initially determined. Because
the distributed algorithms converge rapidly to an “optimal”
configuration, the cost of adjusting to dynamic changes in the
object access frequencies would be small.)

first B objects, and sets Xlk = 0 for all other objects.

C. Implementing the Isolationist Strategies

Under the isolationist strategies, a site simply caches the
objects that maximize the percentage of access probability
distribution available in its own cache. The static strategy does
this trivially because information about the Pz3 is available.
The dynamic greedy strategy is also implemented in the
detailed discrete event simulation. In the simulation module
implementing the cache management algorithms, the dynamic
greedy strategy simulates an LRU replacement algorithm for
each site independently.

V. PERFORMANCE ANALYSIS

In this section, we compare the different RCA cache strate-
gies based on their performance in various system configu-
rations. Important system dimensions are varied, while basic
system characteristics are held constant in this analysis. In
Table I1 we show the constant system parameters of a remote
caching architecture implemented in a workstation environ-
ment.’ We are not that concerned with the exact values in
Table I1 because the benefits of using an RCA apply over a
wide range of system parameters and access frequencies [23].
The key performance characteristic of the system is that order-
of-magnitude differences in access speed exist between layers
of the memory hierarchy. The number of objects is kept small
to facilitate generation and analysis of the results. In Section
V-F we show that the distributed algorithms scale to a system
that is at least two order of magnitude larger.

’The values of the access timc parameters assume the following. The RCA
sites are connected by an Ethernet network, and the generic “object” is a
packet on the order of SO0 bytes. Raw bus time is then approximately 0.5 ms.
Disk access consists of one third of the end-to-end seek time plus one half
of the rotational latency. Sites make one disk access to retrieve an object’s
index, and make another to access the object itself. With a slow file system
adding file system overhead, we use the round figure of 50 ms per object
“access.” (Objects are assumed to be partitioned at the disk level; the cost for
disk access reflects average object timc.) Local main memory access timevery
conservatively takes 1 ms (including hash-table access followed by a 500 byte
copy). The RPC time is taken from [27]. Given these “raw” access times,
the memory hicrdrchy access times are calculated as described in Section 11.

1192 E E E TRANSACTIONS ON PARALLEL AND DlSTRlBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

TABLE 11 TABLE 111
CONSTANT PARAMETERS IN THE RCA ANALYSIS NUMBER OF OBJECTS COMPRISING THE HOT-SET

System Parameters Parameter Values Hot-Set Curves 25th percentile 50th percentile

Number of Sites 10 B = 0.1 3 objects 7 objects
Number of Objects 1000 0 = 0.05 6 objects 14 objects

49 objects Local Main-Memory Access Time 1 ms B = 0.001 25 objects
Remote Main-Memory Access Time 6 ms
Disk Access Time 63 ms

A. Performance Parameters

I) Hot-Set Parameter: In order to study the effect of dif-
ferent access probability distributions on performance, we
introduce a hot-set parameter 0 that models data skew and
variability. The hot-set parameter determines the access proba-
bility distribution for the data objects. If objects are ordered by
decreasing access frequency, access frequency can be graphed
on the “y-axis” against object identifier on the “x-axis.” We
refer to the resulting (monotonic decreasing) curve as a hot-set
curve, because it shows the objects that are accessed most often
at a site. When the distribution curve is “steep,” then fewer
objects comprise the hot-set. When the curve is flat, then many
objects comprise the hot-set. Intuitively, caching becomes
less and less effective as the hot-set curve becomes flatter,
because more objects must be cached in order to maintain a
given cache-hit ratio. Let Pz3 denote the probability of site j
-accessing object i . Then, when sites have identical hot-sets,
we model a site’s hot-set curve by setting

PZJ = ~ (10) T
where i is the object number, 8 is the hot-set parameter,
M is the total number of objects, and T = E::, e-” is a
normalization constant. In other words, the hot-set curve is a
normalized negative exponential distribution for the specified
8. Thus, smaller 6’ values represent flatter hot sets. Hot-set
curves generated with a given 8 maintain their shape for all
values of M : the precise PZ3 will of course depend on the
number of objects in the system. In Table 111 we show the
minimum number of objects that are needed to cache 25%
and 50% of the access distribution for various hot-sets (when
the total number of objects is 100).

2) Correlation of Site Hot-Set Curves: Equation (7) assumes
that all sites have the same hot-set curve-i.e., all sites access
a given object with the same frequency. In modeling the
situation where sites have different hot-set curves, we do
not change the value of 8: what varies is that the objects
comprising the hot-sets are different. Intuitively, we want to
capture the degree of overlap or correlation between hot-sets
with a single parameter. To do so, we follow [32] . Note that
the M objects in the system can be ordered, in descending
order, by access frequency. Hot-set correlation is described
by a single parameter p that takes on integer values between
1 and M. Consider object 1, the most frequently accessed
object at site 1. Object 1 occupies position 1 (i.e., most
valuable) relative to all other objects. At all other sites, object
1 occupies a randomly chosen position between 1 and p.
More generally, object i of the original curve is placed in

Effect of p on Inter-Site Correlotion

0.4

I

0.2

0 0

0
I . . . I . . . I , , . I . , . I

20 40 60 80 100
P

Correlation 0

Fig. 1, Effect of p (1 00 objects).

a randomly chosen position from 1 to MIN(p + z - 1, M)
except that the position occupied by a previous step is not
allowed. The larger the p, the smaller the correlation between
sites. Thus p = 1 corresponds to perfect correlation among the
hot-set curves; p = M corresponds to a random relationship
between the hot-set curves. To get an idea of how p affects the
inter-correlation of sites’ hot-set curves, examine Fig. 1. The
average Spearman correlation (used because of its robustness
compared to Pearson’s r) [12] of the hot-set contents for sites
2, . . . , l o with that of site 1, is shown for p values 1 , . . . ,100.

3) Relative Site Activity: Although 8 determines the shape
of a site’s hot-set curve, because Pt3 is normalized to sum
to 1.0, it cannot model differences in relative site activity.
Picture a situation where site 1 has five times the activity of
the other sites in the system. A global optimization policy will
weight the needs of site 1 more heavily than the needs of
the other sites. In contrast, under a local optimization policy,
sites will not take the fact of different degrees of site activity
into account when making cache decisions. As a result, overall
system performance will be relatively worse as compared to a
situation with equal degrees of site activity.

Let v denote the parameter that determines relative
site activity. The activity of each site is given by a3
= l / (A * ~ ~ ‘ - 0) where A = E:=, l / j 1 ’ - V . In other
words, the relative site-activity distribution has a “Zipf-
like” shape [16], controlled by the value of V . When 77
= 1.0, then sites have the same amount of activity. When
q is 0.0 (and N = 10) then the relative site activity
is {1.00,0.50,0.33,0.25,0.20.0.17.0.14,0.12,0.11.0.10}.
Individual site mean response time is ct3Pz3, but overall AI

LEFF er a / REPLICATION ALGORITHMS IN REMOTF CACHING ARCHITECTURE 1193

21 (system) mean response time is x;ll o 1 c ,=~ (. , J ~ , J . we
look at the performance implications of three values of 71:

1.0, 0.5, and 0.0.

B. Performance Stutistics

We report algorithm performance in two ways. First, the
performance of the optimal average algorithm is graphically
shown as a function of values of H , 0, and cache size. This
algorithm serves as a baseline for the “best” possible results
for a given RCA configuration. The performance of the other
algorithms is shown relative to that of the optimal average
algorithm. These figures allow us to get a feel for the RCA
“state space.” Second, we take a closer look at algorithm
behavior by presenting tables of statistics for the performance
of a small slice of the state space. Per-site cache size (L?) is
held constant at 5 % of the total number of objects. In order to
“normalize” values of H across any number of objects, we use
STORE~I~.A~\-, defined to be CL, P,l when the P,., are sorted
in decreasing order. That is, STORE,![A.\- is the maximum
percent of a site’s hot-set that can be stored locally by that
site. Values of H are adjusted so that, if a site simply caches
objects in static greedy fashion, i t can cache STORE,~I.~.\-
percent of its hot-set. We report two sets of statistics: the first
gives a sense of “absolute” performance, the second gives a
sense of “how” the algorithm achieves its performance.

