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Abstract-We study the cache performance in a remote caching 
architecture. The high performance networks in many distributed 
systems enable a site to access the main memory of other sites 
in less time than required by local disk access. Remote memory is 
thus introduced as an additional layer in the memory hierarchy 
between local memory and disks. Eficient use of remote memory 
implies that the system caches the “right” objects at the “right” 
sites. Unfortunately, this task can be difficult to achieve for two 
reasons. First, as the size of the system increases, the coordinated 
decision making needed for optimal decisions becomes more 
difficult. Second, because the participating sites in a remote 
caching architecture can be autonomous, centralized or socially 
optimal solutions may not be feasible. In this paper we develop a 
set of distributed object replication policies that are designed to 
implement different optimization goals. Each site is responsible 
for local cache decisions, and modifies cache contents in response 
to decisions made by other sites. We use the optimal and greedy 
policies as upper and lower bounds, respectively, for performance 
in this environment. Critical system parameters are identified, 
and their effect on system performance studied. Performance of 
the distributed algorithms is found to be close to optimal, while 
that of the greedy algorithms is far from optimal. 

Index Terms- Autonomy, distributed systems, object replica- 
tion, performance comparison, remote caching. 
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I. INTRODUCTION 

N modern distributed systems, large numbers of computing I sites are connected together by fast networks. The availabil- 
ity of high speed interconnection has created the potential for a 
new type of resource sharing. In this environment, i t  is possible 
to develop efficient mechanisms that support request/response 
exchanges for objects that reside on a remote site. This ability 
to access objects cached at remote sites introduces a new level 
in the classic memory hierarchy-main memory accessed 
through the network-whose access time may be significantly 
faster than that of local disks. We call this rcwote memory. 
Unlike shared main-memory architectures, sites using remote 
memory do not require the capability of direct readiwrite into 
remote memory locations. 

Remote memory is important because disk access perfor- 
mance has been limited by seek time, stuck for decades in 
the range of a few tens of milliseconds. In contrast, current 
remote procedure calls (RPC) implementations over Ethernet 
take only a few milliseconds for  the round trip [27]. Moreover, 
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the bottleneck in communication protocols is CPU power 
and software overhead. With RISC technology doubling CPU 
speed every few years, we can expect even smaller ratios of 
remote memory versus local disk access time in the near future. 
Furthermore, faster gateways, higher network bandwidth, and 
specialized hardware [ 11 will steadily bring down communi- 
cation overhead over local and metropolitan area networks. 
Implementations of systems using remote memory are already 
being built [2], [6], [lo], [13], [19], [20], [26]. 

A remote caching architecture (RCA) makes use of remote 
memory by allowing all sites in the system to take advantage of 
each other’s local memory. The symmetric architecture blurs 
the distinction between clients and servers because all sites 
in the system can “serve” requests if their buffers (main- 
memory) contain the requested data item. An RCA resembles 
distributed shared virtual memory (DSVM) [20] in that both 
types of system take advantage of the aggregate memory 
that is available (through a network) in a distributed system. 
There are two main differences, however, between the systems. 
First. remote caching architectures emphasize the differences 
between the memory levels (i.e., local, remote, and disk), 
in contrast to the emphasis that DSVM places on a single 
large, homogeneous, memory space. As a result, RCA research 
focuses on such policy issues as what objects should be cached 
at what sites instead of simply caching objects on a demand 
basis as in DSVM. The systems also differ in impfementation. 
In an RCA, remote memory need not be mapped into a single, 
coherent, virtual memory space. Sites do not need to have the 
same page sizes or memory architectures; all they require is 
that they share a common naming scheme for objects in the 
system (the distributed object model). Because an RCA does 
not require the full functionality of a DSVM, system overhead 
can be reduced. Of course, an RCA can also be implemented 
in a DSVM: the key feature is that sites can request (and 
receive) objects from remote sites with an order of magnitude 
faster response time than even local disk access. 

Simulation studies have shown that performance in an RCA 
is better, over a wide range of cache sizes, than a distributed 
clientiserver architecture [23]. The performance gains are due 
to the large amount of remote memory made available by 
the (symmetric) remote caching architecture. However, the 
following tradeoff in object replication must be resolved in 
order to use memory resources efficiently. On the one hand, 
each site should replicate (i.e., cache) important objects in 
main-memory, and store less important objects on disk. On 
the other hand, such naive cache management in an RCA is 
ineficienr in the sense that memory resources are not utilized 
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as well as they would be in a centrally coordinated system 
[17]. Some sites should instead cache less important objects, 
and rely on remote memory to access important objects. This 
counter-intuitive approach can improve both local and overall 
system performance, because fewer objects must be accessed 
on disk. The problem, of course, is to make this idea precise: 
how many replicas of each object should be maintained? 

We first devise optimal object replication algorithms for an 
RCA. We consider both the cases of optimizing the aver- 
age performance and of optimizing the performance of the 
worst site. The former case is solved by reduction of the 
problem to a capacitated transportation problem [ 151. The 
optimal number of replicas is a function of the hot-set curve, 
available cache storage, and differences among site access 
patterns. However, sites in distributed environments might 
not wish to be constrained by the decisions of other sites. 
(This is known as autonomy [14].) Thus efficient use of RCA 
system resources is especially difficult to accomplish. Even if 
autonomy is not an issue, because optimal solutions require 
that decisions be coordinated among the sites, they may not 
scale up as the number of sites in the system increases. We 
therefore investigate two distributed algorithms that partition 
the cache management problem among the sites in the remote 
caching architecture. Each site maintains a snapshot of the 
system configuration, and as conditions change sites may 
change their own (local) cache management decisions. The 
same mechanisms that make remote memory possible (e.g., 
broadcast) are used to propagate dynamic state information 
as well. Site autonomy is factored in implicitly, because sites 
cannot directly affect the decisions of any other site. The two 
distributed algorithms differ in their objectives on whether 
to pursue local or global performance optimization. Also 
considered are two simple greedy algorithms. The optimal 
and greedy policies provide upper and lower bounds on the 
performance for this environment, respectively. 

In the next section, we describe our model of the RCA 
system, and formalize the problem of cache management 
in an RCA. Section 111 presents various cache management 
strategies, and Section IV describes their implementation in 
this environment. The performance of these algorithms (as a 
function of various system parameters) is analyzed in Section 
V. In Section VI we summarize our results and discuss some 
future work suggested by this paper. 

11. REMOTE CACHING ARCHITECTURE 

A. The Model 
The memory hierarchy of the RCA consists of local main- 

memory, remote main-memory (accessed over the communi- 
cations network), and disk. In terms of access time, there are 
single order of magnitude differences between the local mem- 
ory (tenths of a millisecond), remote memory (milliseconds) 
and disks (tens of milliseconds). The RCA cache management 
system must implement the following three components: 1) 
an object location algorithm, 2) a replacement algorithm, and 
3) a consistent update algorithm. A set of these algorithms, 
together with a detailed discussion of execution paths for read 

and write file/object access, can be found in [23]. (Algorithms 
that maintain transaction serializability in such an environment 
are discussed in [4], [8], [30].) Basically, if a site fails to find 
a copy of an object in local cache, then the site broadcasts a 
request, and at the same time sets a timeout. All sites with a 
copy of the requested object queue for the network and reply: 
the requesting site simply discards all replies after the first.’ 
Expiration of the timeout period indicates that the object is 
not cached at any remote site. The object must then be fetched 
from disk. In other words, when an object is needed at a given 
site, the site traverses the memory hierarchy looking at local 
cache, remote cache, and disk in turn. 

Let ctJ denote the time needed to access the zth object at 
the j th  site (i = 1,. . . , M , j  = 1,. . . . N ) .  The cost function 
that we want to minimize involves c , ~ .  

Let p k H ,  p:H,  and p y H  denote, respectively, the Local Hit 
probability, Remote Hit probability, and No Hit probability, 
when accessing the ith object at the j th  site. These probabil- 
ities sum to 1.0 because they represent the traversal of the 
memory hierarchy that is done in order to access an object. 
Then, 

where tl is the time required to access local main memory, t ,  
is the time to access remote main memory (including network 
delays), and td is the time needed to access the disk storing 
the ith object.2 (Of course, these access times are cumulative. 
For example, the time needed to test for a local cache hit adds 
to the total t ,  because remote memory is only accessed after 
attempting to access local memory.) 

The probability of an object being cached by a given site 
depends on 1) whether the object is considered important 
enough to cache in the first place, and 2) how many other 
objects are eligible for caching by that site. The second factor 
determines the hit ratio for eligible objects. Let X;j = 1 when 
the zth object is eligible for caching (i.e., it may be stored 
in main memory) at the j th  site, and Xij  = 0 otherwise. Let 
[ H , j ( X ) ]  be the matrix whose z,j th term is the hit ratio of 
object z at site j .  This matrix specifies the configuration of the 
system at a given moment. Then 

N 

P E H  = (1 - 

and 

n (1 - H i k ( x ) ) )  x (1 - H i j ( x ) ) ,  (2)  
k = l k # j  

N 

p N H  = U(l- H i j ( X ) ) .  (3) 
j = 1  

These equations apply trivially in the situation where 
H i j ( X )  is binary-valued (i.e., a site never allows more 
objects to be cache “candidates” than it has storage for). 

’ Alternatives to the broadcast mechanism can be devised. For example, in a 
database environment with a centralized lock manager, lock retention schemes 
can track the location of objects in the RCA system [9]. 

2Note that our model ignores the issue of queueing and contention at sites 
in the system. These factors imply that the cost of accessing an object may 
depend on the site at which the object is cached. We believe, however, that 
these factors impose “second-order” effects which do not much change the 
development of the caching algorithms for the RCA. 
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They also apply in the situation where, because the site wants 
more objects in cache than it can physically store, H 7 , ( X )  
varies between 0 and 1. Note that the matrix X (in theory) 
completely determines the hit-ratio because, regardless of the 
caching policy, once the system specifies the eligibility of 
objects at a given site, the hit ratio for that object is implicitly 
set as well. For example, if a naive replacement policy such 
as “uniform replacement” is used, then H 2 , ( X )  can be 
computed as M I S  (where A4 is the number of objects and S 
is the per-site cache size) for all objects i. Less trivially, cache 
replacement algorithms such as LRU can also be approximated 
as a function of the X matrix [7], [28]. 

In this paper, we shall assume, for the most part, that H7] is 
indeed binary valued, with sites caching only those objects for 
which they have space. Because the H 2 , ( X )  term is included 
in the equations, our approach is easily extended to the case 
of more complicated hit-ratio functions. 

B. The Problem 

The problem addressed in this paper is how, given the RCA 
system parameters, can we best specify X so as to minimize 
the “cost” of the system. The task of specifying the X,,  is 
a version of the File Allocation Problem (FAP) [ l l ] ,  [29]. 
Certain versions of the FAP problem are NP-complete [ l l ] ,  
[25].  Heuristics which perform well have been proposed [5] ,  
[21], [25],  [31]. In our case, there are M objects and N sites 
in the system, and each object can be cached at any site. There 
are thus 2“”‘ possible values for X .  

Let C be the average time needed to access objects, given 
an RCA configuration X .  This cost function will, in general, 
be a function of the c,] of (1). The optimization approach 
will require complete and centralized information, and use a 
centralized algorithm to compute the file assignment. These 
limitations suggest that distributed algorithms may be worth- 
while-even if they do not yield optimal performance. The 
issue of autonomy, however, is the major difference between 
the classic FAP problem and the problem which arises in a 
remote caching architecture context. Prior work in the area 
of FAP assumes that the sites in the system are committed 
to optimizing overall system performance. In  an autonomous 
[ 141 RCA environment, however, a given workstation is not 
specifically interested in improving performance at another 
workstation, but is rather concerned with decisions that affect 
its own performance. Sites are willing to cooperate in servicing 
requests for copies, but they are not willing to constrain 
their caching decisions based on these requests. A given site 
can only make caching decisions regarding its resources. No 
site can make such decisions about another site’s resources. 
In an autonomous environment, even if sites are willing to 
cooperate in decision making, they will not agree to cache 
items if the result is substantially worse performance than other 
sites in the system. Autonomous sites may not even agree 
to suffer performance penalties-even if a given allocation 
policy results in better average performance for the system 
as a whole. Because sites cannot unilaterally determine the 
cache contents of other sites, classic FAP approaches will not 
necessarily extend to an autonomous environment. 

