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Greed is Good: l Approximating Independent Sets in 
Sparse and Bounded-Degree Graphs 2 

M. M. Halld6rsson 3 and J. Radhakrishnan 4 

Abstract. The minimum-degree greecb, algorithm, or Greedy for short, is a simple and well-studied method 
for finding independent sets in graphs. We show that it achieves a performance ratio of (A + 2)/3 for approx- 
imating independent sets in graphs with degree bounded by A. The analysis yields a precise characterization 
of the size of the independent sets found by the algorithm as a function of the independence number, as well 
as a generalization of Tur.4n's bound. We also analyze the algorithm when run in combination with a known 
preprocessing technique, and obtain an improved (24 -t- 3)/5 performance ratio on graphs with average de- 
gree d, improving on the previous best (d + 1)/2 of Hochbaum. Finally, we present an efficient parallel and 
distributed algorithm attaining the performance guarantees of Greedy. 
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1. I n t r o d u c t i o n .  An independent set in a graph is a col lect ion of  vert ices that are mu- 

tually nonadjacent .  The  problem of  finding an independent  set of  max imum cardinali ty 

is one o f  the fundamental  combinator ia l  problems.  It is known to be NP-comple te ,  even 

for bounded-degree  graphs, and therefore no efficient a lgor i thms are in sight. 

Given  the hardness o f  exact  computat ion,  we are interested in approximat ion algo- 

rithms for the independent  set p roblem in bounded-degree  graphs. In particular, we seek 

an a lgor i thm with a good performance ratio, which is a bound on the m a x i m u m  ratio 

be tween  the optimal  solution size (i.e., the independence  number)  and the size o f  the 

solution found by the heuristic. 

One  of  the most  ubiqui tous heuristic methods  for  this problem is the greedy algorithm 
which selects a vertex of  m in imum degree,  deletes that vertex and all of  its neighbors  

from the graph, and repeats this process  until the graph becomes  empty. As a del ight-  

fully s imple  and efficient algori thm, the G r e e d y  method  deserves  a part icularly detai led 

analysis. It is already known to possess several important  qualit ies:  attaining the Tur~in 

bound, and its general izat ion in terms of  degree sequences  [30], [8]; a lmost  always ob- 

taining a solution at least half  the size o f  an optimal  solution in a random graph [23]; 
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yielding a nontrivial graph coloring approximation I161, and a "light" coloring with a 
small chromatic sum [19], when applied iteratively as a coloring method; and finding 
optimal independent sets in trees, series-parallel, cographs, and graphs of degree at 
most 2. 

While the performance ratio of Greedy has been analyzed before to some extent, the 
true extent of its performance has apparently not been determined before. The best ratio 
previously claimed for Greedy was A -- 1 on graphs with maximum degree A [27] and 
~t + 1 on graphs of average degree d [14]. 

Our main result is that Greedy is much better than previously claimed. We obtain a 
tight performance ratio of (A § 2)/3 in terms of maximum degree, and an asymptotically 
optimal bound of (d + 2)/2 in terms of average degree. In the process we give a natural 
extension of Tur~in's bound that incorporates the actual independence number of the 
graph, and give a general, tight expression of the size of the solution found as a function 
of the independence number and the number of vertices. 

We further analyze Greedy extended with a preprocessing method of Hochbaum [ 14]. 
We use it to improve the best performance ratio known in terms of average degree to 
(2d + 3)/5, but show it to be of limited use in terms of maximum degree. 

It follows from our analysis that globally minimum degree is not required for Greedy 
to achieve the performance guarantees claimed above; in fact, it holds for any vertex 
whose degree is at most the average of the degrees of it and its neighbors. This is a locally 
evaluated property that naturally leads to a parallel and distributed algorithm inheriting 
the approximative properties of Greedy, for the first nontrivial such approximations 
known to us. 

