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The sequential depth-first-search algorithm, distributed over processor nodes of a graph, yields a distributed depth-first- 

search algorithm that uses exactly 2 1 V 1 messages and 2 1 V 1 units of time. 
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1. Introduction 

Consider a communication network. Our goal 
is to equip the set of processors in the network 
with a control algorithm that will allow a processor 
in the network to effect a depth-first traversal 
through the graph underlying the network, using 
messages. The output of the algorithm is a depth- 
first-search (DFS) tree of the graph underlying the 
network, kept in a distributed fashion, i.e., at the 
end of the algorithm, each node will know its 
parent and children in the DFS tree [5]. 

Table 1 contains a chronological list of distrib- 
uted depth-first-search (DDFS) algorithms and 
their time and message complexities, considering 
unbounded message sizes, for an undirected graph 
with V nodes and E edges. The algorithm pre- 
sented here achieves its optimal time [6] in a 
straightforward fashion. We simply distribute the 
traditional sequential, recursive DFS over the net- 
work, letting each processor node handle com- 
munication with its father and children. Thus, 
optimal time and message complexity is achieved 
by eliminating all real parallelism (and by putting 

more information in each message and allowing 
messages of varying size). 

2. The model 

The communication network is represented by 
the graph G( I’, E) where V= (1, 2,. . . , #V} and 
E are respectively the sets of vertices and undi- 
rected edges. Vertices and edges of the graph 
represent the nodes and undirected communica- 
tion links of the communication network. We 
make the following assumptions for an asynch- 
ronous communication network. 

(1) No two processors in the network share 
memory. 

(2) Any message transmitted from one node to 
another is received unaltered, in finite time. 

(3) Each node has a distinct name (ID), and we 
assume that V= (1, 2,. . . , #V}, the set of vertices 
from which IDS are chosen. The total number of 
nodes in the network is not known a priori. 

(4) Each node knows the IDS of its neighbors 
in the graph and the ID of the sender of each 
message it receives. 
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Table 1 

Author 
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Year Time Communication 
complexity complexity 

T. Cheung 121 
B. Awerbuch [l] 

K.B. Lakshmanan et al. [6] 

1. Cidon [3] 
this paper 

1983 21.51 2lEl 
1985 <4lYI 4lEI 
1987 2)V1-2 <4lEI-(IVl-l) 

Jan. 1988 <2lVI <3lEl 
July 1988 3lVl 2lVl 

We evaluate the performance of the algorithm 
with the following complexity measurs. The time 
complexity is the maximum time elapsed from the 
beginning to the termination of the algorithm, 
assuming that delivering a message over a link 
requires at most one unit of time and that receiv- 
ing a message, local processing, and sending it 
over a link require negligible time. However, we 
assume that message transmission time is small 
compared to the propagation delay. The com- 
munication complexity is the total number of mes- 
sages sent during the execution of the algorithm. 

3. Proposed DDFS algorithm 

We describe the sequential DFS algorithm and 
its modification to function in a distributed set- 
ting. Let M(l.. #V) be a Boolean array, with M.i 
having the meaning “node i is marked”. Consider 
the following procedure Murk:. 

{Node i is unmarked, i.e. M.i is false. Mark all 
unmarked nodes of G that are reachable from i 
along an unmarked path of nodes} 

Murk: proc (i: integer); 
begin M.i := true; 

foreach (j: j a neighbor of i 
A ,M. j: Murk(j)) 

end. 

The foreach statement iteratively chooses (arbi- 
trarily) an unmarked neighbor j of i and executes 
Murk(j). By induction on the length of an un- 
marked path from node i to node j, one can easily 
prove that Mark satisfies its specification. 

Thus, if initially M.i is false for all i, execution 
of Murk(root) marks all nodes reachable from 
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node root. Procedure Murk uses a depth-first 
method of traversing G. For each reachable node 
i, Mark(i) is called exactly once, since it is called 
only when M.i is false and the first step of the 
body of procedure Murk is to set M.i to true, 
never to be changed again. 

