
Information Processing Letters 32 (1989) 183-186
North-Holland

1 September 1989

AN EFFICIENT DISTRIBUTED DEPTH-FIRST-SEARCH ALGORITHM

Mohan B. SHARMA, Sitharama S. IYENGAR

Department of Computer Science, Louisiana State Urkersity, Baton Rouge, LA 70803, U.S.A.

Narasimha K. MANDYAM

Indian Telephone Industries L.td, Bangalore, India

Communicated by David Gries
Received 18 July 1988

Revised 11 November 1988, 26 January 1989, 30 March 1989

The sequential depth-first-search algorithm, distributed over processor nodes of a graph, yields a distributed depth-first-

search algorithm that uses exactly 2 1 V 1 messages and 2 1 V 1 units of time.

Keywordr: Distributed system, distributed algorithm. communication graph

1. Introduction

Consider a communication network. Our goal
is to equip the set of processors in the network
with a control algorithm that will allow a processor
in the network to effect a depth-first traversal
through the graph underlying the network, using
messages. The output of the algorithm is a depth-
first-search (DFS) tree of the graph underlying the
network, kept in a distributed fashion, i.e., at the
end of the algorithm, each node will know its
parent and children in the DFS tree [5].

Table 1 contains a chronological list of distrib-
uted depth-first-search (DDFS) algorithms and
their time and message complexities, considering
unbounded message sizes, for an undirected graph
with V nodes and E edges. The algorithm pre-
sented here achieves its optimal time [6] in a
straightforward fashion. We simply distribute the
traditional sequential, recursive DFS over the net-
work, letting each processor node handle com-
munication with its father and children. Thus,
optimal time and message complexity is achieved
by eliminating all real parallelism (and by putting

more information in each message and allowing
messages of varying size).

2. The model

The communication network is represented by
the graph G(I’, E) where V= (1, 2,. . . , #V} and
E are respectively the sets of vertices and undi-
rected edges. Vertices and edges of the graph
represent the nodes and undirected communica-
tion links of the communication network. We
make the following assumptions for an asynch-
ronous communication network.

(1) No two processors in the network share
memory.

(2) Any message transmitted from one node to
another is received unaltered, in finite time.

(3) Each node has a distinct name (ID), and we
assume that V= (1, 2,. . . , #V}, the set of vertices
from which IDS are chosen. The total number of
nodes in the network is not known a priori.

(4) Each node knows the IDS of its neighbors
in the graph and the ID of the sender of each
message it receives.

0020-0190/89/8.3.50 0 1989. Elsevier Science Publishers B.V. (North-Holland) 183

Volume 32. Number 4

Table 1

Author

INFORMATION PROCESSING LETTERS 1 September 1989

Year Time Communication
complexity complexity

T. Cheung 121
B. Awerbuch [l]

K.B. Lakshmanan et al. [6]

1. Cidon [3]
this paper

1983 21.51 2lEl
1985 <4lYI 4lEI
1987 2)V1-2 <4lEI-(IVl-l)

Jan. 1988 <2lVI <3lEl
July 1988 3lVl 2lVl

We evaluate the performance of the algorithm
with the following complexity measurs. The time
complexity is the maximum time elapsed from the
beginning to the termination of the algorithm,
assuming that delivering a message over a link
requires at most one unit of time and that receiv-
ing a message, local processing, and sending it
over a link require negligible time. However, we
assume that message transmission time is small
compared to the propagation delay. The com-
munication complexity is the total number of mes-
sages sent during the execution of the algorithm.

3. Proposed DDFS algorithm

We describe the sequential DFS algorithm and
its modification to function in a distributed set-
ting. Let M(l.. #V) be a Boolean array, with M.i
having the meaning “node i is marked”. Consider
the following procedure Murk:.

{Node i is unmarked, i.e. M.i is false. Mark all
unmarked nodes of G that are reachable from i
along an unmarked path of nodes}

Murk: proc (i: integer);
begin M.i := true;

foreach (j: j a neighbor of i
A ,M. j: Murk(j))

end.

The foreach statement iteratively chooses (arbi-
trarily) an unmarked neighbor j of i and executes
Murk(j). By induction on the length of an un-
marked path from node i to node j, one can easily
prove that Mark satisfies its specification.

Thus, if initially M.i is false for all i, execution
of Murk(root) marks all nodes reachable from

184

node root. Procedure Murk uses a depth-first
method of traversing G. For each reachable node
i, Mark(i) is called exactly once, since it is called
only when M.i is false and the first step of the
body of procedure Murk is to set M.i to true,
never to be changed again.

If a global array M is not desired, it could be
made local as follows:

{Node i is unmarked. i.e. M.i is false. Set M. j to
true for all nodes j for which M. j is false and
that are reachable from i along a path, all of
whose nodes k have M.k false}

Murk: proc(i: integer; value-result M: array
1.. #V of Boolean);

begin M.i := true;
foreach (j: j a neighbor of i

A,M.j: Murk(j, M))
end.