The remainder of the paper is organized as follows. In Section 2 we present the 
Greedy algorithm and some of its properties including the Tur~in bound, and review 
other results on approximating this problem. We analyze Greedy in detail in Section 
3, starting with a generalization of the Tur~m bound in Section 3. I, followed by tight 
performance ratios in Section 3.2, and limitations on its performance in Section 3.3. In 
Section 4 we consider improvements obtained by additionally applying a preprocessing 
technique, and describe in Section 5 a parallel algorithm attaining the bounds proved for 
Greedy. 

1.1. Notation. We use fairly standard graph notation and terminology. For the graph 
in question, usually denoted G = (V, E), n denotes the number of vertices, A the 
maximum degree, d the average degree, e the independence number (the size of the 
largest independent set), and r the independence fraction (that is, e/n) .  For a vertex v, 
d(v) denotes the degree of v, and N(v) the set of neighbors of v. 

For an independent set algorithm A, A(G) is the size of the solution obtained by A 
on graph G = (V, E). The performance ratio PA of A is defined by 

e (G)  
PA = PA(n) = max 

G.IGI=, A(G)" 

We focus on Greedy, denoted by Gr. 
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2. The Greedy Algorithm and Related Results 

2.1. The Greedy Algorithm. The minimum-degree greedy algorithm, or Greedy for 
short, incrementally constructs an independent set by selecting some vertex of  minimum 
degree, removing it and its neighbors from the graph, and iterating on the remaining 
graph until empty. 

Greedy(G) 
I ~ - 0  
while G -r 0 do 

Choose v such that d(v) = min d(w) 
u,cV(G) 

I ~---ILJ{v} 
G +-- G - {v} U N(v)  

od 
Output 1 

end 

The algorithm can be implemented in time linear in the number of  edges and vertices, 
independent of  the degree. 

We call a node critical if its degree is at most the average of the degrees of it and its 
neighbors. That is, v is critical if it satisfies 

(1) d2(v)  < ~ d(w). 
wEN(v) 

A vertex of minimum degree is critical, hence such a node always exists. Although we 
state Greedy with this minimum-degree pivoting rule, the only property that we use is 
that the selected vertex is critical. 

Consider an execution of the algorithm to be a sequence of  reductions, each corre- 
sponding to an iteration. In a reduction a vertex is selected, added to the solution, and then 
removed along with its neighborhood from the graph. Let t denote the number of  reduc- 
tions and di the degree in the remaining graph of the ith vertex selected, i = I, 2 . . . . .  t. 
The number of  vertices removed in the ith reduction is thus di -4- 1. 

The main property of the algorithm that we use in our analysis is that the sum of the 
degrees of  the di + 1 vertices removed in the ith reduction must be at least di (di 4- 1). 
This allows us to bound from below the number of edges removed in each step. 

2.2. Previous Results on Greedy. A classical theorem in graph theory, due to Tur~in [28], 
states that, for any graph G, 

H 
u(G)  > - 

d + l '  

and that the inequality is tight only for the graph consisting of  a (G)  disjoint cliques of 
size as equal as possible. Wei [30] (see [10]) proved an extension, 

1 
a(G)  >_ ) 

,:~v d(v)  + 1 
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which he showed was attained by Greedy. This result actually follows from an earlier 
theorem of Erd6s [8] (see [10l), which states that if a graph contains no independent set 
of  size k + 1, then there is graph consisting of k disjoint cliques whose degree sequence 
dominates that of  the original graph. The proof of his theorem can also be seen to refer 
indirectly to Greedy. 

We include a proof here of the fact that Greedy attains the Tur~.n bound, since the 
proofs of  our central results build directly upon it. 

THEOREM 1. Gr >_ n/(d + 1). 

PROOF. The proof is a variation of  the one given by Hochbaum [141. The Greedy 
algorithm performs a sequence of t reductions, each time picking a vertex and deleting 
it and its neighbors from the graph. We count the number of vertices and edges deleted 
in each reduction. 