RTime (Response Time) is the basic performance metric
used to judge the effectiveness of a given algorithm. We
report mean object response (i.e., access) time.
STDev (Standard Deviation) is the standard deviation of
RTime over the sites in the system. Certain algorithms
may offer good overall performance, but at the cost of
large site-to-site variations.
CHIT (Cache Hit) is the percent of object requests that
were met by either local or remote cache. Effective
policies will get the most frequently accessed objects into
the faster localiremote main-memory media, and therefore
have high CHIT values. We report the mean value over
all sites.
R E P L (Degree of Replication) is the number of object
replicas stored under a given configuration. Assuming that
at least one copy of an object is resident in system cache,
we report the mean number of object replicas. In the case
of the static algorithms, only one system configuration
needs to be evaluated. In the case of the distributed
algorithms, this statistic (as well as that of B N F T) is
the “mean of the means” under all system configurations
generated by the algorithm.
B N F T (Benefit) is the average benefit that each cache
slot gives the system. Let s 1 = f, l - tl and s 2 = tcf - f r .

Then s1 *PI , is the (weighted) benefit that a site gets from
caching an object locally, and $ 2 * PI.) is the (weighted)
benefit that remote sites get from the presence of the
replica in remote memory. Let there be ‘ti,1 object replicas.
If 711 is at least 1, then 7 i ~ = N - 711 sites can access the
object through remote memory. (The presence of multiple
copies does not increase the remote benefit.) Then the
benefit that the overall system gets from the cache slots

devoted to that object is ‘ n 1 * s1 + 712 * 9 2 . (Pi, is used
to weight the benefit that a given site actually gets from
the cached object.) We report the benefit averaged over
all cached objects. Intuitively, an efficient strategy will
have high B N F T values because its eligibility criteria
will tend to reflect the need to 1) use cache storage most
effectively by caching the most important objects, and 2)
limit the amount of replication of a given object.

In the performance tables (Tables IV-XII) four values
are examined for H (those generating the four STORE,U..I.Y
values), and four for p (1, 10, 50, and 100). These values
represent two extreme points for the parameter in addition
to two intermediate points. The total number of objects in
the system is 100, so that when p = 100, the sites have only
“random” correlation among their hot-sets. Per-site cache size
is held constant at 5% of the total number of objects.

In the performance figures, per-site cache sizes vary from
1‘%# to 10%) of the total number of objects. Values of 0 vary
from 0.001 to 0.082 in increments of 0.009, and values of p
vary from 1 to 96 in increments of 5 .

The performance of the optimal and the static greedy algo-
rithms is derived analytically, while that of the distributed and
the dynamic greedy algorithms is from simulations. Because
the distributed algorithms use exact knowledge of object
access rates, their simulation did not require a “warm up”
period. The dynamic greedy algorithm had a warm up period
of 1000 object accesses. Each simulation ran for 10 000 object
accesses. Preliminary results showed that the performance
statistics reported from this single large run were indistinguish-
able from “batched means” simulations that used a stopping
criterion of a relative half width of 0.1 and a 95% confidence
interval. (The reason for such behavior is the relative lack of
“noise” in the simulations.) We therefore used single-batch
simulations to generate the data points for the figures.

C. Optimal Average Performance

When sites have no cache storage at all, then mean response
time will be 63 ms (see Table 11). If all objects are cached
locally, then mean response time will be 1 ms; if all objects
are available in either local or remote memory, then mean
response time will be between 1 and 6 ms. To the extent that
sites must access objects at disk, response time will, of course,
exceed main-memory access times.

In Fig. 2, the performance of the optimal average algorithm
is shown as a function of 0 and cache size. The larger the value
of H (i.e., the smaller or sharper the hot set), the fewer objects
need to be cached in order to attain a given cache-hit ratio.
Consequently, the larger the 0, the better the performance. The
shape of the performance curve mirrors the access distribution.
Thus, when the hot-set curve is flat (0 = O.OOl), performance is
a linear function of cache size. When the hot-set curve is sharp
(H = 0.1), performance is a nonlinear function of cache size,
because 50% of read accesses are to only 7% of the objects.

Fig. 3 shows mean access time (ms) as a function of both H
and p (per-site cache size is maintained at 2% of the number
of objects). As before, when other factors are held constant,
performance improves with larger H. As p increases from 1

1194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1 1 , NOVEMBER 1993

Optimol Performonce os function of 0 ond cache size

Fig. 2. Optimal performance (p = 26).

Optimal Performance as function of 0 and D

Fig. 3. Optimal performance (C‘5rz~ = 2%)

to M , the system is in one of three configurations: sites have
a) identical hot-sets, b) partial hot-set overlap, or c) random
hot-set relationship. In configuration a) performance is best,
because the smaller system-wide hot set implies that caching
is most effective. In configuration c), performance is worst,
because the system hot set is large. In moving from a) to c),
performance tends to degrade-but there are dips and valleys.
Even if there is slightly less overlap among the sites’ hot-sets,
sites can get a higher local hit-ratio, and therefore improve
performance slightly.

D. Optimal Fair Performance

Only the optimal average algorithm (henceforth ‘‘average”)
explicitly optimizes for the performance metric; the optimal
fair (henceforth ‘‘fair”) algorithm can therefore never exceed
the former’s performance. Figs. 4 and 5 show the relative
performance of the algorithm compared to average. We show
relative mean access time: i.e., the ratio of access time under

Relative Performonce to Optimol Algorithm

1.1

E
0

a ’
- k 1 1

U

I ; 1.0

1 .o

Fig. 4. Optimal fair algorithm (8 = 0.082).

Relative Performonce to Optimal Algorithm

l T - l - - - r . z o
8 1.1

E
2 1.1

2 1.0

0
c

.p
I

1 .o

Fig. 5. Optimal fair algorithm (0 = 0.046).

R e l o h e Performonce to Optimol Algorithm

7 - p - y 2

Fig. 6. Static greedy algorithm (8 = 0.082).

the fair strategy to the access time under the average strategy.
(Similar ratios are reported in Figs. 6-15.) These figures are
quite ‘‘jagged’ ’ because the performance range among sites
depends on the exact composition of their hot-sets and on the
amount of cache storage in the RCA system. Because of the
randomness associated with p, the relative performance of the
fair (a “min/max”) algorithm can vary a great deal despite
small changes in system configuration. Nevertheless, certain
trends are quite clear.

LEFF et al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE 1195

Relative Performonce t o Optimol Algorithm

Fig. 7. Static greedy algorithm (0 = 0.046).

Relative Performonce to Optimol Algorithm

Fig. 8. Static greedy algorithm (0 = 0,001).

Relative Performance to Optimal Algorithm

I

01

t

E
L

01

01

0
0 [L

a

...
-

Re80;lve Performance to Optimal Algorlthm

ST
1

Fig. 10. Dynamic greedy algorithm (H = 0.046).

Relative Performance to Optimol Algorithm

P

Fig. 11. Dynamic greedy algorithm (0 = 0.001).

Relotive Performonce to Optimal Algorithm

," 1 .
1.3 ;

Fig. 9. Dynamic greedy algorithm (0 = 0.082)

The performance gap increases for larger values of 8, and
the reason for this involves the fairness criterion. When 8
is large, then the few objects in the hot-set are valuable
and other objects are not. On the one hand, if sites repli-
cate locally valuable objects, then cache storage is wasted
because other objects could be stored locally, with access
to the valuable objects being through fast remote memory.

Fig. 12. Distributed local algorithm (0 = 0.082).

(Performance of the isolationist algorithm suffers precisely
because too many replicas are made of valuable objects.)
On the other hand, if there are too few replicas of valuable
objects, performance suffers because local memory access is
still faster than remote memory access. The optimal algorithm
caches the optimal number of valuable objects at some sites
and caches less valuable objects at other sites. Sites with
valuable objects do better than other sites. Overall RCA

1196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

Relative Performonce to Optimal Algorithm

------lb .4

Relotive Performonce to Optimal Algorithm 1’2m.*o
1.3 2

0 1.2 L $
0)

0 - .1 d n“

.o

Fig. 13. Distributed local algorithm (0 = 0.046).

Relative Performance to Optimal Algorithm

Fig. 14. Distributed global algorithm (0 = 0.082).

performance is optimized because all sites benefit from remote
memory. Such a configuration is not always “good” for
the fair algorithm because sites responsible for caching less
valuable objects do individually worse than those caching
more valuable objects. Because the fair policy optimizes
the performance of the worst performing site, the improved
overall solution is ignored in favor of a solution in which
all sites have good (but not optimal) performance. As hot-
sets become flatter (Fig. 5), cache decisions about a given
object have less effect on performance because objects are
individually less valuable. This leads to smaller “min versus
max” performance gaps, and fair performance approaches that
of the average. At the limit of flat hot-sets, the performance
of the two algorithms is identical. Table IV shows that for a
given amount of cache, the difference between the optimal and
fair algorithms can decrease-even though the hot-set curve
becomes flatter (compare the “20%” and “30%” entries for
p = 50 and 100). The reason for this is that, for a given
amount of storage, the system can cache the global hot-set
while still maintaining a fair policy. Overall, however, the
largest performance differences between the algorithms occur
with a sharper hot-set curve.