C. Dimensions of the Problem 

There are quite a few dimensions to the problem of deter- 
mining the optimal X .  We discuss some of them here, and 
then show where this work fits into the large state space. 

Cost Function 
We obviously need to specify the nature of the cost function 
C, which must be minimized. At one extreme, sites can be 
interested solely in local performance. At another extreme, 
sites can be interested in improving global performance. 
Alternatively, sites can implement a fair policy, in which 
no site does “much” worse than any other site. The issue 
of eflciency is closely related to that of the cost function. 
Under a global optimization policy, sites cooperate with one 
another, so that the number of object replicas in the overall 
system results in optimal (overall) performance. Thus, a site 
may cache an object that it rarely accesses, simply because 
other sites access it often. Under a local optimization policy, 
however, sites face the following tradeoff. On the one hand, 
a site can be “greedy” and simply cache as many of the 
most valuable objects as it can. On the other hand, if 
many sites replicate the same objects, then a given site 
is “wasting” cache storage because it could have used 
the space to cache an unreplicated object, and rely on 
other sites when it needs to access the replicated object. 
The key point is that even if a site caches relatively less 
important objects, and pays more (because it must go over 
the network) for more valuable objects, not only may overall 
system performance improve (because storage is used more 
efficiently), but local performance may improve as well. 

Eligibility for Replication 
When a site caches an object, this has a number of conse- 
quences. If the object is “read-only,” then the site obviously 
gains from reducing object access time. The only issue that 
must be resolved is how to trade-off the presence of one ob- 
ject in cache against the crowding out of another object from 
the cache. However, when objects are “read/write” the 
situation becomes far more complicated. Although the site 
still benefits in read situations, writes require the application 
of a consistency maintenance algorithm. The system must 
somehow ensure that replicas of an object maintain the same 
value: this process requires inter-site communication, inter- 
rupting the sites so as to receive the messages, and finally the 
update propagation. This cost of consistency maintenance is 
such that a site may actually incur a performance penalty 
by caching an object replica. 
In this paper, our approach is based on the following 
observation. A major reason for sites to cache read-write 
objects-despite the associated overhead for consistency 
maintenance-is that the object is so important that it must 
always be readily available for read access. In other words, 
the “delta” between disk and local memory access is so 
large that it makes sense to maintain replicas of “write” 
objects-despite the additional overhead. In an RCA, this 
motivation is not as strong-as long as a single copy of 
the object can be accessed from some site in the system. 
In such a case the delta that motivates object replication is 
only between local and remote memory, and the overhead 
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of consistency maintenance usually outweighs the smaller 
delta. 
This intrinsic characteristic of an RCA architecture there- 
fore suggests the following heuristic. Read-write objects 
are constrained to have at most one copy available in a 
site’s main-memory, eliminating the need for replication 
decisions. Sites do, of course, benefit from cached read-write 
objects; replication decisions, however, are only made about 
read-only objects. This paper investigates the more clear-cut 
tradeoffs involved with an object’s read value. 
9 Local Object Value 
The “value” (i.e., performance benefit) that a cached (read- 
only) object gives to the caching site, is proportional to 
the frequency that the object is accessed by transactions 
executing at the site. Sites can thus rank objects based on 
their access f r eq~ency .~  Access frequencies can be estimated 
with varying degrees of accuracy. At one end of the spec- 
trum, sites have perfect information. More realistically, sites 
can dynamically estimate these values (with an exponential 
weighting term, for example). At the other extreme, sites 
may not bother to calculate values explicitly, and simply 
manage cache with an LRU policy. (This dimension relates 
to the issue of whether object access rates vary over time. 
For example, in a “static’ ’ environment, perfect information 
is a much more reasonable assumption than in a dynamic 
environment .) 

Degree of Coordination 
If a site has no knowledge about the contents of other sites’ 
caches, then the site should simply cache as many of its 
most valuable objects as it can (see above). By contrast, 
if a site knows what objects are cached at other sites, 
it can rely on remote sites for those objects and instead 
cache objects that would otherwise be only accessible on 
disk. At one extreme, sites may make cache decisions in 
a completely coordinated fashion (this leads to optimal 
global performance). More realistically, sites may make 
decisions in a sequential (or synchronous) fashion. Only 
one site at a time makes a set of decisions. Information 
about decision outcomes are then passed to the next site. 
Alternatively, sites may make decisions in asynchronous 
fashion. Although sites make the results of their decisions 
available to other sites, these other sites may be making their 
own decisions simultaneously. (This dimension is related to 
the question of what information is communicated between 
sites. Useful analogies have been drawn to research in load 
sharing-for example ‘ ‘sender-initiated” versus “receiver- 
initiated” cache management [24].) 

D. The Problem, Revisited 

Given the discussion of the many issues implicit in deter- 
mining the optimal X, it is important to state which issues are 
addressed in this paper. We assume, as indicated above, that 
sites only make cache replication decisions about “read-only” 
objects. For the most part (except for the dynamic greedy 

’Note that, for simplicity of exposition, we assume that all objects have 
the same size so that the value does not need to be scaled by the amount of 
cache storage the object occupies. This is not a serious restriction since the 
algorithms can be modified to take varying size objects into account. 

algorithm), we also assume that sites have perfect information 
about object access rates. Because of these assumptions, the 
dimensions of replication eligibility and local object value 
do not pose especially difficult problems. However, because 
autonomy can be very important in an RCA environment, we 
focus on its implications for the dimensions of cost function 
and degree of coordination. In other words, we examine the 
problem of how performance is affected by 1) different cost 
functions that sites can use and 2) the different ways that sites 
can coordinate their decisions with one another. 

In the next section, we describe a set of cache allocation 
policies that use a variety of cost functions and have different 
degrees of coordination. Implementations of these policies, 
and their performance, are studied in Sections IV and V, 
respectively. 

111. RCA CACHE MANAGEMENT STRATEGIES 

Cache management requires that a system first determine 
which objects are eligible for caching, and then, when cache 
storage is full, determine which object should be swapped out 
to make room for an incoming object. As discussed in Section 
11-A, this paper focuses mainly on the eligibility issue and 
assumes that eligible objects are always available in cache. 
This is achieved by simply limiting the number of eligible 
objects to the amount of cache storage available. In other 
words, the hit ratio is always 1, so that the term H i j ( X )  in 
(2)-(4) is either 0 or 1. (The performance of a dynamic greedy 
algorithm, which uses the classic LRU replacement algorithm, 
is also examined.) 

We investigate three classes of policies: centralized, dis- 
tributed, and isolationist policies. These classes are distin- 
guished by the amount of remote caching information that 
is used when making cache decisions. At one extreme, sites 
operating with isolationist policies make decisions in complete 
ignorance of the decisions made by other sites. At the other 
extreme, sites that centralize the decision-making for the 
entire system operate with optimal policies, because they 
make decisions in complete coordination with other sites. 
In distributed policies, sites make decisions independently 
of other sites, but also utilize information about previous 
decisions made by other sites. 

Within a single class-e.g., optimal policies (that make 
decisions in coordinated fashion)-policies can differ based 
on the performance goal. Performance goals affect an object’s 
eligibility for caching. The goal of the first optimal strategy 
is fairness: although sites want to achieve good overall per- 
formance, they insist that no site should suffer “unduly” in 
achieving such performance. The goal of the second strategy 
is simply to maximize overall (average) performance, without 
regard to how individual sites will do under a given object 
allocation. These strategies are both examples of global op- 
timization polices. In contrast, we examine both a local and 
global performance policy in the class of distributed policies. 

Each of the optimal strategies shares the following as- 
sumptions. First, all sites have complete knowledge about 
the access patterns at every other site. Second, eligibility 
decisions are completely coordinated, so that at any moment 
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the best decision is always made. Clearly, these assumptions 
are not realistic in real-world RCA environments. We are 
interested in these strategies because they give an upper- 
bound on RCA performance. The aggregate resources in an 
RCA are very large: it is important to determine the best 
performance that can be achieved through efficient use of 
system resources. The performance of the isolationist policy 
shows how important some degree of inter-site cooperation 
is for RCA efficiency. This policy does not completely ignore 
the benefits of the RCA architecture because sites will respond 
to requests from other sites-if the object is resident in cache. 
The point is that sites do not have (or ignore) information about 
remote cache contents that could guide local decisions about 
object eligibility. By investigating the differences between the 
optimal and greedy strategies, we gain insight into the problem 
of devising caching policies that can operate in distributed 
fashion. Our goal is to develop distributed strategies with 
performance between the optimal and greedy strategies. (In 
addition, the distributed algorithms are more adaptable to 
changes in system state than the optimal. Because the deci- 
sions are localized rather than centralized, sites make fewer 
changes to the cache configuration after detecting that, for 
example, access frequencies have changed.) Although these 
strategies require cooperation among sites, we believe that this 
requirement is not necessarily a violation of site autonomy. 

A. Optimal Strategies 

Equations (1)-(3) show that the cost of accessing a single 
object at a given site depends on the probability of 1) the 
object being in local cache and 2) the probability of the 
object being in at least one other site’y cache. Let P,3 denote 
the robability of read-access for object I at site , I .  Then 

c l I P I I  represents the overall time needed to access 
objects at site , I .  Given the access probability distribution for 
all objects 2 at all sites , I ,  two cost functions can be specified 
to evaluate the performance of a given configuration X .  
(These definitions of the cost functions assume that sites have 
equal amounts of activity. Section V-G discusses the effect of 
different degrees of site activity.) 

2 

A policy that determines a configuration which minimizes 
(4) implies that the “worth” of the overall system is no better 
than the performance of the worst-performing site in the sys- 
tem. The goal of this policy is to use the combined resources 
of the sites in the RCA efficiently, and at the same time ensure 
“fairness.” If sites insist on overall “fairness” criteria, then 
other strategies cannot surpass the performance of the optimal 
fair policy. A policy that determines a configuration X which 
minimizes (5 )  corresponds to solving the basic file allocation 
problem (FAP) because it  minimizes average (overall system) 
response time, without allowing individual sites to impose any 
specific constraints on object allocation. If site autonomy is 

not an issue, then other strategies cannot surpass the RCA 
performance achieved by the optimal “average” policy. 

B. Distributed Strategies 

The key feature of the distributed strategies is that sites do 
not make decisions in a completely coordinated fashion, but do 
use information about other sites when making local decisions. 
Recall from Section 11-A that cll is the cost of accessing object 
1 at site j ,  and is composed of the costs of accessing each 
of the memories in the storage hierarchy, weighted by the 
probabilities of needing to access a given memory. Assume 
that site k E sites{ 1.. . . , N }  is making caching decisions. If 
site k turns object ,i ‘‘on,’’ this has two effects. First, there 
is a local effect because site k now has object i in the fastest 
media. Second, there is a global effect because object i is now 
available to all the other sites in the second fastest media. 
Note that while the first effect always improves performance, 
the second effect will tend not to effect performance if some 
other site j has already cached object %.4 If site k turns the 
object “off” then the magnitude of the first effect depends on 
whether site k can already access the object through remote 
memory at some other site. Even if site k has remote access, 
performance will always get worse because the object is no 
longer available in local main-memory. Other sites will only 
suffer if the copy maintained at site X: was the only replica. 

If a strategy is concerned with local optimization, then 
only the first effect is relevant. If a strategy does global 
optimization, then both effects are important. Because we are 
dealing with read-only objects, the marginal value, m z k ,  of 
caching object ,i can be calculated independently of cache 
decisions regarding other objects.5 The value, 7 n i k ,  is always 
positive and is based on the difference between the (local or 
overall) access time for object i when it is cached at site k: 
and the (local or overall) access time for the object when it 
is not cached. Under either type of strategy, the magnitude 
of the marginal benefit depends on 1) the ‘‘local’’ importance 
of the object and 2) the presence of the object in some other 
site’s memory. The value of m , k .  must, of course, be weighted 
by the (local or overall) probability of accessing the object. 
Notice that these strategies differ from the greedy strategy 
described below in that an object which, from a purely local 
context, is valuable, will have less value when the site realizes 
that the object is cached in remote memory. Under the local 
distributed strategy, sites also operate in a greedy fashion, but 
the marginal value calculations factor in information about the 
state of other sites’ caches. 

