Hamiltonian path

- G=(X, A) weighted, non-directed
 - $x_i \rightarrow d_i^G$
 - |x|=n

Hamiltonian path

- T=(X, AT) of G (spanning tree)
 - $x_i \rightarrow d_i^T$
- E_T: closeness of T to HP

$$E_T = \sum_{d_i^T > 2} (d_i^T - 2)$$

 $(E_T=0 \text{ for a HP})$

Problem

Find the shortest spanning tree T*=(X,A*) of G so that the degree of no vertex exceeds 2

G: connected

Problem

• T tree
$$d_i \neq 0 \Rightarrow d_i = \begin{cases} 1 & (q) \\ 2 & (n-q) \end{cases}$$

$$m_T = \frac{1}{2} \sum_{i=1}^n d_i^T$$

$$m_T = \frac{1}{2}[q + 2(n-q)] = n - \frac{q}{2}$$

$$n-1 = n - \frac{q}{2} \Rightarrow \frac{q=2}{n-2} \quad (d_i^T = 1)$$

$$(d_i^T = 1)$$

Branch and Bound (Ham.path)

• G=(X,A,C)

	1	2	3	4	5	6
1	0	4	10	18	5	10
2	4	0	12	8	2	6
$ \begin{array}{c} \overline{1} \\ 2 \\ C = [c_{ij}] = 3 \\ 4 \\ 5 \\ 6 \end{array} $	10	12	0	4	18	16
4	18	8	4	0	14	6
5	5	2	18	14	0	16
6	10	6	16	6	16	0

1

Minimum spanning tree

- $T^*(A)$: cost=22 ($d_2^T=3$)
- "Shortest spanning tree with all d_i^T≤2"
 => At least one of the links (2,1), (2,6), (2,5) must be absent from the final answer

Branch and Bound

Nodes B and C of the Tree Search

T*(B) cost=23

T*(C) cost=24

4

Node D of the Tree search

- T*(D) cost=25
- 4 Spanning Trees
- Near optima HP! (practice)