The fairness criterion also tends to cause the fair algorithm
to do relatively worse (in general) as hot-sets overlap less
and less. When hot-sets are closely related there are relatively

Fig. 15. Distributed global algorithm (8 = 0.046).

few “good” configurations because objects, in general, give
approximately the same benefit to all sites. As correlation
decreases, there are many more configurations that the average
algorithm can exploit, because caching an object at one site
has different implications than caching it at another site. Only
a subset of these configurations “make sense” for the fair
algorithm, because while some sites will benefit from the
cached object, other sites get little benefit.

The SDev values shown in Table IV show that the fair
algorithm succeeds in ensuring that no site does badly. The
large difference between the SDev of the algorithms for large 6
and p shows that the average algorithm gets its performance by
requiring some sites to cache objects primarily for the benefit
of other sites. Moreover the CHIT values (representing local
and remote cache hits) show that the fair algorithm is forced
to leave certain objects on disk-because caching them at
any site would cause the performance spread among sites to
become too wide. It is interesting to note that in Table V (for
per site cache storage of 5% of total number of objects) the
average and fair policies maintain only a single object replica
for all values of 6 and p considered. The benefit per cached
object, however, is slightly greater for the average than for
the fair when the correlation is less. In other words, even
though the coordinated decisions of the fair algorithm result
in no “replication,” it does not cache the same amount of
“value” because this would not satisfy the fairness criterion.
Note that the two algorithms get the same amount of benefit
when sites have flat hot-sets. Even when sites have relatively
sharp hot-sets (S T O R E ~ ~ A ~ ~ = 30%), the algorithms still have
the same B N F T when sites have strong correlation. Only
when correlation is low and sites have sharp hot-sets does the
performance of the two algorithms diverge.

E. Performance of the Isolationist Strategies

Figs. 6-11 show the performance (relative to the optimal)
of the two isolationist (or “greedy”) algorithms. The static
and dynamic greedy algorithms have features in common, but
also differ significantly in their behavior.

First we examine the behavior of the static greedy algorithm
(Figs. 6-11). When hot-sets are identical or closely overlap,
relative performance is quite bad. As hot-sets diverge more,

LEFF el a/ . : REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE 1197

C H I T

0.972
0.967
0.833
0.716

0.900
0.891
0.743
0.05 2

0.702
0.695
0.603
0.563

0.500
0.500
0.500
0.500

TABLE IV
PERFORMANCE OF THL OPTIMA1 AUD STATIC G R E E D Y ALGORITHMS (PFR-SITE CACHt SrORAGF HOLDS 5% O t OBJECTS)

RTime

7.1
7.1
14.3
21.4

11.2
11.5
20.2
25.7

22.5
22.9
28.1
30.6

34.0
34.0
34.0
34.0

I Optimal Fair I Optimal Average

C H I T

0.972
0.966
0.833
0.707

0.900
0.891
0.734
0.639

0.702
0.605
0.601
0.557

0.500
0.5 00
0.500
0.500

Static Greedy

0.300
0.560

3.15 0.639
0.587

RTime

44.1
29.4
24.9
27.9

50.3
37.7
30.6
32.2

56.4
48.1
37.7
36.7

59.5
54.4
42.0
39.1

REPL

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

BNFT

11.1
11.1
9.7
8.4

10.3
10.2
8.6
7.6

8.0
7.9
6.9
6.5

5.7
5.7
5.7
5.7

REPL

1.0
1.0
1.0
1.0

1.0
1 .0
1.0
1 .o

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

RNFT

11 .1
11.1
9.6
8.2

10.3
10.2
8.5
7.4

8.0
7.9
6.9
6.4

5.7
5.7
5.7
5.7

STOREii i \

30%
30%
30%
30%

20%
20%
20%
20%

10%
10%
10%
10%

5%
5%
5%
5%

P

1
10
50
I00

1
10
50
100

1
10
so
100

I
10
50
100

STORE\, I f RTime SDcv SDev

30%
30%
30%
30%

1
1 0
50
I00

7.1
7. I
14.2
20.8

0.4
0.3
2.1
2. I

0.3
0.2
1 .6
0.8

20%
20%
20%
20%

1
10
50
IO0

0.2
0.3
2.1
1.8

0.3
0.1
0.8
1 .o

0.0
1.6
2.9
3.1

0.200
0.422
0.547
0.520

11.2
11.5
10.6
24.9

22.5
22.9
28.0
30.3

10%
10%
10%
10%

1
1 0
50
I00

0.0
0.2
1 .s
1.5

0. I
0. I
1.3
0.1

0.0
0.5
1.7
1.4

0.100
0.247
0.431
0.449

5%
5%
5%
5%

1
1 0
50
100

34.0
34.0
34.0
34.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0 0.050
0.0 0.140
0.0 0.360

0.410

TABLE V
REPLlCArlON DONE BY T H E OPTIMAL AND SIAIIC G K L ~ D Y

ALGORI~HMS (PER-SIIb CACHE STORAGE HOl US 5% OF OBJFCIS)

are not evaluated. This leads to low remote cache hit-ratios.
This performance aspect is accentuated for small p (at the
limit, remote cache hit-ratios are 0). Note that this “correlation
effect” is only observed for large cache sizes in Fig. 11. When
hot-sets are large, the static greedy policy results in small local
hit-ratios: The key performance issue is the effective use of
remote cache even when sites have little hot-set overlap. As
a result, relative performance does not improve much with
decreasing correlation. Only when sites have large amounts of
cache does decreasing correlation lead to relative performance
improvement.

Note that when sites have small amounts of cache storage,
relative performance is fine; relative performance is worse for
a sharper hot-set than for a flat hot-set. However, when sites
have large amounts of cache storage, then relative performance
degrades as hot-sets become flatter. The key characteristic
of the greedy algorithm is that sites do local optimization
without knowledge of conditions at other sites. The local
benefit of caching object / at site ,I when no other site has
cached that object is Ptj(fd - t l) . If one replica is already
cached at some other site, then the benefit is reduced to
P,,(t, - t l) . Consider the task of selecting among a set of
cache candidates. Under the optimal algorithm, sites often
cache objects with smaller PLJ because they can already
access the more valuable objects through remote memory.
Cache benefit is increased by reducing the access time for
less valuable objects-i.e., objects are moved up the memory
hierarchy from disk access to main-memory access. Under
the greedy policy, the “memory hierarchy” factor is ignored
in favor of the “object importance” factor. With sharp hot-
sets and small cache sizes, the P,, factor is large, so the
“penalty” for local caching of an already replicated object
is high. In other words, the alternative candidates for caching
are sufficiently important that ignoring them greatly degrades
relative performance. When sites have sharp hot-sets and lots

Optimal
Average Static Greedy

-

3NFT
I -

REPL

10.0
3.6
1.4
1.2

3.7
6.6
7.5
6.9

10.0
3.6
1.4
1.2

2.5
4.8
6.4
6.1

10.0
3.6
1.4
I .2

1.2
2.9
5.0
5.2

10.0
3.6
1.4
1.2

0.6
I .h
4. I
4.7

relative performance levels out (as a function of 1)). Under the
static greedy algorithm, sites that have much overlap among
their hot-sets cause N-degree replication for valuable objects
and no caching for less important objects. As correlation
decreases, the degree of (wasteful) replication is automatically
reduced-even under the greedy policy-because sites seek
to cache different objects. When hot-sets are small, the static
greedy policy at least succeeds in achieving high local cache
hit-ratios. Relative performance (compared to the optimal)
suffers because the tradeoffs between local and remote cache

1198 IEEE TRANSACTIONS Oh

STOREMAX

30%
30%
30%
30%

20%
20%
20%
20%

10%
10%
10%
10%

5%
5%
5%
5%

TABLE VI
ILLUSTRATION OF THE BENEFITS OF REMOTE CACHING
(PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS)

Optima, LRU, Remote LRU, Without
Cache Remote Cache p

1 7.1 19.5 44.4
10 7.1 20.5 44.4
50 14.2 30.8 44.4
100 20.8 34.6 44.4

1 11.2 27.1 47.8
10 11.5 27.8 47.8
50 19.6 35.0 47.8
100 24.9 37.3 47.8

1 22.5 37.3 50.4
10 22.9 37.4 50.4
50 28.0 39.1 50.4
100 30.3 39.6 50.4

1 34.0 40.5 51.0
10 34.0 40.5 51.0
50 34.0 40.5 51.0
100 34.0 40.5 51.0

Mean Object Access Time I

of cache, the Pij term is very small (sites operate at the tail
end of the access distribution), so that the overall penalty is
relatively small. Conversely, when sites have flat hot-sets, the
Pij factor is small, so that the penalty is relatively small.
Consequently, if sites have small amounts of cache, because
the Pij term is small and the penalty is taken over relatively
few decisions, relative performance is not too bad. However,
when sites have large amounts of cache, the penalty is taken
for many cache decisions, so that relative performance is bad.