The strategies discussed here make cache decisions in 
synchronous fashion, and then broadcast the results of the 

‘If site is closer (or faster) than site .I to other sites in the system, then 
there will be a global effect when site k also caches the object. This effect, 
however, is minimal compared to the local effect. More importantly, in this 
paper we examine RCA performance in the context of a LAN environment. 
In consequence, remote sites are “symmetric” in the sense that all sites are 
equally distant from one another. 

‘We use the term “marginal value” to emphasize the fact that we are not 
examining the net effect of caching one object while swapping out another 
object. We examine only the performance benefit that results from caching 
the object. The constraint of having only a given amount of cache available 
is factored in later (see Section IV-B). 
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decisions to other sites. As a result, when site k makes 
local cache decisions, the information that determines marginal 
benefit is up-to-date. The key point here is that a single, hard 
problem is partitioned into N smaller problems. Instead of 
the overall system trying to solve the problem in centralized 
fashion, each site tries to minimize the given cost function on 
its own. Of course, the composition of N individually optimal 
pieces may be suboptimal. The hope is that the distributed 
solution will not differ greatly from the optimal solution. 

C. Isolationist Strategies 

I )  Static Greedy Strategy: The static greedy strategy repre- 
sents an extreme of autonomous (“isolationist”) behavior in 
an RCA: essentially, each site ignores all other sites’ caching 
decisions when making its own caching decisions. Each site 
simply caches the objects that maximize the percentage of 
access probability distribution available in its own cache. The 
greedy algorithm can result in much system replication, as 
heavily accessed objects are replicated at each site. On the 
other hand, each site is guaranteed to get its most heavily 
accessed objects with minimal cost. In contrast, under the 
optimal strategies and under the distributed strategies, sites 
are aware of other site’s decisions. Under the distributed local 
policy a site may well cache a relatively unimportant object 
because it relies on other sites for access to more valuable 
objects. 

2) Dynamic Greedy Strategy: The final strategy examined 
in this paper uses no knowledge of Pij at all, but otherwise 
resembles the static greedy strategy in that sites simply cache 
(what they perceive to be) their most valuable objects. It is 
a “greedy” strategy in that sites do not attempt to avoid 
caching highly replicated objects by snooping on other sites. 
Essentially, sites assign LRU-based values to objects, and use 
these values to determine which objects should be swapped 
out to make room for incoming objects. 

D. Performance Issues Between the Strategies 

Before discussing the implementation of the strategies, we 
summarize the issues that differentiate them. Three degrees of 
coordinated decisions (through exchange of state information) 
are examined: centralized, distributed, and isolationist. Three 
performance goals are examined: maximizing average, fair, 
and local performance. Two ways of assigning local object 
values are examined: exact access frequency and LRU-based.6 
Table I lists, for each strategy discussed in this paper, where 
the strategy lies on the spectrum. 

IV. STRATEGY IMPLEMENTATIONS 
In this section, we develop implementations of the RCA 

6Although most of the algorithms analyzed here make use of Q priori 
knowledge of object access rates, this does not imply that the algorithms 
are not “implementable.” In practice, sites would periodically do dynamic 
estimation of the access frequencies based on previous history (e.g., through 
exponential weighting). After some period of time sites would do a fresh 
determination of the optimal configuration. Because we do not consider that 
dynamic frequency estimation imposes any difficulty (as opposed to the use 
of exact knowledge), we chose to reduce simulation time by using static 
knowledge. 

TABLE I 
DIFFERENCES AMONG THE STRATEGIES 

~~ 

RCA Performance Dimensions 

Strategies Coordination Goal Object Value 

Optimal Average centralized average access frequency 
Optimal Fair centralized fair access frequency 
Distributed Local distributed local access frequency 
Distributed Global distributed average access frequency 
Static Greedy isolationist local access frequency 
Dynamic Greedy isolationist local LRU stack position 

cache strategies. Solutions for the optimal object configura- 
tions can be determined analytically; the solution approach is 
detailed in Section IV-A. The configurations for the distributed 
strategies are obtained through event driven simulations of the 
algorithms described in Section IV-B. The dynamic greedy 
strategy is also evaluated through simulations. For the static 
greedy strategy, determining the configuration is trivial: the 
most frequently accessed objects at each site are cached in its 
memory. 

A. Implementing the Optimal Strategies 

The problem of determining the optimal RCA configura- 
tion given by (6) involves a nonlinear binary programming 
problem. We want to solve for minimal 

where cij is a nonlinear function of X ; j  [note the product term 
in (2)-(3)]. The X i j ,  of course, are binary valued. We now 
show that this problem is, in fact, reducible to the capacitated 
transportation problem [15]. As a result, the optimal solution 
can be determined fairly easily [3]. First we define an objective 
function that differs from the RCA function by a constant, so 
that the optimal solutions are identical, Then we show that the 
optimal solution to the new function will necessarily meet the 
constraints of the RCA problem. 

Recall that there are M objects and N sites. Construct an 
augmented M by N + 1 matrix, 2, in the following way. 
The entries in the first N columns are Pij ( tr  - ti), and 
the entries in the last column are {Ej x i P i j } ( t r  - t d ) .  

(Here i = 1, . . . , M ,  j = 1,. . , N.) The Pij terms are the 
(normalized) object access rates discussed above. The ti, t,, 
and t d  terms denote the access time for local memory, remote 
memory, and disk, respectively. Consider the optimization 
problem of determining the maximum value of ZI, xi ZikXik  
(k = 1,. . , N + 1) subject to the constraints that 

1) c~,x ik  2 1. 
2)  xi XiI, 5 B (B = site cache size) for k 5 N .  
3) xi Xik < cc (for k = N + 1). 
4) XiI, is binary. 
Constraints 1-4 correspond exactly to the model of the 

capacitated transportation problem [15]. The first is a row 
constraint; the second and third are column constraints. We 
first show that this objective function differs from the RCA 
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function by a constant. The first N columns represent an initial 
state in which all objects can be accessed, by all sites, from 
remote memory. The idea is that we then solve for maximum 
incremental benefit from the initial state. The last column 
allows us to model the situation of having to access an object 
from disk (because of memory constraints). An X,k. = 1 entry 
in the last column means that no copy of the ith object is in 
main-memory. As a result, sites have to pay the incremental 
(with respect to remote memory access) cost of accessing the 
object on disk. 

We now show that the optimal solution to the transportation 
problem is also the optimal solution to the RCA problem. Note 
that the optimal transportation solution will never have both an 
X7k = 1 for some k 5 Nand also X,[.y+l~ = 1, since entries 
in the last column represent “negative” benefit. Also, because 
all elements in the first N columns are positive, the sum of 
each column 5 N (in the optimal solution) will equal B. 
The optimal solution will therefore correspond to the optimal 
solution for the RCA. First, sites do not access an object on 
disk if it is present in main-memory. Second, each site uses all 
of its available main-memory for cache storage in the RCA. 

B. Implementing the Distributed Strategies 

The distributed strategies were discussed in Section 111-C. 
Under the FAP constraint of H , , ( X )  = 1 for all “on” objects, 
the equations needed for calculating marginal value have a 
very simple form. Let R,., = 1 iff there is a remote (with 
respect to site , j )  replica of object ‘i (0 otherwise). Say that site 
k: is making a caching decision with respect to object %. Under 
the local optimization strategy, the local marginal value is 

nl,,~. = Pik((trRik) + ( f ( l ( 1  - RTk)) - f / ) .  (7) 

This follows because site k: is only concerned with the locul 
effect of caching object i .  Under a global optimization strategy, 
site A; is also concerned with the overall system improvement 
that results from the caching decision. 

The marginal value of site k: caching object i for another 
site , j  # I; is 

(8) 
if R;, = I ,  and (“ P,,(f,l - t r )  otherwise. 

Then, under the global optimization policy, the overall value 
of site k: caching object i is 

‘rr l ,k .  =P,k.((t,.R,I.) + ( f r i ( l  - R,A.))  - t , )  
.\- 

+ (1 - R,,/)P,J(f<l - f ,  ).  (9) 
/=  1 ../ # I ~  

Each of the distributed algorithms contains the following 
steps. When a site I; makes a set of caching decisions, it 
has a snapshot X which gives the state of the other sites in 
the system at a given time. X is the same eligibility matrix 
discussed in Section 11-A-except that the cache contents of 
site I; is uninitialized. Site k then uses a greedy algorithm 
which proceeds as follows. 

1)  For all objects i ,  site k: calculates m , k .  

2 )  Site k: orders the objects by decreasing m.,k.. 

3) For cache size B, site k: then simply sets x& = 1 for the 

The distributed algorithms are implemented in a detailed 
discrete event simulation. In the simulation, each site main- 
tains a table of its cache contents. One simulation module 
implements the cache management algorithms, while the other 
one generates the object requests and determines whether a 
local hit or remote hit occurs. In  the simulation, the distributed 
algorithms execute the cache eligibility algorithm periodically: 
we found that the rate of convergence was very rapid (see 
Section V-F). (The simulation does not “charge” when sites 
swap objects in and out of memory. Again, this is to facilitate 
comparison with the optimal algorithms, which do not change 
the configuration after it is initially determined. Because 
the distributed algorithms converge rapidly to an “optimal” 
configuration, the cost of adjusting to dynamic changes in the 
object access frequencies would be small.) 

first B objects, and sets Xlk = 0 for all other objects. 

C. Implementing the Isolationist Strategies 

Under the isolationist strategies, a site simply caches the 
objects that maximize the percentage of access probability 
distribution available in its own cache. The static strategy does 
this trivially because information about the Pz3 is available. 
The dynamic greedy strategy is also implemented in the 
detailed discrete event simulation. In the simulation module 
implementing the cache management algorithms, the dynamic 
greedy strategy simulates an LRU replacement algorithm for 
each site independently. 

V. PERFORMANCE ANALYSIS 

In this section, we compare the different RCA cache strate- 
gies based on their performance in various system configu- 
rations. Important system dimensions are varied, while basic 
system characteristics are held constant in this analysis. In 
Table I1 we show the constant system parameters of a remote 
caching architecture implemented in a workstation environ- 
ment.’ We are not that concerned with the exact values in 
Table I1 because the benefits of using an RCA apply over a 
wide range of system parameters and access frequencies [23]. 
The key performance characteristic of the system is that order- 
of-magnitude differences in access speed exist between layers 
of the memory hierarchy. The number of objects is kept small 
to facilitate generation and analysis of the results. In Section 
V-F we show that the distributed algorithms scale to a system 
that is at least two order of magnitude larger. 