The removal of vertices in each reduction partitions the vertex set; thus: 

(2) 
t 

Z ( d i  + l )=n.  
i = l  

Since Greedy always selects a critical vertex, the sum of the degrees of  the vertices 
deleted in step i is at least di (di § 1), and thus the number of  edges deleted is at least 
half that amount. Summing over all the reductions: 

(3) n = IEI _> �9 
~=1 2 

We now add (2) and twice (3). and obtain 

l 

( d +  l)n > Z ( d i  + 1) 2. 
i=1 

Using the Cauchy-Schwarz inequality and (2), we get 

//2 
(d + 1)n > - - .  

t 

Rearranging the inequality, we obtain the desired bound on t, which is precisely the 
number of  vertices found by Greedy. [ ]  

Another simple algorithm operates by a rule that is the inverse of  Greedy: it deletes a 
vertex of  maximum degree, until no edge remains. Surprisingly, this algorithm also attains 
the Tur~in bound, as proved independently by Griggs [10] and Chv~ital and McDiarmid 
[7]. Its approximative properties are however weaker. On the graph with 2s vertices that 
is complete bipartite less a single perfect matching, the algorithm may find only a two 
vertex independent set for an approximation ratio of  s /2  = (A Jr 1)/2. As a result, we 
do not consider this method further. 
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An upper bound of A - 1 of the performance ratio of  Greedy (with the minimum- 
degree rule) can be obtained by rudimentary arguments. Observe that in a graph with 
minimum degree ~;, the independence number is bounded from above by n A / ( A  + ~). 
This is because at least ~l I I edges must exit an independent set I while at most A (n - I I I) 
edges can be incident on the remaining vertices. Thus in a regular connected component, 
the independence number is at most n/2, for a ratio of (A + 1)/2. This is at most A -- 1 
for A > 3, and we also know that Greedy is optimal when A = 2. 

Consider now the case of a nonregular component. In each step there is a vertex of 
degree at most A -- 1, so Greedy finds at least n/A independent vertices. As long as 
Greedy selects a vertex of degree 1 it proceeds optimally, since the optimal solution 
can contain at most one of  the two vertices deleted in each step. Thus, we may assume 
without loss of generality that the minimum degree is at least 2. Hence, by the previous 
argument, the independence number is at most n A / ( A  + 2). Combined, this yields a 
ratio of  A2/ (A + 2), which is also at most A -- 1. The above argument may be what is 
alluded to on p. 306 of [27]. 

2.3. Related Results. Any maximal independent set is of  size at least n / ( A  + 1), which 
results in a trivial performance ratio of  A + 1. In fact, a ratio of  A holds, since an optimal 
solution can contain at most Al l  I vertices not already in a maximal solution I. 

The theorem of Brooks [5] is an early result that states that any connected graph can 
be colored with A colors unless it consists of  a (A + I)-clique or an odd cycle. Since 
we can dispose of the exceptions optimally, this yields a stronger bound of n/A on the 
size of  the independent set we find. Lov~isz [22] gave an elegant proof that can be turned 
into an efficient algorithm. 

Hochbaum [14] introduced a preprocessing technique whose effect was to obtain 
stronger upper bounds on the size of  the optimal solution. The technique was based on 
results of  Nemhauser and Trotter [24] on solutions of the linear programming relaxation 
of the independent set problem. We describe this approach in more detail in section 4. She 
obtained approximations of  weighted independent sets by applying coloring heuristics 
and selecting the heaviest color as a solution. In particular, she obtained ratios of A / 2  
and (d(G) + 1)/2, where d(G) is the largest minimum degree of  any induced subgraph 
of G, as well as a ratio of  (d + 1)/2 in the unweighted case. 

A decade passed with little effect. Independent of the current work, Berman and 
Ftirer 14] followed by Berman and Fujito 13] gave significantly improved ratios of  (A + 
3)/5. The drawback of their methods is the exorbitant time complexity of  more than 
exp(32A l0 log n). Their approach is a local search method, that seeks a larger solution 
primarily by deleting a moderate number of  vertices while adding a greater number. 