The dynamic greedy algorithm differs from the static greedy
algorithm in the way that its performance is affected by the
inter-site correlation parameter p . The static greedy algorithm
tends to do better with decreasing correlation-dramatically
better, in fact, except in the case of a flat hot-set. The effect
of p on the dynamic greedy algorithm is not as clear-cut,
and is related to hot-set shape and cache size. When hot-sets
are sharp or moderate (Figs. 9 and lo), the performance of
the dynamic greedy algorithm is less than three times worse
than optimal for p < 50. As sites have less correlation,
the relative performance degrades greatly (for larger cache
sizes). Recall that the dynamic greedy algorithm manages
local cache with an LRU policy. When hot-sets are relatively
small sites can cache much of their hot-sets locally. The
key performance issue is whether remote cache can be used
given a local cache-miss. Even though sites do not know
which objects are “statically” important, the small hot-set size
means that “hot” objects will tend to be valuable objects.
Because of the randomness introduced by the LRU policy,
one site’s cache contents does not duplicate another site’s
cache. These two factors result in relatively better performance
than static greedy. However, as inter-site correlation decreases,
the dynamic greedy (i.e., local cache management) policy
degrades because the percent of remote cache-hits decreases
especially for large cache sizes.

I PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

When hot-sets are flat (Fig. 11) the performance of the
dynamic greedy algorithm (for a given amount of cache) is
almost completely unaffected by p . Instead, the key determi-
nant of performance is cache size. When per-site cache size
is less than 8% of the total number of objects, then relative
performance is less than two times worse than the optimal. As
cache size increases, relative performance degrades to more
than 4.6 times worse than the optimal. Because hot-sets are
so large, one object is about as valuable to a given site as
any other object. The LRU policy leads to an almost random
relationship between sites’ cache contents. As a result, for large
hot-set the percent of remote cache hits increases despite the
fact that local cache hits decrease, The large performance gap
between the optimal and dynamic greedy algorithms occurs
when there is enough cache storage in the system that the
penalty for suboptimal decisions begins to really add up.

The above analysis also explains the performance differ-
ences between the greedy algorithms. For sharp or moderate
hot-sets, the static greedy algorithm does better than the
dynamic except in the case of strong inter-site correlation.
Conversely, when hot-sets are flat, the dynamic greedy al-
gorithm does better than the static except in the case of very
weak correlation. Both algorithms do too much replication (see
Tables V and VIII) because they are not aware of the cache
decisions at other sites. The dynamic algorithm avoids com-
plete duplication of cache contents because cache contents are
dynamically determined by the actual (i.e., dynamic) pattern
of object accesses. The advantage of the static algorithm is
that it has complete knowledge about object value. Sharp hot-
sets imply that local cache-hit ratios are quite high, regardless
of remote cache. Except in the case of strong site correlation
(where the static greedy algorithm does, in the limit, N-site
replication), higher local cache hits are more important than
higher remote hits. Flat hot-sets imply that local cache is
ineffective, and that remote cache must be used efficiently for
good performance. The dynamic greedy therefore does better
than the static (except when the weak correlation automatically
leads to LRU type of randomness), Tables V and VI11 confirm
this analysis. Note how the mean number of replicas declines
“automatically” under the static greedy algorithm as inter-
site correlation declines. Although the number of replicas
also declines for the dynamic algorithm, the range is much
smaller. For low values of p, the mean benefit per replica is
much higher under the dynamic algorithm. As p increases, the
situation reverses, and the static algorithm has higher BNFT
values. When sites have flat hot-sets (STOREMAX = 5%),
the dynamic algorithm has BNFT = 4.6 for all values of p.
The static algorithm has lower values-except at the extreme
of random correlation, where BNFT = 4.7.

I) Benefits of Remote Caching: Although the focus of this
subsection has been on the weaknesses of the isolationist
algorithms as compared to the optimal, it is also important
to note that the benefits of remote caching apply for all
algorithms. In Table VI we compare the performance of two
systems that use the LRU policy to manage local cache. The
systems differ in that in one (the second column) sites are able
to access remote cache; in the other system (the third column)
remote caching is not supported. We see that with only ten sites

LEFF et a1 ’ REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE 1199

in the system, remote caching offers a very large performance
improvement. Performance in the non-RCA system is not
affected by the degree of inter-site correlation because sites
cannot access remote cache in any case. It is also interesting
to note that even with random correlation among the sites’
data access, the RCA system using the LRU algorithm still has
much superior performance compared to the non-RCA system.
The benefits of remote memory architecture compared to more
traditional client/server architectures are described more fully
in [17].

F. Performance of the Distributed Strategies

The distributed algorithms fill the performance gap between
the optimal and greedy algorithms. Instead of order of magni-
tude performance differences, the distributed local (henceforth
“local”) algorithm never does worse than 1.4 times optimal.
The distributed global (henceforth “global”) does even better.
When per-site cache sizes are 5% or less of the total number of
objects, then performance is less than 1.03 worse than optimal.
Even with larger cache sizes, performance is never worse than
1.15 of optimal.

The isolationist algorithms do relatively worse with increas-
ing cache size, and (for small cache sizes) do better with
sharp hot-sets. This behavior is due to the ineffective use
of remote memory. In contrast, the relative performance of
distributed algorithms is much less affected by cache size,
and gets better with flat hot-sets. (At the extreme of 0 = 0.0,
performance is indistinguishable from the optimal). Tables V
and VI11 show that the greedy algorithms maintain a high
number of replicas per cached object. These replicas crowd
out other objects which must then be accessed on disk. In
contrast, the distributed algorithms have R E P L values which
are very close to optimakg This indicates that sites are aware
of the cached objects at other sites and take advantage of these
replicas to bring other objects into main-memory. Because
these algorithms factor remote site decisions into local cache
decisions, the performance gap with respect to the optimal has
to do with the issue of coordinated decision making (and the
cost function in the case of the local algorithm).

The relative performance of both distributed algorithms is
clearly dependent on the shape of the hot-set: the sharper
the hot-set, the worse the relative performance. Compare, for
example, Fig. 12 to Fig. 13 and Fig. 14 to Fig. 15. At the limit
of completely flat hot-sets, the performance of the distributed
algorithms is indistinguishable from the optimal. The reason
for this behavior is that, to the extent that these algorithms
make suboptimal decisions, a greater performance penalty is
incurred when objects are individually more valuable.

Cache size also has an important effect on relative perfor-
mance. In Fig. 14, if per-site cache size is less than 6% of the
total number of objects then the performance gap is less than
1.05. The performance gap only exceeds 1.10 when per-site

‘In a symmetric topology caching a second replica cannot improve the
performance of remote sites because all sites are equally distant from one
another. The LAN environment investigated here has a symmetric topology,
which is why the optimal R E P L values are about 1 in all cases. In contrast,
thc greedy algorithms have much higher R E P L valucs than the optimal,
while the distributed algorithms have small R E P L value\.

cache size is 10%. Although the performance gap of the local
algorithm is larger than the global, the gap in Fig. 12 becomes
large only when per-site cache size exceeds 4%. Similar
behavior is seen in Figs. 13 and 15. This behavior resembles
the effect of hot-set shape: the penalty for suboptimal decisions
increases as the ratio of per-site cache storage to the total
number of objects increases.

Inter-site correlation plays a role in system behavior. In
examining Fig. 14 we see that (when per site cache size is
larger than 6%) relative performance degrades as correlation
is reduced beyond the point of p = 35. In Fig. 15, when per
site cache size is larger than 7%, performance degrades as
correlation decreases for p greater than 50.