Now consider this algorithm in a distributed
system environment. Nodes and edges of the graph
correspond to the nodes and the bidirectional
communication links of a communication network
respectively. Each node P, will have a control
algorithm similar to the body of the procedure
Murk. A call to Murk(i), is replaced by a send
statement Se&(j, M) to j, which sends to j a
message with the values j, M. Correspondingly,
there is a receive statement Receioe(k, M). Thus,
the control program at each node Pi looks as
follows:

P,: var M: array l..#Vof Boolean;
var f: integer;

(f will be Pi’s parent}
var s: set(int);

(s is the set of known sons of P, }

Volume 32. Number 4 INFORMATION PROCESSING LETTERS 1 September 1989

Receive (f, M); 4.1. Theorem. The proposed algorithm is optimal
s:= (}; in communication complexity and uses exactly
M.f := true; 2 1 V 1 messages.
foreach (j: j a neighbor of f A TM. j:

s:=sU { j};

Se&(j, M) to j:
Receiue(j, M));

Send(f, M)

The algorithm begins as follows. A node Pi
begins the process of finding a DFS distributively,
by either receiving a START signal from the
outside world or by executing M := false;
Send(root. M) to root; Receiue(j, M), where root
is the desired root of the DFS tree.

Proof. Every node in the network receives only
one message from its father (forward path) and
sends one message to its father (return path). No
message is sent to an already visited node in the
network. Thus, each of the (V I nodes exchanges
messages with its father exactly twice. Hence, the
total number of messages used in the algorithm is
exactly 2 I V I. The message complexity of the al-
gorithm is 0(I V I) and is optimal within a con-
stant. Cl

A sending node waits for node j to finish
execution and to return a value M before proceed-
ing further. Hence, the call-by-value-result param-
eter in procedure Mark is being simulated, and
exactly one node can make progress at any point.
Clearly, the algorithm constructs a DFS tree of
the graph connected to the root. A similar strategy
of using a vector variable in a message has been
employed by Finn [4] in developing resynch proce-
dures.

4.2. Theorem. The algorithm terminates after 2 1 V (
units of time if all messages are delivered in one unit
of time.

Proof. The total time is the time required to
transmit the messages over the links. From Theo-
rem 4.1, the total time needed to transmit 2 I VI
messages is 2 I VI units of time if all messages are
delivered in at most one unit of time. 0

The algorithm above assumes that the total
number of nodes in the network is known to all
nodes a priori. When 1 VI is not known, the
algorithm is modified as follows. Whenever a node
P, receives the message for the first time, it ex-
tends M to the largest of the received M array
size and P,‘s neighbor IDS. Clearly, a node ex-
tends the received array only if the array size is
smaller than the largest ID of its neighboring
nodes. This is done following the statement A4.i
:= true, in the above algorithm at node P,. The
root node, at the start of the algorithm, creates an
M array of a size that is the largest of the root ID
and IDS of its neighboring nodes.

5. Discussion

Reif [7] showed that the DFS problem is in-
herently sequential, and our algorithm is devel-
oped taking this fact in to account. It is interesting
to see that the proposed solution is independent of
whether communication between nodes in the net-
work is either synchronous or asynchronous. The
power of this algorithm in providing efficient solu-
tions to several well-known problems in distrib-
uted systems is explored in [8].

Acknowledgment

4. Complexity analysis

In the previous section, we presented the DDFS
algorithm. In this section we show that both the
time and message complexities of the algorithm
areO(]V]).

The authors thank the anonymous referees for
their comments, which improved the presentation
of the paper. They also thank the communicating
editor for his assistance in preparing the revised
version of the paper. Thanks to Dr. Abha Moitra
for providing useful comments on an earlier draft
of the paper.

185

Volume 32, Number 4 INFORMATION PROCESSING LETTERS 1 September 1989

References

[I] B. Awerbuch, A new distributed depth-first-search al-

gorithm, I/arm. Process. Lar. 20 (1985) 147-150.

[2] T. Cheung, Graph traversal techniques and the maximum

flow problem in distributed computation, IEEE Trans.
Sofnvure Eng. 9 (1983) 504-512.

(31 I. Cidon, Yet another distributed depth-first-search al-

gorithm, Inform. Process. Lerr. 26 (1987/88) 301-305.

[4] S.G. Finn, Resynch procedures and a fail-safe network

protocol, IEEE Trans. Comm. 27 (1979) 840-845.

[S] E. Horowitz and S. Sahni, Fundumemals of Computer Al-
gorifhms (Computer Science Press. Rockville, MD. 1984).

[6] K.B. Lakshmanan. N. Meenakshi and K. Thulasiraman, A

time optimal message-efficient distributed algorithm for

depth-first-search, Inform. Process. La. 25 (1987) 103-109.

[7] J.H. Reif. Depth-first search is inherently sequential, In-

form. Process. Len. 20 (1985) 229-234.

[S] M.B. Sharma. S.S. lyengar and R.L. Kashyap. A unified

approach for solving a class of problems in distributed

systems, submitted for publication. October 1988.

186