If a global array M is not desired, it could be 
made local as follows: 

{Node i is unmarked. i.e. M.i is false. Set M. j to 
true for all nodes j for which M. j is false and 
that are reachable from i along a path, all of 
whose nodes k have M.k false} 

Murk: proc(i: integer; value-result M: array 
1.. #V of Boolean); 

begin M.i := true; 
foreach (j: j a neighbor of i 

A,M.j: Murk(j, M)) 
end. 

Now consider this algorithm in a distributed 
system environment. Nodes and edges of the graph 
correspond to the nodes and the bidirectional 
communication links of a communication network 
respectively. Each node P, will have a control 
algorithm similar to the body of the procedure 
Murk. A call to Murk( i ), is replaced by a send 
statement Se&( j, M) to j, which sends to j a 
message with the values j, M. Correspondingly, 
there is a receive statement Receioe(k, M). Thus, 
the control program at each node Pi looks as 
follows: 

P,: var M: array l..#Vof Boolean; 
var f: integer; 

( f will be Pi’s parent} 
var s: set(int); 

(s is the set of known sons of P, } 
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Receive ( f, M ); 4.1. Theorem. The proposed algorithm is optimal 
s:= ( }; in communication complexity and uses exactly 
M.f := true; 2 1 V 1 messages. 
foreach (j: j a neighbor of f A TM. j: 

s:=sU { j}; 

Se&( j, M) to j: 
Receiue( j, M)); 

Send(f, M) 

The algorithm begins as follows. A node Pi 
begins the process of finding a DFS distributively, 
by either receiving a START signal from the 
outside world or by executing M := false; 
Send(root. M) to root; Receiue( j, M), where root 
is the desired root of the DFS tree. 

Proof. Every node in the network receives only 
one message from its father (forward path) and 
sends one message to its father (return path). No 
message is sent to an already visited node in the 
network. Thus, each of the ( V I nodes exchanges 
messages with its father exactly twice. Hence, the 
total number of messages used in the algorithm is 
exactly 2 I V I. The message complexity of the al- 
gorithm is 0( I V I) and is optimal within a con- 
stant. Cl 

A sending node waits for node j to finish 
execution and to return a value M before proceed- 
ing further. Hence, the call-by-value-result param- 
eter in procedure Mark is being simulated, and 
exactly one node can make progress at any point. 
Clearly, the algorithm constructs a DFS tree of 
the graph connected to the root. A similar strategy 
of using a vector variable in a message has been 
employed by Finn [4] in developing resynch proce- 
dures. 

4.2. Theorem. The algorithm terminates after 2 1 V ( 
units of time if all messages are delivered in one unit 
of time. 

Proof. The total time is the time required to 
transmit the messages over the links. From Theo- 
rem 4.1, the total time needed to transmit 2 I VI 
messages is 2 I VI units of time if all messages are 
delivered in at most one unit of time. 0 

The algorithm above assumes that the total 
number of nodes in the network is known to all 
nodes a priori. When 1 VI is not known, the 
algorithm is modified as follows. Whenever a node 
P, receives the message for the first time, it ex- 
tends M to the largest of the received M array 
size and P,‘s neighbor IDS. Clearly, a node ex- 
tends the received array only if the array size is 
smaller than the largest ID of its neighboring 
nodes. This is done following the statement A4.i 
:= true, in the above algorithm at node P,. The 
root node, at the start of the algorithm, creates an 
M array of a size that is the largest of the root ID 
and IDS of its neighboring nodes. 

5. Discussion 

Reif [7] showed that the DFS problem is in- 
herently sequential, and our algorithm is devel- 
oped taking this fact in to account. It is interesting 
to see that the proposed solution is independent of 
whether communication between nodes in the net- 
work is either synchronous or asynchronous. The 
power of this algorithm in providing efficient solu- 
tions to several well-known problems in distrib- 
uted systems is explored in [8]. 
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