The consequences of decreasing inter-site correlation on
the effectiveness of distributed processing impact both the
global and local algorithms. The local algorithm, however, also
degrades with increasing correlation. As a result, relative local
performance degrades at both extremes of the p parameter, and
does best for intermediate values. In the case of sharp hot-sets
(Fig. 12), local performance tends to degrade with increasing
correlation. Although local algorithm does use information
about remote memory, this information per se is not enough
(for optimal average performance) when sites have strong
correlation among their hot-sets. Sites replicate the same set of
valuable objects-even though the objects are already cached
at other sites. The “object importance” factor is sufficiently
large that, coupled with the difference between local and
remote access time, caching valuable objects benefits sites
more than bringing less valuable objects off disk. Observe
in Table VI11 how the local algorithm has the largest REPL
values for sharp hot-sets and strong correlation.

The global algorithm therefore has the greatest performance
improvement, compared to to the local, when sites have large
amounts of cache and their hot-sets are closely correlated.
Under the global strategy, certain sites are constrained to cache
less important objects so that no site has to access the disk
for these objects. Note that these constraints causes all sites
to improve their performance. The standard deviation of site
performance (Table VII), when hot-sets are either moderate-
flat or when correlation is strong, is about the same for both
the local and global algorithms. This shows that some sites
do not do appreciably better than other sites-despite the
fact that they are doing local optimization. Instead, all sites
suffer about the same magnitude of performance loss. Under
sharp hot-sets and little correlation, the standard deviation is
much greater under the local than under the global algorithms.
Local optimization causes sites that happen to benefit from
remote cache (due to the randomness caused by p) to do much
better than other sites. The cooperation caused by the global
optimization goal “smoothes out” the intrinsic randomness
of the system.

When sites have moderate hot-sets (Fig. 13), the local
algorithm (relative to the optimal) exhibits different behav-
iors depending on the amount of cache storage. When sites
have little cache, then performance can actually degrade with
decreasing correlation. Only for large amounts of storage does
performance improve with decreasing correlation. The hot-sets
of Fig. 13 are larger than in Fig. 12. Consequently, when

1200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

STOREni 4.1 P

30% 1
30% 10
30% 50
30% 100

20% 1
20% 10
20% 50
20% 100

10% 1
10% 10
10% 50
10% 100

TABLE VI1
PERFORMANCE OF THE DISTRIBUTED AND DYNAMIC GREEDY ALGORITHMS (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS)

Distributed Local Distributed Global Dynamic Greedy

RTime SDev C H I T RTime SDev C H I T RTime SDev C H 17

8.4 0.5 0.942 7.1 0.5 0.972 19.5 0.3 0.747
8.0 0.6 0.949 7.3 0.4 0.966 20.5 0.6 0.729
14.7 2.1 0.823 14.4 2.2 0.716 30.8 1 .0 0.549
23.3 4.9 0.671 21.0 2.5 0.716 34.6 0.9 0.804

11.2 0.3 0.900 11.2 0.3 0.900 27.1 0.3 0.619
11.9 0.6 0.886 11.6 0.4 0.891 27.8 0.3 0.608
20.2 2.3 0.735 19.8 2.2 0.745 35.0 1 .o 0.482
27.3 3.7 0.605 25.0 2.1 0.652 37.3 0.5 0.441

22.5 0.3 0.702 22.5 0.2 0.702 37.3 0.3 0.44.5
23.1 0.4 0.692 22.9 0.4 0.695 37.4 0.3 0.445
28.4 1 .5 0.599 28.1 1.7 0.605 39.1 0.5 0.415
31.7 1.7 0.534 30.4 1 .5 0.561 39.6 0.3 0.407

Distributed
Global

REPL BNFT

1.1 11.0
1.0 11.0
1.0 9.6
1.0 8.3

1.1 10.2
1.0 10.1
1.0 8.5
1.0 7.5

1 .1 7.9
1.0 7.8
1.0 6.9
1.0 6.4

1.1 5.6
1.0 5.6
1.0 5.7
1.0 5.7

5%
5%
5%
5%

Dynamic
Greedy

REPL BNFT

1.8 8.7
1.8 8.4
1.4 6.4
1.3 5.6

1.5 7.2
1.5 7.0
1.3 5.6
1.3 5.1

1.3 5.2
1.3 5.2
1.3 4.7
1.2 4.7

1.3 4.6
1.2 4.6
1.2 4.6
1.2 4.6

1 34.0 0.3 0.499 34.0 0.3 0.499 40.5 0.3 0.391

100 34.0 0.4 0.501 34.0 0.4 0.501 40.3 0.395

sites are evaluating the cache candidate set, the “object impor-
tance” factor is smaller and the “memory hierarchy” factor
implies that sites should concentrate on bringing nonreplicated
objects from disk into main-memory. Closer overlap among
sites then leads to larger remote cache-hit ratios. As sites have
more available cache storage decisions are made about objects
at the tail end of the access distribution. Local optimization
then encourages replicating even marginally (locally) impor-
tant objects as opposed to caching even less important objects
that would tend to benefit the overall system. In this situation,
the local strategy does relatively better when low inter-site
correlation implies that sites can benefit from the differing
cache contents of other sites.

1) Convergence Properties of the Distributed Algorithms:
By its nature, the solution achieved by either of the distributed
algorithms improves monotonically with each new iteration
of the algorithm. Two questions therefore arise. First, how
quickly do the distributed algorithms converge to a stable
solution? (A stable solution can be defined as one which does
not change through any further iterations of the algorithm. Be-
cause of the monotonicity property and the finite cardinality of
the state space, a stable solution must be reached eventually.)
Second, how close is this stable solution to the global optimal
solution? (Since each iteration of the algorithm can change
only the eligibility decisions at one site, global optimality may
not be achieved.) In this subsection we answer these questions
for the distributed global algorithm.

In Table IX statistics for the distributed global algorithm
are presented. (The cases examined are the same as in Table
VU.) Entries in the third and fourth columns indicate the
number of algorithm iterations needed to reach a given percent
of the optimal algorithm’s performance. For example, when
STOREMAX = 30% and p = 1, then a solution which
is at least 95% as good as the optimal is reached by the

TABLE VI11
REPLICATION DONE BY DISTRIBUTED AND DYNAMIC GREEDY

ALGORITHMS (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS)

20%
20%
20%
20%

10%
10%
10%
10%

5%
5%
5%
5%

-
P

1
10
50
100

1
10
50
100

-

1
10
50
100

1
10
50
100

Distributed
Local
-
REPL

1.4
1.2
1 .0
1 .o

-

1.1
1.1
1 .o
1 .0

1.1
1.1
1 .o
1 .0

1.1
1 .0

1 .o
1 .n

-
BNFT

10.7
10.8
9.5
7.8

-

10.1
10.0
8.4
7.0

7.8
7.7
6.8
6.1

5.6
5.6
5.7
5.7

1

ninth site on the first round of cache decisions (denoted by
“1,9”). Because individual cache decisions at the first nine
sites can yield so much benefit, good overall performance is
achieved-even though the tenth site has not yet made its
first set of decisions. An additional site (the tenth) must make
its decisions in order to reach a solution which is at least
98% as good as optimal (“2,O”). Clearly, very good solutions
are reached quite rapidly. In fact, though not indicated in
the table, all examples achieved stability by the third round
of iterations. The EQUIV column indicates whether or not

LEFF cI U/: REPIJCATION ALGORITHMS IN REMOTE C‘ACIIING ARCHITECTURE 1201

the stable solution reached by the distributed global optimal
algorithm is within 0.1% of the global optimal solution.
Obviously, not all examples achieve this.

Table IX shows that the rate of improvement is not related
to whether this equivalence of solutions actually occurs. For
example, when p = 100 the rate of improvement is the
most rapid of all the STOREJ~ .A .~ - = 30% cases. However,
equivalence does not ultimately occur- in contrast to the case
of p = 1 , which has a slower improvement rate.

Recall that the optimal algorithm determines the optimal
configuration A- in “one” step. The distributed algorithms
are heuristics in which each site makes B eligibility decisions
(where L3 is the cache size) before the next site makes its
decisions. The set of these decisions is supposed to transform
the site’s cache contents into the state i t has in the optimal
configuration. In practice, one site’s decisions constrain the
decisions of all other sites. As we have seen, because the
sites under the distributed algorithm do not make coordinated
decisions, the union of locally optimal decisions do not always
equal the globally optimal configuration. Globally suboptimal
decisions have, of course, a greater effect when individual
cache slots are more valuable (large S T O R E . ~ I , ~ . ~) . Equally
importantly, when sites have less correlation among their hot-
sets, the implications of one site’s decisions on other sites are
more subtle than when they are closely correlated. As a result,
the issue of coordinated decisions (i.e.. the optimal algorithm)
plays a larger role.