’The values of the access timc parameters assume the following. The RCA 
sites are connected by an Ethernet network, and the generic “object” is a 
packet on the order of SO0 bytes. Raw bus time is then approximately 0.5 ms. 
Disk access consists of one third of the end-to-end seek time plus one half 
of the rotational latency. Sites make one disk access to retrieve an object’s 
index, and make another to access the object itself. With a slow file system 
adding file system overhead, we use the round figure of 50 ms per object 
“access.” (Objects are assumed to be partitioned at the disk level; the cost for 
disk access reflects average object timc.) Local main memory access timevery 
conservatively takes 1 ms (including hash-table access followed by a 500 byte 
copy). The RPC time is taken from [27]. Given these “raw” access times, 
the memory hicrdrchy access times are calculated as described in Section 11. 
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TABLE 11 TABLE 111 
CONSTANT PARAMETERS IN THE RCA ANALYSIS NUMBER OF OBJECTS COMPRISING THE HOT-SET 

System Parameters Parameter Values Hot-Set Curves 25th percentile 50th percentile 

Number of Sites 10 B = 0.1 3 objects 7 objects 
Number of Objects 1000 0 = 0.05 6 objects 14 objects 

49 objects Local Main-Memory Access Time 1 ms B = 0.001 25 objects 
Remote Main-Memory Access Time 6 ms 
Disk Access Time 63 ms 

A. Performance Parameters 

I) Hot-Set Parameter: In order to study the effect of dif- 
ferent access probability distributions on performance, we 
introduce a hot-set parameter 0 that models data skew and 
variability. The hot-set parameter determines the access proba- 
bility distribution for the data objects. If objects are ordered by 
decreasing access frequency, access frequency can be graphed 
on the “y-axis” against object identifier on the “x-axis.” We 
refer to the resulting (monotonic decreasing) curve as a hot-set 
curve, because it shows the objects that are accessed most often 
at a site. When the distribution curve is “steep,” then fewer 
objects comprise the hot-set. When the curve is flat, then many 
objects comprise the hot-set. Intuitively, caching becomes 
less and less effective as the hot-set curve becomes flatter, 
because more objects must be cached in order to maintain a 
given cache-hit ratio. Let Pz3 denote the probability of site j 
-accessing object i .  Then, when sites have identical hot-sets, 
we model a site’s hot-set curve by setting 

PZJ = ~ (10) T 
where i is the object number, 8 is the hot-set parameter, 
M is the total number of objects, and T = E::, e-” is a 
normalization constant. In other words, the hot-set curve is a 
normalized negative exponential distribution for the specified 
8. Thus, smaller 6’ values represent flatter hot sets. Hot-set 
curves generated with a given 8 maintain their shape for all 
values of M :  the precise PZ3 will of course depend on the 
number of objects in the system. In Table 111 we show the 
minimum number of objects that are needed to cache 25% 
and 50% of the access distribution for various hot-sets (when 
the total number of objects is 100). 

2) Correlation of Site Hot-Set Curves: Equation (7) assumes 
that all sites have the same hot-set curve-i.e., all sites access 
a given object with the same frequency. In modeling the 
situation where sites have different hot-set curves, we do 
not change the value of 8: what varies is that the objects 
comprising the hot-sets are different. Intuitively, we want to 
capture the degree of overlap or correlation between hot-sets 
with a single parameter. To do so, we follow [32] .  Note that 
the M objects in the system can be ordered, in descending 
order, by access frequency. Hot-set correlation is described 
by a single parameter p that takes on integer values between 
1 and M. Consider object 1, the most frequently accessed 
object at site 1. Object 1 occupies position 1 (i.e., most 
valuable) relative to all other objects. At all other sites, object 
1 occupies a randomly chosen position between 1 and p. 
More generally, object i of the original curve is placed in 

Effect of p on Inter-Site Correlotion 
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Fig. 1, Effect of p (1 00 objects). 

a randomly chosen position from 1 to MIN(p + z - 1, M )  
except that the position occupied by a previous step is not 
allowed. The larger the p, the smaller the correlation between 
sites. Thus p = 1 corresponds to perfect correlation among the 
hot-set curves; p = M corresponds to a random relationship 
between the hot-set curves. To get an idea of how p affects the 
inter-correlation of sites’ hot-set curves, examine Fig. 1. The 
average Spearman correlation (used because of its robustness 
compared to Pearson’s r )  [12] of the hot-set contents for sites 
2, . . . , l o  with that of site 1, is shown for p values 1 , .  . . ,100. 

3) Relative Site Activity: Although 8 determines the shape 
of a site’s hot-set curve, because Pt3 is normalized to sum 
to 1.0, it cannot model differences in relative site activity. 
Picture a situation where site 1 has five times the activity of 
the other sites in the system. A global optimization policy will 
weight the needs of site 1 more heavily than the needs of 
the other sites. In contrast, under a local optimization policy, 
sites will not take the fact of different degrees of site activity 
into account when making cache decisions. As a result, overall 
system performance will be relatively worse as compared to a 
situation with equal degrees of site activity. 

Let v denote the parameter that determines relative 
site activity. The activity of each site is given by a3 
= l / ( A  * ~ ~ ‘ - 0 )  where A = E:=, l / j 1 ’ - V .  In other 
words, the relative site-activity distribution has a “Zipf- 
like” shape [16], controlled by the value of V .  When 77 
= 1.0, then sites have the same amount of activity. When 
q is 0.0 (and N = 10) then the relative site activity 
is {1.00,0.50,0.33,0.25,0.20.0.17.0.14,0.12,0.11.0.10}. 
Individual site mean response time is ct3Pz3, but overall AI 
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21 (system) mean response time is x;ll o 1  c ,=~ ( . , J ~ , J .  we 
look at the performance implications of three values of 71: 

1.0, 0.5, and 0.0. 

B. Performance Stutistics 

We report algorithm performance in two ways. First, the 
performance of the optimal average algorithm is graphically 
shown as a function of values of H ,  0,  and cache size. This 
algorithm serves as a baseline for the “best” possible results 
for a given RCA configuration. The performance of the other 
algorithms is shown relative to that of the optimal average 
algorithm. These figures allow us to get a feel for the RCA 
“state space.” Second, we take a closer look at algorithm 
behavior by presenting tables of statistics for the performance 
of a small slice of the state space. Per-site cache size (L?) is 
held constant at 5 %  of the total number of objects. In order to 
“normalize” values of H across any number of objects, we use 
STORE~I~.A~\-, defined to be CL, P,l when the P,., are sorted 
in decreasing order. That is, STORE,![ A.\- is the maximum 
percent of a site’s hot-set that can be stored locally by that 
site. Values of H are adjusted so that, if a site simply caches 
objects in static greedy fashion, i t  can cache STORE,~I.~.\- 
percent of its hot-set. We report two sets of statistics: the first 
gives a sense of “absolute” performance, the second gives a 
sense of “how” the algorithm achieves its performance. 

RTime (Response Time) is the basic performance metric 
used to judge the effectiveness of a given algorithm. We 
report mean object response (i.e., access) time. 
STDev (Standard Deviation) is the standard deviation of 
RTime over the sites in the system. Certain algorithms 
may offer good overall performance, but at the cost of 
large site-to-site variations. 
CHIT  (Cache Hit) is the percent of object requests that 
were met by either local or remote cache. Effective 
policies will get the most frequently accessed objects into 
the faster localiremote main-memory media, and therefore 
have high CHIT values. We report the mean value over 
all sites. 
R E P L  (Degree of Replication) is the number of object 
replicas stored under a given configuration. Assuming that 
at least one copy of an object is resident in system cache, 
we report the mean number of object replicas. In the case 
of the static algorithms, only one system configuration 
needs to be evaluated. In the case of the distributed 
algorithms, this statistic (as well as that of B N F T )  is 
the “mean of the means” under all system configurations 
generated by the algorithm. 
B N F T  (Benefit) is the average benefit that each cache 
slot gives the system. Let s 1  = f, l  - tl and s 2  = tcf - f r .  

Then s1 *PI ,  is the (weighted) benefit that a site gets from 
caching an object locally, and $ 2  * PI.) is the (weighted) 
benefit that remote sites get from the presence of the 
replica in remote memory. Let there be ‘ti,1 object replicas. 
If 711 is at least 1, then 7 i ~  = N - 711 sites can access the 
object through remote memory. (The presence of multiple 
copies does not increase the remote benefit.) Then the 
benefit that the overall system gets from the cache slots 

devoted to that object is ‘ n 1  * s1 + 712 * 9 2 .  (Pi, is used 
to weight the benefit that a given site actually gets from 
the cached object.) We report the benefit averaged over 
all cached objects. Intuitively, an efficient strategy will 
have high B N F T  values because its eligibility criteria 
will tend to reflect the need to 1) use cache storage most 
effectively by caching the most important objects, and 2 )  
limit the amount of replication of a given object. 

In the performance tables (Tables IV-XII) four values 
are examined for H (those generating the four STORE,U..I.Y 
values), and four for p (1, 10, 50, and 100). These values 
represent two extreme points for the parameter in addition 
to two intermediate points. The total number of objects in 
the system is 100, so that when p = 100, the sites have only 
“random” correlation among their hot-sets. Per-site cache size 
is held constant at 5% of the total number of objects. 

In the performance figures, per-site cache sizes vary from 
1‘%# to 10%) of the total number of objects. Values of 0 vary 
from 0.001 to 0.082 in increments of 0.009, and values of p 
vary from 1 to 96 in increments of 5 .  

The performance of the optimal and the static greedy algo- 
rithms is derived analytically, while that of the distributed and 
the dynamic greedy algorithms is from simulations. Because 
the distributed algorithms use exact knowledge of object 
access rates, their simulation did not require a “warm up” 
period. The dynamic greedy algorithm had a warm up period 
of 1000 object accesses. Each simulation ran for 10 000 object 
accesses. Preliminary results showed that the performance 
statistics reported from this single large run were indistinguish- 
able from “batched means” simulations that used a stopping 
criterion of a relative half width of 0.1 and a 95% confidence 
interval. (The reason for such behavior is the relative lack of 
“noise” in the simulations.) We therefore used single-batch 
simulations to generate the data points for the figures. 

C.  Optimal Average Performance 

When sites have no cache storage at all, then mean response 
time will be 63 ms (see Table 11). If all objects are cached 
locally, then mean response time will be 1 ms; if all objects 
are available in either local or remote memory, then mean 
response time will be between 1 and 6 ms. To the extent that 
sites must access objects at disk, response time will, of course, 
exceed main-memory access times. 

In Fig. 2, the performance of the optimal average algorithm 
is shown as a function of 0 and cache size. The larger the value 
of H (i.e., the smaller or sharper the hot set), the fewer objects 
need to be cached in order to attain a given cache-hit ratio. 
Consequently, the larger the 0, the better the performance. The 
shape of the performance curve mirrors the access distribution. 
Thus, when the hot-set curve is flat (0 = O.OOl), performance is 
a linear function of cache size. When the hot-set curve is sharp 
( H  = 0.1), performance is a nonlinear function of cache size, 
because 50% of read accesses are to only 7% of the objects. 

Fig. 3 shows mean access time (ms) as a function of both H 
and p (per-site cache size is maintained at 2% of the number 
of objects). As before, when other factors are held constant, 
performance improves with larger H.  As p increases from 1 
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Optimol Performonce os function of 0 ond cache size 

Fig. 2. Optimal performance ( p  = 26). 

Optimal Performance as function of 0 and D 

Fig. 3. Optimal performance (C‘5rz~ = 2%) 

to M ,  the system is in one of three configurations: sites have 
a) identical hot-sets, b) partial hot-set overlap, or c) random 
hot-set relationship. In configuration a) performance is best, 
because the smaller system-wide hot set implies that caching 
is most effective. In configuration c), performance is worst, 
because the system hot set is large. In moving from a) to c), 
performance tends to degrade-but there are dips and valleys. 
Even if there is slightly less overlap among the sites’ hot-sets, 
sites can get a higher local hit-ratio, and therefore improve 
performance slightly. 

D. Optimal Fair Performance 

Only the optimal average algorithm (henceforth ‘‘average”) 
explicitly optimizes for the performance metric; the optimal 
fair (henceforth ‘‘fair”) algorithm can therefore never exceed 
the former’s performance. Figs. 4 and 5 show the relative 
performance of the algorithm compared to average. We show 
relative mean access time: i.e., the ratio of access time under 
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Fig. 4. Optimal fair algorithm (8 = 0.082). 
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Fig. 5.  Optimal fair algorithm (0 = 0.046). 

R e l o h e  Performonce to Optimol Algorithm 
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Fig. 6. Static greedy algorithm (8 = 0.082). 

the fair strategy to the access time under the average strategy. 
(Similar ratios are reported in Figs. 6-15.) These figures are 
quite ‘‘jagged’ ’ because the performance range among sites 
depends on the exact composition of their hot-sets and on the 
amount of cache storage in the RCA system. Because of the 
randomness associated with p, the relative performance of the 
fair (a “min/max”) algorithm can vary a great deal despite 
small changes in system configuration. Nevertheless, certain 
trends are quite clear. 
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Relative Performonce t o  Optimol Algorithm 

Fig. 7. Static greedy algorithm (0 = 0.046). 