The rapid improvement of the distributed algorithms points
to an important advantage over the optimal algorithm. If the
system need only determine a configuration once, then i t would
make sense to use the optimal rather than the distributed
algorithm. In practice, of course, sites do not have access to
exact, a priori knowledge of access frequencies. A dynamic
estimation, based on previous system history, would then be
done periodically; the new estimate of the P,,, would then

be input to a new invocation of the optimization algorithm.
Because the optimal algorithm requires a set of coordinated
decisions, changes in access frequencies can potentially require
many changes in sites’ caches. In contrast, the localized
decisions made by under the distributed algorithms means that
fewer cache changes need be made if only some sites have
different access frequencies. Since the distributed algorithms
improve rapidly, an RCA implementation would prefer them
over the optimal because they can afford to do the optimization
more frequently than the optimal algorithm.

number
of objects, -If, in the experiments described in the tables
and figures is set to 100 in order to facilitate generation and
analysis of the results. By varying the ratios of per-site cache
size to AI we can predict the behavior of a system with much
larger ,ZI and proportionally more cache storage. An obvious
issue is the scalability of the distributed algorithms. The
complexity of the optimal algorithm i s a linear function of the
number of sites and the number of objects (see Section IV-A).
As explained in Section IV-B, the distributed algorithms are
more efficient than the optimal algorithms. However, if the
performance of the distributed algorithm is also a function of
the amount of per-site cache storage B , then the algorithm
will not scale well in a realistic system.

To analyze the scalability of the distributed global algorithm
we perform the following experiment (see Table X). The
number of objects in the system is increased by two orders
of magnitude (from 100 to 1 0 000). The 0 values are adjusted
to maintain the same STORE\r.A.l- values of Table VI1 and
Table VIII. Four “correlation” values are listed per case:
“total” corresponds to = I ; “random” corresponds to p
= ,If. The values of 0.9 and 0.5 correspond, respectively, to
setting p to be one tenth and one half of A f . Per-site cache
storage is maintained. in both cases, at 5% of M. We find that
the algorithm scales very well. Performance for most cases
i s identical. Differences between the performance are due to
the effect of p being an input to the process of a random
generation of site hot-sets. In some cases (the second case
of S T O R E . J I , ~ . ~ = 30%), performance is better when M is
10 000. In other cases (the fourth case of S T O R E J I . A . ~ =
30%), performance is better when ,4f is 100.

2) Scalubility of the Distributed Algorithms: The

G. The Effect of TI oii Performunce

The previous analysis of performance involves the situation
where all sites have uniform relative activity (i.e., r/ = 1.0).
Each site’s contribution to average performance is thus the
same as any other site. We now examine situations in which
some sites have greater activity than others. Table XI shows
how the optimal average algorithm performs for three values
of 71. Recall that smaller ‘r/ implies a few, very active, sites;
other sites in the system are much less active.

One clear trend is that mean access time decreases as
relative site activity is more skewed (i.e., as 7) decreases).
Also, the improvement is more marked when sites have sharp
hot-sets (large values). Finally, the relative
improvement (over ‘rI values) is more pronounced when sites
have less hot-set correlation (large 0).

1202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

STOREAT~,I P

30% 1
30% 10
30% 50
30% 100

20% 1
20% 10
20% 50
20% 100

10% 1
10% 10
10% 50
10% 100

TABLE X
SCALABILITY PERFORMANCE OF THE DISTRIBUTED GLOBAL ALWRJTHM FOR
TWO VALUES OF M (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS)

Optimal Average

11 = 1.0 0 = 0.5 71 = 0.0

7.1 7.0 6.9
7.1 7.0 6.9
14.2 13.6 12.3
20.8 20.5 19.2

11.2 11.2 11.1
11.5 11.5 11.3
19.6 19.0 17.7
24.9 24.9 23.6

22.5 22.5 22.5
22.9 22.8 22.8
28.0 27.6 26.8
30.3 30.3 29.6

Distributed Global

1tr = 100 nr = 10 000

TOTAL
30% 0.9 7.3 7.2
30% 0.5 14.4 13.9
30% RANDOM 21.0 22.0

20%
20%
20%
20%

TOTAL 11.2 11.2
0.9 11.6 11.5
0.5 19.8 19.2

RANDOM 25 .0 25.7

10%
10%
10%
10%

TOTAL 22.5 22.5
0.9 22.9 22.9
0.5 28.1 27.6

RANDOM 30.4 30.5

5%
5%
5%
5%

TOTAL 34.0 34.0
0.9 34.0 34.0
0.5 34.0 34.0

RANDOM 34.0 34.0

As 7) decreases, a few sites become increasingly more
important relative to the other sites in the system. When other
system characteristics are held constant (e.g., per-site cache
size, hot-set distribution, and inter-site hot-set correlation),
then the optimal decision is for unimportant sites to cache
objects for the important sites. These sites behave, in a sense,
as “object servers” rather than as independent workstations.
Important sites therefore have higher remote cache-hit ratios.
Although less active sites may suffer a performance loss
(because locally important objects are not stored on-site),
overall system performance improves because the active sites
serve a greater number of object requests. Caching a hot object
yields higher cache-hit ratios when hot-sets are sharper. As a
result, benefits from the “object-serving’’ of less active sites
increase for sharper hot-sets.

Changes in overall system performance (due to 7) are
relatively small when sites exhibit much correlation between
their hot-sets. In such a case, sites already cache much of one
another’s objects: emphasizing the importance of certain sites
has little effect on replication decisions. In other words, when
sites already get maximum benefit from the RCA system (due
to small p) , changes in 7 do not change the contents of the
system hot-set much. As sites have less correlation, however,
the system’s hot-set is much larger. Decreasing q implies that
the system hot-set must be weighted by an object’s importance
(i.e., the site-weighted frequency of access). The large hot-set
that exists for 77 = 1.0 becomes much smaller when q = 0.0.
Under the optimal algorithm, sites cooperate to cache globally
important objects, and performance improves considerably.

Note that this analysis of the behavior of the optimal
algorithm’s performance under different values of rl does not
involve the issue of coordinated versus distributed decision
making. The factor of relative site activity only affects the
value that a site assigns to the presence of an object from

5%
5%
5%
5%

cache. This only involves the issue of the optimization goal.
As one would therefore expect, we found that the relative
performance of the distributed global algorithm (compared to
the optimal) is unaffected by changes in q. In almost all cases,
the distributed global algorithm does not suffer noticeable
degradation of its relative performance as site activity becomes
more skewed.

Under the static greedy and the distributed local algorithms,
individual sites do local optimization. Table XI1 shows the
relative performance of these algorithms (compared to the op-
timal) for three different instances of relative site activity. The
factors that determine relative performance when sites have
the same amount of activity were previously discussed. The
local optimization goal means that individual sites maintain the
same behavior for all values of 7. As relative activity diverges,
overall performance depends on which site has what degree of
importance. For example, if site 1 had the best performance
of all sites-a purely random occurrence with no bearing on
system modeling- then mean performance will improve as
77 decreases. Analysis of these algorithms (i.e., holding other
variables constant, and varying 7) is therefore complicated
because of the effect of these “random” inputs. Nevertheless,
a few trends are clear.

When individual cache slots are not valuable (because of
flat hot-sets), then relative performance is almost completely
unaffected by decreasing 77 (e.g., STOREMAX = 10% and
5%). As shown in Table XI, in such cases the optimal algo-
rithm can hardly exploit the varying site activity because the
presence of any given object has little effect on performance.
The actual performance of the local optimization algorithms
is unaffected by 7 for similar reasons.

When sites have sharp hot-sets, then relative performance
is mainly affected by the degree of inter-site correlation.
Table XI1 shows that the distributed local algorithm suffers

1 34.0 34.0 34.0
10 34.0 34.0 34.0
50 34.0 34.0 34.0
100 34.0 34.0 34.0

LEFF er a/ ’ REPLICATION ALGORITHMS IN REMOTF CACHING ARCHITECTURE 1201

= 0.5

1.19
1.12
1.06
1.17

1 .oo
1 .02
1.04
1.13

1.00
1.01
1.02
1.06

1 .00
1.00
1 .oo
I .oo

TABLE XI1
RELATIVE PEKFORMANCE OF THE LOCAL OPTIMILA’I I O N AI GOKllHMS FOR

THREE VAI.UBS OF /] (PER-SITk CACHE STORAGF HOLDS 5% OF OBJECTS)

r / = 0.0

1.20
1.13
1.13
1.30

1 .33
1.02
1.08
1.22

1 .oo
1 .01
1.02
1 . IO

1.00
1.00
1 .00
I .or)

30%
30%
30%
30%

1
10
50
100

1
10
50
100

I
10
50
100

1
I O
50
100

20%
20%
20%
20%

6.24 6.30
4.14 4.09
1.76 1.81
1.34 1.38

4.40 4.50
3.27 3.26
1.56 1.59
1.29 1.31

2.50 2.50
2.10 2.10
1.35 1.35
1.21 1.22

1.75 1.75
1.60 1.60
1.23 1.23
1.15 1.15

10%
10%
10%
10%

5%
5%
5%
5%

I Static Greedy

1 =0.0

6.41
4.08
1.92
1.50

4.53
3.25
1 .h5
1.40

2.51
2.10
1.37
1.26

-

-

1.75
1.60
1.23
1.15

Distributed Local

1) =
1 .0

1.19
1.13
1 .03
1.12

1 .00

1.03
1 .10

1 .oo
1.01
1 .01
1 .os

-

1 .o3

-

I .oo
1 .OO
I .oo
I .or)

performance degradations (as a function of decreasing 71)

when p = 100. The relative performance of the static greedy
algorithm also degrades for smaller values of p. When sites
can benefit from each other’s cache, then the penalty for local
optimization is not too high-active sites can still utilize the
contents of less active sites’ cache. As correlation among sites’
hot-sets decreases, then local optimization does increasingly
(relatively) worse for the case with smaller hot set, because
less active sites cannot benefit the other sites in the system. As
before, the distributed local algorithm does better than static
greedy.

VI. CONCLUSION AND FUTURE WORK

The high performance networks in many large distributed
systems enable a site to reach the main memory of other sites
more quickly than the time to access local disks. Remote
memory can serve as an additional layer in the memory
hierarchy between local memory and disks, but optimizing
performance in the remote cache architecture is complicated
by the fact that local sites may make replication decisions
independently of other sites.

Remote caching architectures offer immediate benefit be-
cause of the opportunity to take advantage of objects that are
cached at remote sites. Eficient use of the memory resources
in such a system depends critically on replica management.
A tradeoff exists between simplistic replication of valuable
objects (eliminating the need to pay the extra cost of remote
access), and using local cache storage to cache unreplicated
objects. This paper shows that the optimal selection of objects
for caching is a function of the hot-set curve, available cache
storage, differences between the access patterns of the sites,
and the criterion for optimal performance.

In this paper we have:
1) Introduced the idea of a remote caching architecture.
2) Analyzed the issues affecting its performance.
3) Developed optimal replica management algorithms.
4) Examined the issues of cost function and remote caching

information as they effect algorithm performance.
5) Analyzed the interaction of ‘‘object importance” factor

with “memory hierarchy” factor.
6) Developed a distributed global optimization algorithm

with performance very close to optimal.
7) Developed a distributed local optimization algorithm

(that maintains site autonomy) with mean access times
that are generally close to optimal.

8) Devised greedy algorithms for replica management.
We identified and analyzed the factors that are critical

to system performance. The performance of two optimal
algorithms was used as an upper bound on remote caching
architecture performance: Optimality results from the fact
that sites make coordinated decisions. Two greedy algorithms
are used as a lower bound on system performance. These
algorithms do not factor information about the state of other
sites into local site decisions. We showed that while locally
“greedy” decisions can lead to far worse performance than
“optimal” decisions, the degree of performance degradation
depends on the amount of cache storage available, the kind
of access pattern, and the variation among the sites’ access
patterns. Two distributed algorithms are then developed which
provide performance that is close to the optimal-even though
decisions are made in distributed fashion. The algorithms work
by exchanging information between sites. This information is
used as input for local cache decisions. One algorithm does
local optimization, and the other does global optimization.
The performance differences between the two point to the
autonomy tradeoffs in a remote caching architecture.

This paper demonstrates the potential of remote memory to
reduce the number of disk acesses, and thus to improve per-
formance. It also discusses distributed algorithms that, given
knowledge of object access rates, enable sites to achieve close
to optimal performance. Optimality refers here to average ob-
ject access time, and assumes that object accesses are “static”
for significant periods of time. A major direction of future
research in this area is dynamic replica management. A key
issue for remote caching is the development of an LRU analog
that captures global-in addition to local-object access
patterns [18]. As this paper shows, algorithms which only cap-
ture local object value have order-of-magnitude performance
gaps compared to the optimal. Another area of research is
applying the distributed algorithms to a nonsymmetric network
topology. In a symmetric topology, the “arithmetic” of these
algorithms is greatly simplified because, from the perspective
of any given site, all sites can be characterized as either
“local” or “remote’.’ This categorization is, of course, valid
for LAN-like topologies. In more complicated topologies, i t
might be necessary to modify the algorithms to reduce the
amount of information that must be stored to keep track of
71 sites’ constraints. In addition, synchronous site decisions
would be less reasonable in such topologies, and algorithms

1204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993

that work desuite asvnchronous site decisions would need to cessor,” in Proc. 17th Int. Symp. Comput. Architecture, IEEE CS Press,
Los Alamitos, CA, 1990, pp. 148-159.

[20] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321-359, NOV.

be devised. Implementation of remote memory requires that
these issues be addressed; this paper shows that RCA potential

- . ..
is sufficiently great to make implementation worthwhile. lb89.

1211 K. R. Pattipati and J. L. Wolf, “A file assignment problem model for
extended local area networks,” in Proc. Distributed Comput. Syst., 1990,

ACKNOWLEDGMENT pp. 554-561.
[22] C. Pu, J. D. Noe, and A. Proudfoot, “Regeneration of replicated objects:

A technique and its Eden implementation,”IEEE Trans. Sofhyare Eng.,
vol. SE-14, no. 7, pp. 936-945, July 1988.

We thank the anonymous reviewers for their suggestions,
which have greatly improved the quality of the paper.

REFERENCES

E. A. Arnould, F. J. Bitz, E. C. Cooper, H. T. Kung, R. D. Sansom,
and P. A. Steenkiste, “The design of Nectar: A network backplane for
heterogeneous multicomputers,” in Proc. ASPLOS III , Apr. 1989, pp.
205-216.
J. Bennett, J. Carter, and W. Zwaenepoel, “Munin: Distribiuted shared-
memory based on type-specific memory coherence,” in Proc. 1990 Conf
Principles and Practice of Parallel Programming, ACM Press, New
York, NY, 1990, pp. 168-176.
D. P. Bertsekas and D. A. Castinon, “The auction algorithm for the
transportation problem,” Ann. Oper. Res., pp. 67-96, 1989.
M. J. Carey, M. J. Franklin, M. Livny, and E. J. Shekita, “Data caching
tradeoffs in client-server DBMS architectures,” in Proc. I991 ACM
SIGMOD Int. Conf Management of Data, May 1991, pp. 357-366.
R. G. Casey, “Allocation of copies of a file in an information network,”
in Proc . AFIPS 1972 Spring Joint Comput. Con$, AFIPS Press, 1972,
pp. 617-625.
D. Comer and J. Griffoen, “A new design for distributed systems: The
remote memory model,” in Proc. Summer USENIX, 1990.
A. Dan and D. Towsley, “An approximate analysis of the LRU and
FIFO buffer schemes,” in Proc. ACM Sigmetrics, 1990, pp. 143-152.
A. Dan and P. S. Yu, “Performance analysis of buffer coherency policies
in a multisystem data sharing environment,” IEEE Trans. Parallel
Distributed Syst., vol. 4, pp. 289-305, Mar. 1993.
- , “Performance analysis of coherency control policies through
lock retention,” in Proc. ACM SIGMOD, 1992, pp. 114-123.
G. Delp, “The architecture and implementation of Memnet: A high-
speed shared memory computer communication network,” Doctoral
dissertation, Univ. of Delaware, 1988.
L. Dowdey and D. Foster, “Comparative models of the file assignment
prohlem,”ACM Comput. Surveys, vol. 14, no. 2, pp. 287-313, June
1982.
N. M. Downie and R. W. Heath, Basic Statistical Methods. New York:
Harper and Row, 1965.
E. W. Felten and Z. Zahorjan, “Issues in the implementation of a remote
memory paging system,” Tech. Rep. 91-03-09, Univ. of Washington,
Mar. 1991.
H. Garcia-Molina and B. Kogan, “Node autonomy in distributed sys-
tems,” in Proc. Int. Symp. Databases in Parallel and Distributed Sys-
tems, Dec. 1988, pp. 158-166.
R. S. Garfinkel and G. L. Nemhauser, Integer Programming. New
York: Wiley, 1972.
D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching. Reading, MA: Addison-Weseley, 1973.
A. Leff, C. Pu, and F. Korz, “Cache performance in server-based and
symmetric database architectures,” in Proc. ISMM Int. Conf Parallel
and Distributed Comput. and Syst., Oct. 1990.
A. Leff, J. L. Wolf, and P. S. Yu, “LRU-based replication strategies in
a LAN remote caching architecture,” in Proc. I7th Annu. Conf Local
Comput. Networks, Minneapolis, MN, Sept. 1992.
D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the Dash multipro-

[23] C. Pu, A. Leff, F.’Korz, and S-W. Chen, “Redundancy management
in a symmetric distributed main-memory database,” Tech. Rep. CUCS-
014-090, Columbia Univ., 1990.