Relative Performonce to  Optimol Algorithm 

Fig. 8. Static greedy algorithm (0 = 0,001). 
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Fig. 10. Dynamic greedy algorithm ( H  = 0.046). 
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Fig. 11. Dynamic greedy algorithm (0 = 0.001). 
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Fig. 9. Dynamic greedy algorithm (0 = 0.082) 

The performance gap increases for larger values of 8, and 
the reason for this involves the fairness criterion. When 8 
is large, then the few objects in the hot-set are valuable 
and other objects are not. On the one hand, if sites repli- 
cate locally valuable objects, then cache storage is wasted 
because other objects could be stored locally, with access 
to the valuable objects being through fast remote memory. 

Fig. 12. Distributed local algorithm (0 = 0.082). 

(Performance of the isolationist algorithm suffers precisely 
because too many replicas are made of valuable objects.) 
On the other hand, if there are too few replicas of valuable 
objects, performance suffers because local memory access is 
still faster than remote memory access. The optimal algorithm 
caches the optimal number of valuable objects at some sites 
and caches less valuable objects at other sites. Sites with 
valuable objects do better than other sites. Overall RCA 
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Fig. 13. Distributed local algorithm (0 = 0.046). 
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Fig. 14. Distributed global algorithm (0 = 0.082). 

performance is optimized because all sites benefit from remote 
memory. Such a configuration is not always “good” for 
the fair algorithm because sites responsible for caching less 
valuable objects do individually worse than those caching 
more valuable objects. Because the fair policy optimizes 
the performance of the worst performing site, the improved 
overall solution is ignored in favor of a solution in which 
all sites have good (but not optimal) performance. As hot- 
sets become flatter (Fig. 5),  cache decisions about a given 
object have less effect on performance because objects are 
individually less valuable. This leads to smaller “min versus 
max” performance gaps, and fair performance approaches that 
of the average. At the limit of flat hot-sets, the performance 
of the two algorithms is identical. Table IV shows that for a 
given amount of cache, the difference between the optimal and 
fair algorithms can decrease-even though the hot-set curve 
becomes flatter (compare the “20%” and “30%” entries for 
p = 50 and 100). The reason for this is that, for a given 
amount of storage, the system can cache the global hot-set 
while still maintaining a fair policy. Overall, however, the 
largest performance differences between the algorithms occur 
with a sharper hot-set curve. 

The fairness criterion also tends to cause the fair algorithm 
to do relatively worse (in general) as hot-sets overlap less 
and less. When hot-sets are closely related there are relatively 

Fig. 15. Distributed global algorithm (8 = 0.046). 

few “good” configurations because objects, in general, give 
approximately the same benefit to all sites. As correlation 
decreases, there are many more configurations that the average 
algorithm can exploit, because caching an object at one site 
has different implications than caching it at another site. Only 
a subset of these configurations “make sense” for the fair 
algorithm, because while some sites will benefit from the 
cached object, other sites get little benefit. 

The SDev values shown in Table IV show that the fair 
algorithm succeeds in ensuring that no site does badly. The 
large difference between the SDev of the algorithms for large 6 
and p shows that the average algorithm gets its performance by 
requiring some sites to cache objects primarily for the benefit 
of other sites. Moreover the CHIT values (representing local 
and remote cache hits) show that the fair algorithm is forced 
to leave certain objects on disk-because caching them at 
any site would cause the performance spread among sites to 
become too wide. It is interesting to note that in Table V (for 
per site cache storage of 5% of total number of objects) the 
average and fair policies maintain only a single object replica 
for all values of 6 and p considered. The benefit per cached 
object, however, is slightly greater for the average than for 
the fair when the correlation is less. In other words, even 
though the coordinated decisions of the fair algorithm result 
in no “replication,” it does not cache the same amount of 
“value” because this would not satisfy the fairness criterion. 
Note that the two algorithms get the same amount of benefit 
when sites have flat hot-sets. Even when sites have relatively 
sharp hot-sets ( S T O R E ~ ~ A ~ ~  = 30%), the algorithms still have 
the same B N F T  when sites have strong correlation. Only 
when correlation is low and sites have sharp hot-sets does the 
performance of the two algorithms diverge. 

E. Performance of the Isolationist Strategies 

Figs. 6-11 show the performance (relative to the optimal) 
of the two isolationist (or “greedy”) algorithms. The static 
and dynamic greedy algorithms have features in common, but 
also differ significantly in their behavior. 

First we examine the behavior of the static greedy algorithm 
(Figs. 6-11). When hot-sets are identical or closely overlap, 
relative performance is quite bad. As hot-sets diverge more, 
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C H I T  

0.972 
0.967 
0.833 
0.716 

0.900 
0.891 
0.743 
0.05 2 

0.702 
0.695 
0.603 
0.563 

0.500 
0.500 
0.500 
0.500 

TABLE IV 
PERFORMANCE OF THL OPTIMA1 AUD STATIC G R E E D Y  ALGORITHMS (PFR-SITE CACHt SrORAGF HOLDS 5% O t  OBJECTS) 

RTime 

7.1 
7.1 
14.3 
21.4 

11.2 
11.5 
20.2 
25.7 

22.5 
22.9 
28.1 
30.6 

34.0 
34.0 
34.0 
34.0 

I Optimal Fair I Optimal Average 

C H I T  

0.972 
0.966 
0.833 
0.707 

0.900 
0.891 
0.734 
0.639 

0.702 
0.605 
0.601 
0.557 

0.500 
0.5 00 
0.500 
0.500 

Static Greedy 

0.300 
0.560 

3.15 0.639 
0.587 

RTime 

44.1 
29.4 
24.9 
27.9 

50.3 
37.7 
30.6 
32.2 

56.4 
48.1 
37.7 
36.7 

59.5 
54.4 
42.0 
39.1 

REPL 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

BNFT 

11.1 
11.1 
9.7 
8.4 

10.3 
10.2 
8.6 
7.6 

8.0 
7.9 
6.9 
6.5 

5.7 
5.7 
5.7 
5.7 

REPL 

1.0 
1.0 
1.0 
1.0 

1.0 
1 .0  
1.0 
1 .o 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

RNFT 

11 .1  
11.1 
9.6 
8.2 

10.3 
10.2 
8.5 
7.4 

8.0 
7.9 
6.9 
6.4 

5.7 
5.7 
5.7 
5.7 

STOREii i \ 

30% 
30% 
30% 
30% 

20% 
20% 
20% 
20% 

10% 
10% 
10% 
10% 

5% 
5% 
5% 
5% 

P 

1 
10 
50 
I00 

1 
10 
50 
100 

1 
10 
so 
100 

I 
10 
50 
100 

STORE\,  I f RTime SDcv SDev 

30% 
30% 
30% 
30% 

1 
1 0 
50 
I00 

7.1 
7. I 
14.2 
20.8 

0.4 
0.3 
2.1 
2. I 

0.3 
0.2 
1 .6 
0.8 

20% 
20% 
20% 
20% 

1 
10 
50 
IO0  

0.2 
0.3 
2.1 
1.8 

0.3 
0.1 
0.8 
1 .o 

0.0 
1.6 
2.9 
3.1 

0.200 
0.422 
0.547 
0.520 

11.2 
11.5 
10.6 
24.9 

22.5 
22.9 
28.0 
30.3 

10% 
10% 
10% 
10% 

1 
1 0 
50 
I00 

0.0 
0.2 
1 .s 
1.5 

0.  I 
0.  I 
1.3 
0.1 

0.0 
0.5 
1.7 
1.4 

0.100 
0.247 
0.431 
0.449 

5% 
5% 
5% 
5% 

1 
1 0 
50 
100 

34.0 
34.0 
34.0 
34.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 0.050 
0.0 0.140 
0.0 0.360 

0.410 

TABLE V 
REPLlCArlON DONE BY T H E  OPTIMAL AND SIAIIC G K L ~ D Y  

ALGORI~HMS (PER-SIIb CACHE STORAGE HOl US 5% OF OBJFCIS) 

are not evaluated. This leads to low remote cache hit-ratios. 
This performance aspect is accentuated for small p (at the 
limit, remote cache hit-ratios are 0). Note that this “correlation 
effect” is only observed for large cache sizes in Fig. 11. When 
hot-sets are large, the static greedy policy results in small local 
hit-ratios: The key performance issue is the effective use of 
remote cache even when sites have little hot-set overlap. As 
a result, relative performance does not improve much with 
decreasing correlation. Only when sites have large amounts of 
cache does decreasing correlation lead to relative performance 
improvement. 

Note that when sites have small amounts of cache storage, 
relative performance is fine; relative performance is worse for 
a sharper hot-set than for a flat hot-set. However, when sites 
have large amounts of cache storage, then relative performance 
degrades as hot-sets become flatter. The key characteristic 
of the greedy algorithm is that sites do local optimization 
without knowledge of conditions at other sites. The local 
benefit of caching object / at site ,I when no other site has 
cached that object is Ptj(fd - t l ) .  If one replica is already 
cached at some other site, then the benefit is reduced to 
P,,(t, - t l ) .  Consider the task of selecting among a set of 
cache candidates. Under the optimal algorithm, sites often 
cache objects with smaller PLJ because they can already 
access the more valuable objects through remote memory. 
Cache benefit is increased by reducing the access time for 
less valuable objects-i.e., objects are moved up the memory 
hierarchy from disk access to main-memory access. Under 
the greedy policy, the “memory hierarchy” factor is ignored 
in favor of the “object importance” factor. With sharp hot- 
sets and small cache sizes, the P,, factor is large, so the 
“penalty” for local caching of an already replicated object 
is high. In other words, the alternative candidates for caching 
are sufficiently important that ignoring them greatly degrades 
relative performance. When sites have sharp hot-sets and lots 

Optimal 
Average Static Greedy 

- 

3NFT 
I - 

REPL 

10.0 
3.6 
1.4 
1.2 

3.7 
6.6 
7.5 
6.9 

10.0 
3.6 
1.4 
1.2 

2.5 
4.8 
6.4 
6.1 

10.0 
3.6 
1.4 
I .2 

1.2 
2.9 
5.0 
5.2 

10.0 
3.6 
1.4 
1.2 

0.6 
I .h 
4. I 
4.7 

relative performance levels out (as a function of 1)). Under the 
static greedy algorithm, sites that have much overlap among 
their hot-sets cause N-degree replication for valuable objects 
and no caching for less important objects. As correlation 
decreases, the degree of (wasteful) replication is automatically 
reduced-even under the greedy policy-because sites seek 
to cache different objects. When hot-sets are small, the static 
greedy policy at least succeeds in achieving high local cache 
hit-ratios. Relative performance (compared to the optimal) 
suffers because the tradeoffs between local and remote cache 
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STOREMAX 

30% 
30% 
30% 
30% 

20% 
20% 
20% 
20% 

10% 
10% 
10% 
10% 

5% 
5% 
5% 
5% 

TABLE VI 
ILLUSTRATION OF THE BENEFITS OF REMOTE CACHING 
(PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

Optima, LRU, Remote LRU, Without 
Cache Remote Cache p 

1 7.1 19.5 44.4 
10 7.1 20.5 44.4 
50 14.2 30.8 44.4 
100 20.8 34.6 44.4 

1 11.2 27.1 47.8 
10 11.5 27.8 47.8 
50 19.6 35.0 47.8 
100 24.9 37.3 47.8 

1 22.5 37.3 50.4 
10 22.9 37.4 50.4 
50 28.0 39.1 50.4 
100 30.3 39.6 50.4 

1 34.0 40.5 51.0 
10 34.0 40.5 51.0 
50 34.0 40.5 51.0 
100 34.0 40.5 51.0 

Mean Object Access Time I 

of cache, the Pij term is very small (sites operate at the tail 
end of the access distribution), so that the overall penalty is 
relatively small. Conversely, when sites have flat hot-sets, the 
Pij factor is small, so that the penalty is relatively small. 
Consequently, if sites have small amounts of cache, because 
the Pij term is small and the penalty is taken over relatively 
few decisions, relative performance is not too bad. However, 
when sites have large amounts of cache, the penalty is taken 
for many cache decisions, so that relative performance is bad. 

The dynamic greedy algorithm differs from the static greedy 
algorithm in the way that its performance is affected by the 
inter-site correlation parameter p .  The static greedy algorithm 
tends to do better with decreasing correlation-dramatically 
better, in fact, except in the case of a flat hot-set. The effect 
of p on the dynamic greedy algorithm is not as clear-cut, 
and is related to hot-set shape and cache size. When hot-sets 
are sharp or moderate (Figs. 9 and lo), the performance of 
the dynamic greedy algorithm is less than three times worse 
than optimal for p < 50. As sites have less correlation, 
the relative performance degrades greatly (for larger cache 
sizes). Recall that the dynamic greedy algorithm manages 
local cache with an LRU policy. When hot-sets are relatively 
small sites can cache much of their hot-sets locally. The 
key performance issue is whether remote cache can be used 
given a local cache-miss. Even though sites do not know 
which objects are “statically” important, the small hot-set size 
means that “hot” objects will tend to be valuable objects. 
Because of the randomness introduced by the LRU policy, 
one site’s cache contents does not duplicate another site’s 
cache. These two factors result in relatively better performance 
than static greedy. However, as inter-site correlation decreases, 
the dynamic greedy (i.e., local cache management) policy 
degrades because the percent of remote cache-hits decreases 
especially for large cache sizes. 
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When hot-sets are flat (Fig. 11) the performance of the 
dynamic greedy algorithm (for a given amount of cache) is 
almost completely unaffected by p .  Instead, the key determi- 
nant of performance is cache size. When per-site cache size 
is less than 8% of the total number of objects, then relative 
performance is less than two times worse than the optimal. As 
cache size increases, relative performance degrades to more 
than 4.6 times worse than the optimal. Because hot-sets are 
so large, one object is about as valuable to a given site as 
any other object. The LRU policy leads to an almost random 
relationship between sites’ cache contents. As a result, for large 
hot-set the percent of remote cache hits increases despite the 
fact that local cache hits decrease, The large performance gap 
between the optimal and dynamic greedy algorithms occurs 
when there is enough cache storage in the system that the 
penalty for suboptimal decisions begins to really add up. 

The above analysis also explains the performance differ- 
ences between the greedy algorithms. For sharp or moderate 
hot-sets, the static greedy algorithm does better than the 
dynamic except in the case of strong inter-site correlation. 
Conversely, when hot-sets are flat, the dynamic greedy al- 
gorithm does better than the static except in the case of very 
weak correlation. Both algorithms do too much replication (see 
Tables V and VIII) because they are not aware of the cache 
decisions at other sites. The dynamic algorithm avoids com- 
plete duplication of cache contents because cache contents are 
dynamically determined by the actual (i.e., dynamic) pattern 
of object accesses. The advantage of the static algorithm is 
that it has complete knowledge about object value. Sharp hot- 
sets imply that local cache-hit ratios are quite high, regardless 
of remote cache. Except in the case of strong site correlation 
(where the static greedy algorithm does, in the limit, N-site 
replication), higher local cache hits are more important than 
higher remote hits. Flat hot-sets imply that local cache is 
ineffective, and that remote cache must be used efficiently for 
good performance. The dynamic greedy therefore does better 
than the static (except when the weak correlation automatically 
leads to LRU type of randomness), Tables V and VI11 confirm 
this analysis. Note how the mean number of replicas declines 
“automatically” under the static greedy algorithm as inter- 
site correlation declines. Although the number of replicas 
also declines for the dynamic algorithm, the range is much 
smaller. For low values of p, the mean benefit per replica is 
much higher under the dynamic algorithm. As p increases, the 
situation reverses, and the static algorithm has higher BNFT 
values. When sites have flat hot-sets (STOREMAX = 5%), 
the dynamic algorithm has BNFT = 4.6 for all values of p. 
The static algorithm has lower values-except at the extreme 
of random correlation, where BNFT = 4.7. 

I )  Benefits of Remote Caching: Although the focus of this 
subsection has been on the weaknesses of the isolationist 
algorithms as compared to the optimal, it is also important 
to note that the benefits of remote caching apply for all 
algorithms. In Table VI we compare the performance of two 
systems that use the LRU policy to manage local cache. The 
systems differ in that in one (the second column) sites are able 
to access remote cache; in the other system (the third column) 
remote caching is not supported. We see that with only ten sites 
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in the system, remote caching offers a very large performance 
improvement. Performance in the non-RCA system is not 
affected by the degree of inter-site correlation because sites 
cannot access remote cache in any case. It is also interesting 
to note that even with random correlation among the sites’ 
data access, the RCA system using the LRU algorithm still has 
much superior performance compared to the non-RCA system. 
The benefits of remote memory architecture compared to more 
traditional client/server architectures are described more fully 
in [17]. 

F. Performance of the Distributed Strategies 

The distributed algorithms fill the performance gap between 
the optimal and greedy algorithms. Instead of order of magni- 
tude performance differences, the distributed local (henceforth 
“local”) algorithm never does worse than 1.4 times optimal. 
The distributed global (henceforth “global”) does even better. 
When per-site cache sizes are 5% or less of the total number of 
objects, then performance is less than 1.03 worse than optimal. 
Even with larger cache sizes, performance is never worse than 
1.15 of optimal. 

The isolationist algorithms do relatively worse with increas- 
ing cache size, and (for small cache sizes) do better with 
sharp hot-sets. This behavior is due to the ineffective use 
of remote memory. In contrast, the relative performance of 
distributed algorithms is much less affected by cache size, 
and gets better with flat hot-sets. (At the extreme of 0 = 0.0, 
performance is indistinguishable from the optimal). Tables V 
and VI11 show that the greedy algorithms maintain a high 
number of replicas per cached object. These replicas crowd 
out other objects which must then be accessed on disk. In 
contrast, the distributed algorithms have R E P L  values which 
are very close to optimakg This indicates that sites are aware 
of the cached objects at other sites and take advantage of these 
replicas to bring other objects into main-memory. Because 
these algorithms factor remote site decisions into local cache 
decisions, the performance gap with respect to the optimal has 
to do with the issue of coordinated decision making (and the 
cost function in the case of the local algorithm). 

The relative performance of both distributed algorithms is 
clearly dependent on the shape of the hot-set: the sharper 
the hot-set, the worse the relative performance. Compare, for 
example, Fig. 12 to Fig. 13 and Fig. 14 to Fig. 15. At the limit 
of completely flat hot-sets, the performance of the distributed 
algorithms is indistinguishable from the optimal. The reason 
for this behavior is that, to the extent that these algorithms 
make suboptimal decisions, a greater performance penalty is 
incurred when objects are individually more valuable. 

Cache size also has an important effect on relative perfor- 
mance. In Fig. 14, if per-site cache size is less than 6% of the 
total number of objects then the performance gap is less than 
1.05. The performance gap only exceeds 1.10 when per-site 

‘In a symmetric topology caching a second replica cannot improve the 
performance of remote sites because all sites are equally distant from one 
another. The LAN environment investigated here has a symmetric topology, 
which is why the optimal R E P L  values are about 1 in all cases. In contrast, 
thc greedy algorithms have much higher R E P L  valucs than the optimal, 
while the distributed algorithms have small R E P L  value\. 

cache size is 10%. Although the performance gap of the local 
algorithm is larger than the global, the gap in Fig. 12 becomes 
large only when per-site cache size exceeds 4%. Similar 
behavior is seen in Figs. 13 and 15. This behavior resembles 
the effect of hot-set shape: the penalty for suboptimal decisions 
increases as the ratio of per-site cache storage to the total 
number of objects increases. 

Inter-site correlation plays a role in  system behavior. In  
examining Fig. 14 we see that (when per site cache size is 
larger than 6%) relative performance degrades as correlation 
is reduced beyond the point of p = 35. In Fig. 15, when per 
site cache size is larger than 7%, performance degrades as 
correlation decreases for p greater than 50. 

The consequences of decreasing inter-site correlation on 
the effectiveness of distributed processing impact both the 
global and local algorithms. The local algorithm, however, also 
degrades with increasing correlation. As a result, relative local 
performance degrades at both extremes of the p parameter, and 
does best for intermediate values. In the case of sharp hot-sets 
(Fig. 12), local performance tends to degrade with increasing 
correlation. Although local algorithm does use information 
about remote memory, this information per se is not enough 
(for optimal average performance) when sites have strong 
correlation among their hot-sets. Sites replicate the same set of 
valuable objects-even though the objects are already cached 
at other sites. The “object importance” factor is sufficiently 
large that, coupled with the difference between local and 
remote access time, caching valuable objects benefits sites 
more than bringing less valuable objects off disk. Observe 
in Table VI11 how the local algorithm has the largest REPL 
values for sharp hot-sets and strong correlation. 

The global algorithm therefore has the greatest performance 
improvement, compared to to the local, when sites have large 
amounts of cache and their hot-sets are closely correlated. 
Under the global strategy, certain sites are constrained to cache 
less important objects so that no site has to access the disk 
for these objects. Note that these constraints causes all sites 
to improve their performance. The standard deviation of site 
performance (Table VII), when hot-sets are either moderate- 
flat or when correlation is strong, is about the same for both 
the local and global algorithms. This shows that some sites 
do not do appreciably better than other sites-despite the 
fact that they are doing local optimization. Instead, all sites 
suffer about the same magnitude of performance loss. Under 
sharp hot-sets and little correlation, the standard deviation is 
much greater under the local than under the global algorithms. 
Local optimization causes sites that happen to benefit from 
remote cache (due to the randomness caused by p) to do much 
better than other sites. The cooperation caused by the global 
optimization goal “smoothes out” the intrinsic randomness 
of the system. 

When sites have moderate hot-sets (Fig. 13), the local 
algorithm (relative to the optimal) exhibits different behav- 
iors depending on the amount of cache storage. When sites 
have little cache, then performance can actually degrade with 
decreasing correlation. Only for large amounts of storage does 
performance improve with decreasing correlation. The hot-sets 
of Fig. 13 are larger than in Fig. 12. Consequently, when 



1200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 11, NOVEMBER 1993 

STOREni 4.1 P 

30% 1 
30% 10 
30% 50 
30% 100 

20% 1 
20% 10 
20% 50 
20% 100 

10% 1 
10% 10 
10% 50 
10% 100 

TABLE VI1 
PERFORMANCE OF THE DISTRIBUTED AND DYNAMIC GREEDY ALGORITHMS (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

Distributed Local Distributed Global Dynamic Greedy 

RTime SDev C H I T  RTime SDev C H I T  RTime SDev C H  17 

8.4 0.5 0.942 7.1 0.5 0.972 19.5 0.3 0.747 
8.0 0.6 0.949 7.3 0.4 0.966 20.5 0.6 0.729 
14.7 2.1 0.823 14.4 2.2 0.716 30.8 1 .0 0.549 
23.3 4.9 0.671 21.0 2.5 0.716 34.6 0.9 0.804 

11.2 0.3 0.900 11.2 0.3 0.900 27.1 0.3 0.619 
11.9 0.6 0.886 11.6 0.4 0.891 27.8 0.3 0.608 
20.2 2.3 0.735 19.8 2.2 0.745 35.0 1 .o 0.482 
27.3 3.7 0.605 25.0 2.1 0.652 37.3 0.5 0.441 

22.5 0.3 0.702 22.5 0.2 0.702 37.3 0.3 0.44.5 
23.1 0.4 0.692 22.9 0.4 0.695 37.4 0.3 0.445 
28.4 1 .5 0.599 28.1 1.7 0.605 39.1 0.5 0.415 
31.7 1.7 0.534 30.4 1 .5 0.561 39.6 0.3 0.407 

Distributed 
Global 

REPL BNFT 

1.1 11.0 
1.0 11.0 
1.0 9.6 
1.0 8.3 

1.1 10.2 
1.0 10.1 
1.0 8.5 
1.0 7.5 

1 .1  7.9 
1.0 7.8 
1.0 6.9 
1.0 6.4 

1.1 5.6 
1.0 5.6 
1.0 5.7 
1.0 5.7 

5% 
5% 
5% 
5% 

Dynamic 
Greedy 

REPL BNFT 

1.8 8.7 
1.8 8.4 
1.4 6.4 
1.3 5.6 

1.5 7.2 
1.5 7.0 
1.3 5.6 
1.3 5.1 

1.3 5.2 
1.3 5.2 
1.3 4.7 
1.2 4.7 

1.3 4.6 
1.2 4.6 
1.2 4.6 
1.2 4.6 

1 34.0 0.3 0.499 34.0 0.3 0.499 40.5 0.3 0.391 

100 34.0 0.4 0.501 34.0 0.4 0.501 40.3 0.395 

sites are evaluating the cache candidate set, the “object impor- 
tance” factor is smaller and the “memory hierarchy” factor 
implies that sites should concentrate on bringing nonreplicated 
objects from disk into main-memory. Closer overlap among 
sites then leads to larger remote cache-hit ratios. As sites have 
more available cache storage decisions are made about objects 
at the tail end of the access distribution. Local optimization 
then encourages replicating even marginally (locally) impor- 
tant objects as opposed to caching even less important objects 
that would tend to benefit the overall system. In this situation, 
the local strategy does relatively better when low inter-site 
correlation implies that sites can benefit from the differing 
cache contents of other sites. 