1241 C. Pu, D. Florissi, P. Soares, K. L. Wu, and P. S. Yu, “Performance
comparison of dynamic policies for remote caching,” Concurrency:
Practice and Experience, vol. 5, pp. 239-256, June 1993.

1251 C. V. Ramamoorthy and B. W. Wah, “The isomorphism of simple file
allocation,” IEEE Trans. Comput., vol. C-32, no. 3, pp. 221-232, Mar.
1983.

[26] B. N. Schilit and D. Duchamp, “Adaptive remote paging for mobile
computers,” Tech. Rep. CUCS-004-91, Columbia Univ., 1991.

[27] M. Schroeder and M. Burrows, “Performance of Firefly RPC,” in Proc.
12th Symp. Oper. Syst. Principles, Dec. 1989, pp. 83-90.

[28] D. F. Thiebaut, H. D. Stone, and J. L. Wolf, “Improving disk cache hit-
ratios through cache partitioning,” IEEE Trans. Comput., June 1992,
pp. 665-676.

1291 B. W. Wah, “File placement in distributed computer systems,”IEEE
Computer, vol. 17, no. 1, pp. 23-32, Jan. 1984.

[30] Y. Wang and L. A. Rowe, “Cache consistency and concurrency control
in a clientherver DBMS architecture,” in Proc. 1991 ACM SIGMOD
Int. Conf Management of Data, May 1991, pp. 367-376.

1311 J. L. Wolf, “The placement optimization program: A practical solution
to the disk file assignment problem,” in Proc. ACM Sigmetrics, 1989,

[32] J. L. Wolf, D. M. Dias, and P. S. Yu, “A parallel sort-merge join
algorithm for managing data skew,” IEEE Trans. Parallel Distributed
Syst., vol. 4, pp. 70-86, Jan. 1993.

pp. 1-10,

Avraham Leff (S’W-M’91\ received the B.A.. ~

M.S., and Ph.D. (in computer science, 1991) degrees
from Columbia University, New York, NY.

He works in the high-speed interconnect group
at IBM Research, Hawthorne, NY. His current re-
search includes high-speed channels and distributed
systems.

Joel L. Wolf (S’93), for a photograph and biography, see p. 86 of the January
1993 issue of this TRANSACTIONS.

Philip S. Yu (S’76-M’78-SM’87-F’93), for a photograph and biography,
see p. 86 of the January 1993 issue of this TRANSACTIONS.

IEFF TRANSACTIONS ON PARALLEL AND DISTRIBUTFD SYSTEMS. VOL 4. NO I I , NOVEMBER 1491 120s

Prediction of Performance and Processor
Requirements in Real-Time Data Flow Architectures

Sukhamoy Som, Member, IEEE, Roland R. Mielke, Member, IEEE, and John W. Stoughton, Member, IEEE

Abstract-The purpose of this paper is to present a new data
flow graph model for describing the real-time execution of iter-
ative control and signal processing algorithms on multiprocessor
data flow architectures. Identified by the acronym ATAMM,
for Algorithm to Architecture Mapping Model, the model is
important because it specifies criteria for a multiprocessor op-
erating system to achieve predictable and reliable performance.
Algorithm performance is characterized by execution time and
iteration period. For a given data Row graph representation, the
model facilitates calculation of greatest lower bounds for these
performance measures. When sufficient processors are available,
the system executes algorithms with minimum execution time and
minimum iteration period, and the number of processors required
is calculated. When only limited processors are available or when
processors fail, performance is made to degrade gracefully and
predictably. The user off-line is able to specify tradeoffs between
increasing execution time or increasing iteration period. The
approach to achieving predictable performance is to control the
injection rate of input data and to modify the data Row graph
precedence relations so that a processor is always available to ex-
ecute an enabled graph node. An implementation of the ATAMM
model in a four-processor architecture based on Westinghouse’s
VHSIC 1750A Instruction Set Processor is described, and the
performance of a real-time space surveillance algorithm on this
system i s investigated.

Index Terms- Algorithm to Architecture Mapping Model
(ATAMM); iterative control and signal processing algorithms;
multiprocessor data flow architectures; periodic, nonpreemptive,
dynamic multiprocessor scheduling; real-time systems; time
performance and processor requirement prediction.

I . INTRODUCTION
ULTIPROCESSOR computing systems are being used M to obtain high-speed computing performance through

concurrency, while at the same time achieving a high level
of fault tolerance and reliability [11. The data flow strategy is
gaining wide acceptance as an excellent computational model
for multiprocessor systems [2]. In the data flow paradigm,
an algorithm is expressed as a collection of tasks which are
to be executed according to a set of precedence constraints.
The algorithm is represented by a data flow graph, a directed
graph in which the nodes represent tasks and the arcs represent

Manuscript received January 29, 1991; revised June I , 1992. This work
was supported in part by the NASA Langley Research Center under Grants
NAGI-683 and NCCI-136.

S . Som was with the Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, VA 23529. He is now with NASA
Langley Research Center, Mail Stop 473, Lockheed Engineering and Science
Company, Hampton, VA 23681-0001.

R. R. Mielke and J . W. Stoughton are with the Department of Electrical
and Computer Engineering, Old Dominion University, Norfolk, VA 23529.

IEEE Log Number 9213610.

communication paths between nodes [3] . The presence of data
on an arc is denoted by the placement of a token on that arc.
A node is said to be enabled when all incoming arcs contain
a token. An enabled node is executed (fired) by an available
processor by encumbering one token from each incoming arc,
delaying for a time equal to the execution of the node, and
the depositing one token on each outgoing arc. A number of
experimental data flow multiprocessor architectures have been
developed and tested [4].

An emerging area of considerable interest is to use data flow
computers for real-time computing applications such as the
implementation of control and signal processing algorithms for
aerospace, factory automation, and remote sensing [5] . Real-
time control and signal processing algorithms possess unique
features often not shared with general-purpose computing
problems. First, these algorithms periodically process infinite
sequences of input data and produce infinite sequences of out-
put data. The process of consuming one input token, executing
all algorithm tasks once, and producing one output token is
called an iteration. Because control and signal processing al-
gorithms repetitively perform algorithm iterations, computing
concurrency is achieved in two ways. Different processors can
be assigned to simultaneously perform different tasks for the
same iteration. This intraiteration concurrency is referred to
as parallel concurrency because i t is the result of inherent
parallelism in the algorithm. In addition, however, different
processors can be assigned to simultaneously perform tasks for
different iterations. This interiteration concurrency is referred
to as pipeline concurrency because the algorithm is repeated
periodically for successive iterations, like a pipeline. Thus,
real-time algorithms have an additional degree of freedom for
achieving concurrency. Second, real-time algorithms gener-
ally require consideration of at least two time performance
measures. The time which elapses between the encumbering
of an input token and the production of the corresponding
output token for a single iteration is called the iteration
execution time, or simply the execution time. Execution time is
important in real-time control and signal processing algorithms
because it corresponds to time delay or phase lag. The time
which elapses between the production of output tokens for
successive iterations is called the iteration period. The inverse
of the iteration period is the iteration frequency or sample
frequency, a measure of algorithm throughput. The sample
frequency is important because i t limits the bandwidth of
input and output signals. When task execution schedules for
successive algorithm iterations are allowed to overlap, the
performance measures execution time and iteration period

1045-9219/93$03.00 0 1993 IEEE