1) Convergence Properties of the Distributed Algorithms: 
By its nature, the solution achieved by either of the distributed 
algorithms improves monotonically with each new iteration 
of the algorithm. Two questions therefore arise. First, how 
quickly do the distributed algorithms converge to a stable 
solution? (A stable solution can be defined as one which does 
not change through any further iterations of the algorithm. Be- 
cause of the monotonicity property and the finite cardinality of 
the state space, a stable solution must be reached eventually.) 
Second, how close is this stable solution to the global optimal 
solution? (Since each iteration of the algorithm can change 
only the eligibility decisions at one site, global optimality may 
not be achieved.) In this subsection we answer these questions 
for the distributed global algorithm. 

In Table IX statistics for the distributed global algorithm 
are presented. (The cases examined are the same as in Table 
VU.) Entries in the third and fourth columns indicate the 
number of algorithm iterations needed to reach a given percent 
of the optimal algorithm’s performance. For example, when 
STOREMAX = 30% and p = 1, then a solution which 
is at least 95% as good as the optimal is reached by the 

TABLE VI11 
REPLICATION DONE BY DISTRIBUTED AND DYNAMIC GREEDY 

ALGORITHMS (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

20% 
20% 
20% 
20% 

10% 
10% 
10% 
10% 

5% 
5% 
5% 
5% 

- 
P 

1 
10 
50 
100 

1 
10 
50 
100 

- 

1 
10 
50 
100 

1 
10 
50 
100 

Distributed 
Local 
- 
REPL 

1.4 
1.2 
1 .0 
1 .o 

- 

1.1 
1.1 
1 .o 
1 .0 

1.1 
1.1 
1 .o 
1 .0 

1.1 
1 .0 

1 .o 
1 .n 

- 
BNFT 

10.7 
10.8 
9.5 
7.8 

- 

10.1 
10.0 
8.4 
7.0 

7.8 
7.7 
6.8 
6.1 

5.6 
5.6 
5.7 
5.7 

1 

ninth site on the first round of cache decisions (denoted by 
“1,9”). Because individual cache decisions at the first nine 
sites can yield so much benefit, good overall performance is 
achieved-even though the tenth site has not yet made its 
first set of decisions. An additional site (the tenth) must make 
its decisions in order to reach a solution which is at least 
98% as good as optimal (“2,O”). Clearly, very good solutions 
are reached quite rapidly. In fact, though not indicated in 
the table, all examples achieved stability by the third round 
of iterations. The EQUIV column indicates whether or not 
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the stable solution reached by the distributed global optimal 
algorithm is within 0.1% of the global optimal solution. 
Obviously, not all examples achieve this. 

Table IX shows that the rate of improvement is not related 
to whether this equivalence of solutions actually occurs. For 
example, when p = 100 the rate of improvement is the 
most rapid of all the STOREJ~ .A .~ -  = 30% cases. However, 
equivalence does not ultimately occur- in contrast to the case 
of p = 1 ,  which has a slower improvement rate. 

Recall that the optimal algorithm determines the optimal 
configuration A- in “one” step. The distributed algorithms 
are heuristics in which each site makes B eligibility decisions 
(where L3 is the cache size) before the next site makes its 
decisions. The set of these decisions is supposed to transform 
the site’s cache contents into the state i t  has in the optimal 
configuration. In practice, one site’s decisions constrain the 
decisions of all other sites. As we have seen, because the 
sites under the distributed algorithm do not make coordinated 
decisions, the union of locally optimal decisions do not always 
equal the globally optimal configuration. Globally suboptimal 
decisions have, of course, a greater effect when individual 
cache slots are more valuable (large S T O R E . ~ I , ~ . ~ ) .  Equally 
importantly, when sites have less correlation among their hot- 
sets, the implications of one site’s decisions on other sites are 
more subtle than when they are closely correlated. As a result, 
the issue of coordinated decisions (i.e.. the optimal algorithm) 
plays a larger role. 

The rapid improvement of the distributed algorithms points 
to an important advantage over the optimal algorithm. If the 
system need only determine a configuration once, then i t  would 
make sense to use the optimal rather than the distributed 
algorithm. In practice, of course, sites do not have access to 
exact, a priori knowledge of access frequencies. A dynamic 
estimation, based on previous system history, would then be 
done periodically; the new estimate of the P,,, would then 

be input to a new invocation of the optimization algorithm. 
Because the optimal algorithm requires a set of coordinated 
decisions, changes in access frequencies can potentially require 
many changes in sites’ caches. In contrast, the localized 
decisions made by under the distributed algorithms means that 
fewer cache changes need be made if only some sites have 
different access frequencies. Since the distributed algorithms 
improve rapidly, an RCA implementation would prefer them 
over the optimal because they can afford to do the optimization 
more frequently than the optimal algorithm. 

number 
of objects, -If, in the experiments described in the tables 
and figures is set to 100 in order to facilitate generation and 
analysis of the results. By varying the ratios of per-site cache 
size to AI we can predict the behavior of a system with much 
larger ,ZI and proportionally more cache storage. An obvious 
issue is the scalability of the distributed algorithms. The 
complexity of the optimal algorithm i s  a linear function of the 
number of sites and the number of objects (see Section IV-A). 
As explained in Section IV-B, the distributed algorithms are 
more efficient than the optimal algorithms. However, if the 
performance of the distributed algorithm is also a function of 
the amount of per-site cache storage B ,  then the algorithm 
will not scale well in a realistic system. 

To analyze the scalability of the distributed global algorithm 
we perform the following experiment (see Table X). The 
number of objects in the system is increased by two orders 
of magnitude (from 100 to 1 0  000). The 0 values are adjusted 
to maintain the same STORE\r.A.l- values of Table VI1 and 
Table VIII. Four “correlation” values are listed per case: 
“total” corresponds to = I ;  “random” corresponds to p 
= ,If. The values of 0.9 and 0.5 correspond, respectively, to 
setting p to be one tenth and one half of A f .  Per-site cache 
storage is maintained. in both cases, at 5% of M. We find that 
the algorithm scales very well. Performance for most cases 
i s  identical. Differences between the performance are due to 
the effect of p being an input to the process of a random 
generation of site hot-sets. In some cases (the second case 
of S T O R E . J I , ~ . ~  = 30%), performance is better when M is 
10 000. In other cases (the fourth case of S T O R E J I . A . ~  = 
30%), performance is better when ,4f is 100. 

2) Scalubility of the Distributed Algorithms: The 

G. The Effect of TI oii Performunce 

The previous analysis of performance involves the situation 
where all sites have uniform relative activity (i.e., r/ = 1.0). 
Each site’s contribution to average performance is thus the 
same as any other site. We now examine situations in which 
some sites have greater activity than others. Table XI shows 
how the optimal average algorithm performs for three values 
of 71. Recall that smaller ‘r/ implies a few, very active, sites; 
other sites in the system are much less active. 

One clear trend is that mean access time decreases as 
relative site activity is more skewed (i.e., as 7) decreases). 
Also, the improvement is more marked when sites have sharp 
hot-sets (large values). Finally, the relative 
improvement (over ‘rI values) is more pronounced when sites 
have less hot-set correlation (large 0). 
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STOREAT~,I P 

30% 1 
30% 10 
30% 50 
30% 100 

20% 1 
20% 10 
20% 50 
20% 100 

10% 1 
10% 10 
10% 50 
10% 100 

TABLE X 
SCALABILITY PERFORMANCE OF THE DISTRIBUTED GLOBAL ALWRJTHM FOR 
TWO VALUES OF M (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

Optimal Average 

11 = 1.0 0 = 0.5 71 = 0.0 

7.1 7.0 6.9 
7.1 7.0 6.9 
14.2 13.6 12.3 
20.8 20.5 19.2 

11.2 11.2 11.1 
11.5 11.5 11.3 
19.6 19.0 17.7 
24.9 24.9 23.6 

22.5 22.5 22.5 
22.9 22.8 22.8 
28.0 27.6 26.8 
30.3 30.3 29.6 

Distributed Global 

1tr = 100 nr = 10 000 

TOTAL 
30% 0.9 7.3 7.2 
30% 0.5 14.4 13.9 
30% RANDOM 21.0 22.0 

20% 
20% 
20% 
20% 

TOTAL 11.2 11.2 
0.9 11.6 11.5 
0.5 19.8 19.2 

RANDOM 25 .0 25.7 

10% 
10% 
10% 
10% 

TOTAL 22.5 22.5 
0.9 22.9 22.9 
0.5 28.1 27.6 

RANDOM 30.4 30.5 

5% 
5% 
5% 
5% 

TOTAL 34.0 34.0 
0.9 34.0 34.0 
0.5 34.0 34.0 

RANDOM 34.0 34.0 

As 7) decreases, a few sites become increasingly more 
important relative to the other sites in the system. When other 
system characteristics are held constant (e.g., per-site cache 
size, hot-set distribution, and inter-site hot-set correlation), 
then the optimal decision is for unimportant sites to cache 
objects for the important sites. These sites behave, in a sense, 
as “object servers” rather than as independent workstations. 
Important sites therefore have higher remote cache-hit ratios. 
Although less active sites may suffer a performance loss 
(because locally important objects are not stored on-site), 
overall system performance improves because the active sites 
serve a greater number of object requests. Caching a hot object 
yields higher cache-hit ratios when hot-sets are sharper. As a 
result, benefits from the “object-serving’’ of less active sites 
increase for sharper hot-sets. 

Changes in overall system performance (due to 7)  are 
relatively small when sites exhibit much correlation between 
their hot-sets. In such a case, sites already cache much of one 
another’s objects: emphasizing the importance of certain sites 
has little effect on replication decisions. In other words, when 
sites already get maximum benefit from the RCA system (due 
to small p ) ,  changes in 7 do not change the contents of the 
system hot-set much. As sites have less correlation, however, 
the system’s hot-set is much larger. Decreasing q implies that 
the system hot-set must be weighted by an object’s importance 
(i.e., the site-weighted frequency of access). The large hot-set 
that exists for 77 = 1.0 becomes much smaller when q = 0.0. 
Under the optimal algorithm, sites cooperate to cache globally 
important objects, and performance improves considerably. 

Note that this analysis of the behavior of the optimal 
algorithm’s performance under different values of rl does not 
involve the issue of coordinated versus distributed decision 
making. The factor of relative site activity only affects the 
value that a site assigns to the presence of an object from 

5% 
5% 
5% 
5% 

cache. This only involves the issue of the optimization goal. 
As one would therefore expect, we found that the relative 
performance of the distributed global algorithm (compared to 
the optimal) is unaffected by changes in q. In almost all cases, 
the distributed global algorithm does not suffer noticeable 
degradation of its relative performance as site activity becomes 
more skewed. 

Under the static greedy and the distributed local algorithms, 
individual sites do local optimization. Table XI1 shows the 
relative performance of these algorithms (compared to the op- 
timal) for three different instances of relative site activity. The 
factors that determine relative performance when sites have 
the same amount of activity were previously discussed. The 
local optimization goal means that individual sites maintain the 
same behavior for all values of 7. As relative activity diverges, 
overall performance depends on which site has what degree of 
importance. For example, if site 1 had the best performance 
of all sites-a purely random occurrence with no bearing on 
system modeling- then mean performance will improve as 
77 decreases. Analysis of these algorithms (i.e., holding other 
variables constant, and varying 7)  is therefore complicated 
because of the effect of these “random” inputs. Nevertheless, 
a few trends are clear. 

When individual cache slots are not valuable (because of 
flat hot-sets), then relative performance is almost completely 
unaffected by decreasing 77 (e.g., STOREMAX = 10% and 
5%). As shown in Table XI, in such cases the optimal algo- 
rithm can hardly exploit the varying site activity because the 
presence of any given object has little effect on performance. 
The actual performance of the local optimization algorithms 
is unaffected by 7 for similar reasons. 

When sites have sharp hot-sets, then relative performance 
is mainly affected by the degree of inter-site correlation. 
Table XI1 shows that the distributed local algorithm suffers 

1 34.0 34.0 34.0 
10 34.0 34.0 34.0 
50 34.0 34.0 34.0 
100 34.0 34.0 34.0 
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= 0.5 

1.19 
1.12 
1.06 
1.17 

1 .oo 
1 .02 
1.04 
1.13 

1.00 
1.01 
1.02 
1.06 

1 .00 
1.00 
1 .oo 
I .oo 

TABLE XI1 
RELATIVE PEKFORMANCE OF THE LOCAL OPTIMILA’I I O N  AI GOKllHMS FOR 

THREE VAI.UBS OF /] (PER-SITk CACHE STORAGF HOLDS 5% OF OBJECTS) 

r /  = 0.0 

1.20 
1.13 
1.13 
1.30 

1 .33 
1.02 
1.08 
1.22 

1 .oo 
1 .01  
1.02 
1 .  IO 

1.00 
1.00 
1 .00 
I .or) 

30% 
30% 
30% 
30% 

1 
10 
50 
100 

1 
10 
50 
100 

I 
10 
50 
100 

1 
I O  
50 
100 

20% 
20% 
20% 
20% 

6.24 6.30 
4.14 4.09 
1.76 1.81 
1.34 1.38 

4.40 4.50 
3.27 3.26 
1.56 1.59 
1.29 1.31 

2.50 2.50 
2.10 2.10 
1.35 1.35 
1.21 1.22 

1.75 1.75 
1.60 1.60 
1.23 1.23 
1.15 1.15 

10% 
10% 
10% 
10% 

5% 
5% 
5% 
5% 

I Static Greedy 

1 =0.0 

6.41 
4.08 
1.92 
1.50 

4.53 
3.25 
1 .h5 
1.40 

2.51 
2.10 
1.37 
1.26 

- 

- 

1.75 
1.60 
1.23 
1.15 

Distributed Local 

1 )  = 
1 .0 

1.19 
1.13 
1 .03 
1.12 

1 .00 

1.03 
1 .10  

1 .oo 
1.01 
1 .01  
1 .os 

- 

1 .o3 

- 

I .oo 
1 .OO 
I .oo 
I .or) 

performance degradations (as a function of decreasing 71) 

when p = 100. The relative performance of the static greedy 
algorithm also degrades for smaller values of p. When sites 
can benefit from each other’s cache, then the penalty for local 
optimization is not too high-active sites can still utilize the 
contents of less active sites’ cache. As correlation among sites’ 
hot-sets decreases, then local optimization does increasingly 
(relatively) worse for the case with smaller hot set, because 
less active sites cannot benefit the other sites in the system. As 
before, the distributed local algorithm does better than static 
greedy. 

VI. CONCLUSION AND FUTURE WORK 

The high performance networks in many large distributed 
systems enable a site to reach the main memory of other sites 
more quickly than the time to access local disks. Remote 
memory can serve as an additional layer in the memory 
hierarchy between local memory and disks, but optimizing 
performance in the remote cache architecture is complicated 
by the fact that local sites may make replication decisions 
independently of other sites. 

Remote caching architectures offer immediate benefit be- 
cause of the opportunity to take advantage of objects that are 
cached at remote sites. Eficient use of the memory resources 
in such a system depends critically on replica management. 
A tradeoff exists between simplistic replication of valuable 
objects (eliminating the need to pay the extra cost of remote 
access), and using local cache storage to cache unreplicated 
objects. This paper shows that the optimal selection of objects 
for caching is a function of the hot-set curve, available cache 
storage, differences between the access patterns of the sites, 
and the criterion for optimal performance. 

In this paper we have: 
1) Introduced the idea of a remote caching architecture. 
2)  Analyzed the issues affecting its performance. 
3) Developed optimal replica management algorithms. 
4) Examined the issues of cost function and remote caching 

information as they effect algorithm performance. 
5) Analyzed the interaction of ‘‘object importance” factor 

with “memory hierarchy” factor. 
6) Developed a distributed global optimization algorithm 

with performance very close to optimal. 
7) Developed a distributed local optimization algorithm 

(that maintains site autonomy) with mean access times 
that are generally close to optimal. 

8) Devised greedy algorithms for replica management. 
We identified and analyzed the factors that are critical 

to system performance. The performance of two optimal 
algorithms was used as an upper bound on remote caching 
architecture performance: Optimality results from the fact 
that sites make coordinated decisions. Two greedy algorithms 
are used as a lower bound on system performance. These 
algorithms do not factor information about the state of other 
sites into local site decisions. We showed that while locally 
“greedy” decisions can lead to far worse performance than 
“optimal” decisions, the degree of performance degradation 
depends on the amount of cache storage available, the kind 
of access pattern, and the variation among the sites’ access 
patterns. Two distributed algorithms are then developed which 
provide performance that is close to the optimal-even though 
decisions are made in distributed fashion. The algorithms work 
by exchanging information between sites. This information is 
used as input for local cache decisions. One algorithm does 
local optimization, and the other does global optimization. 
The performance differences between the two point to the 
autonomy tradeoffs in a remote caching architecture. 

This paper demonstrates the potential of remote memory to 
reduce the number of disk acesses, and thus to improve per- 
formance. It  also discusses distributed algorithms that, given 
knowledge of object access rates, enable sites to achieve close 
to optimal performance. Optimality refers here to average ob- 
ject access time, and assumes that object accesses are “static” 
for significant periods of time. A major direction of future 
research in this area is dynamic replica management. A key 
issue for remote caching is the development of an LRU analog 
that captures global-in addition to local-object access 
patterns [18]. As this paper shows, algorithms which only cap- 
ture local object value have order-of-magnitude performance 
gaps compared to the optimal. Another area of research is 
applying the distributed algorithms to a nonsymmetric network 
topology. In a symmetric topology, the “arithmetic” of these 
algorithms is greatly simplified because, from the perspective 
of any given site, all sites can be characterized as either 
“local” or “remote’.’ This categorization is, of course, valid 
for LAN-like topologies. In more complicated topologies, i t  
might be necessary to modify the algorithms to reduce the 
amount of information that must be stored to keep track of 
71 sites’ constraints. In addition, synchronous site decisions 
would be less reasonable in such topologies, and algorithms 
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that work desuite asvnchronous site decisions would need to cessor,” in Proc. 17th Int. Symp. Comput. Architecture, IEEE CS Press, 
Los Alamitos, CA, 1990, pp. 148-159. 

[20] K. Li and P. Hudak, “Memory coherence in shared virtual memory 
systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321-359, NOV. 

be devised. Implementation of remote memory requires that 
these issues be addressed; this paper shows that RCA potential 

- .  .. 
is sufficiently great to make implementation worthwhile. lb89. 

1211 K. R. Pattipati and J. L. Wolf, “A file assignment problem model for 
extended local area networks,” in Proc. Distributed Comput. Syst., 1990, 
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Prediction of Performance and Processor 
Requirements in Real-Time Data Flow Architectures 

Sukhamoy Som, Member, IEEE, Roland R. Mielke, Member, IEEE, and John W. Stoughton, Member, IEEE 

Abstract-The purpose of this paper is to present a new data 
flow graph model for describing the real-time execution of iter- 
ative control and signal processing algorithms on multiprocessor 
data flow architectures. Identified by the acronym ATAMM, 
for Algorithm to Architecture Mapping Model, the model is 
important because it specifies criteria for a multiprocessor op- 
erating system to achieve predictable and reliable performance. 
Algorithm performance is characterized by execution time and 
iteration period. For a given data Row graph representation, the 
model facilitates calculation of greatest lower bounds for these 
performance measures. When sufficient processors are available, 
the system executes algorithms with minimum execution time and 
minimum iteration period, and the number of processors required 
is calculated. When only limited processors are available or when 
processors fail, performance is made to degrade gracefully and 
predictably. The user off-line is able to specify tradeoffs between 
increasing execution time or increasing iteration period. The 
approach to achieving predictable performance is to control the 
injection rate of input data and to modify the data Row graph 
precedence relations so that a processor is always available to ex- 
ecute an enabled graph node. An implementation of the ATAMM 
model in a four-processor architecture based on Westinghouse’s 
VHSIC 1750A Instruction Set Processor is described, and the 
performance of a real-time space surveillance algorithm on this 
system i s  investigated. 

Index Terms- Algorithm to Architecture Mapping Model 
(ATAMM); iterative control and signal processing algorithms; 
multiprocessor data flow architectures; periodic, nonpreemptive, 
dynamic multiprocessor scheduling; real-time systems; time 
performance and processor requirement prediction. 

I .  INTRODUCTION 
ULTIPROCESSOR computing systems are being used M to obtain high-speed computing performance through 

concurrency, while at the same time achieving a high level 
of fault tolerance and reliability [ 11. The data flow strategy is 
gaining wide acceptance as an excellent computational model 
for multiprocessor systems [2]. In the data flow paradigm, 
an algorithm is expressed as a collection of tasks which are 
to be executed according to a set of precedence constraints. 
The algorithm is represented by a data flow graph, a directed 
graph in which the nodes represent tasks and the arcs represent 
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communication paths between nodes [ 3 ] .  The presence of data 
on an arc is denoted by the placement of a token on that arc. 
A node is said to be enabled when all incoming arcs contain 
a token. An enabled node is executed (fired) by an available 
processor by encumbering one token from each incoming arc, 
delaying for a time equal to the execution of the node, and 
the depositing one token on each outgoing arc. A number of 
experimental data flow multiprocessor architectures have been 
developed and tested [4]. 

An emerging area of considerable interest is to use data flow 
computers for real-time computing applications such as the 
implementation of control and signal processing algorithms for 
aerospace, factory automation, and remote sensing [5] .  Real- 
time control and signal processing algorithms possess unique 
features often not shared with general-purpose computing 
problems. First, these algorithms periodically process infinite 
sequences of input data and produce infinite sequences of out- 
put data. The process of consuming one input token, executing 
all algorithm tasks once, and producing one output token is 
called an iteration. Because control and signal processing al- 
gorithms repetitively perform algorithm iterations, computing 
concurrency is achieved in two ways. Different processors can 
be assigned to simultaneously perform different tasks for the 
same iteration. This intraiteration concurrency is referred to 
as parallel concurrency because i t  is the result of inherent 
parallelism in the algorithm. In addition, however, different 
processors can be assigned to simultaneously perform tasks for 
different iterations. This interiteration concurrency is referred 
to as pipeline concurrency because the algorithm is repeated 
periodically for successive iterations, like a pipeline. Thus, 
real-time algorithms have an additional degree of freedom for 
achieving concurrency. Second, real-time algorithms gener- 
ally require consideration of at least two time performance 
measures. The time which elapses between the encumbering 
of an input token and the production of the corresponding 
output token for a single iteration is called the iteration 
execution time, or simply the execution time. Execution time is 
important in real-time control and signal processing algorithms 
because it  corresponds to time delay or phase lag. The time 
which elapses between the production of output tokens for 
successive iterations is called the iteration period. The inverse 
of the iteration period is the iteration frequency or sample 
frequency, a measure of algorithm throughput. The sample 
frequency is important because i t  limits the bandwidth of 
input and output signals. When task execution schedules for 
successive algorithm iterations are allowed to overlap, the 
performance measures execution time and iteration period 
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