Khanna et al. [ 18] also considered a simpler version of  this local search strategy, that 
merely deletes one while adding two or more. They obtained ratios that improved on the 
A / 2  bound of 114]. 

Alongside the current work, we studied subgraph removal methods that are mo- 
tivated by results in graph theory that state that graphs without small cliques con- 
tain provably larger independent sets. This allows us to obtain performance ratios of 
A/6(1 + o(1)) for graphs of  small to fairly large degree, as well as an asymptotic ratio 
of O ( A / l o g l o g  A) [1 i], [121. We have also analyzed further the local search method 
of the previous two papers, decreasing the time complexity needed for the result of  [4], 
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and obtained a performance ratio of (A + 3)/4 111 ] with an efficient version, illustrating 
further time/approximation tradeoff possibilities. 

Halld6rsson and Yoshihara I13] have used ideas from the current paper to analyze 
modified versions of the greedy algorithm schema. In particular, for graphs of maximum 
degree three, they give a linear-time algorithm that attains a ratio of 9/7 ~ 1.286. 

The preceding has focused on possibility results, but nonapproximability results have 
made great strides in recent years. The independent set problem in bounded-degree graphs 
(for each fixed A) belongs to the class of MAX SNP-complete problems introduced 
by Papadimitriou and Yannakakis [25]. The groundbreaking results on the theory of 
interactive proofs, resulting in the landmark paper of Arora et al. [21, show that there is 
a fixed e > 0 such that approximating the independent set problem in bounded-degree 
graphs within a factor of 1 + e is NP-hard. Even stronger results hold when degree 
restrictions are lifted: the independent set problem cannot be approximated with n e, 
for some e, unless T' = N'T'  [2]. Alon et al. [1] have recently been able to scale the 
latter results down to show that A" approximation on bounded-degree graphs is similarly 
NP-hard. 

3. Analysis of Greedy 

3.1. Relative Size o f  Greedy Solutions. We start by strengthening the constructive 
version of Tur~n's theorem, by expressing the size of the obtainable independent set 
as a function of the independence number. Observe that our bound dominates Tur~in's, 
yielding strict improvements whenever the independence number exceeds the promise 
of Tur~in's bound. Recall that r is the independence fraction, c~/n. 

TItEOREM 2. Gr > ((1 + re ) / (d  + 1 + r))n. 

PROOF. Our proof follows that of Theorem 1, while we now additionally keep count 
of the number of vertices deleted that belong to some maximum cardinality independent 
set. 

Fix an independent set of maximum cardinality or, and let ki be the number of vertices 
among the di -'t- 1 vertices deleted in reduction i that are also contained in that maximum 
independent set. Then 

(4)  ~ ki = or. 
i=1 

Recall that the sum of the degrees of the vertices deleted in step i is at least di (di + 1 ). 
Note that no edge can have both its endpoints in the maximum independent set. Thus, 
the number of edges deleted is at least (a,~-l) + (~). Hence we obtain the tbllowing 
strengthening of (3): 

(5) ~ n = Igl ~ + �9 
i=1 2 
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We now add (2), (4) and twice (5), and apply the Cauchy-Schwarz inequality to obtain 

' ~ (1  + r : )n  2 
( d + l + r ) n  > Z ( d i + l )  2 + k ?  > t 

i:=l 

Rearranging the inequality, we obtain the desired bound on t. [] 

We now turn our attention to bounded-degree graphs, using techniques similar to the 
preceding proof to obtain bounds parametrized by the maximum degree A. 

THEOREM 3. G r  >_ ((1 - r ( l  - r ) ) / ( (1  - r ) A  + 1))n. 

PROOE We extend the proof of  Theorem 2. In the i th step d i  q- 1 vertices and all edges 
incident on them are deleted. Of these edges, let xi have only one end in these d, + 1 
vertices; the remaining edges have both ends among the di + 1 vertices: of these, let Yi 
have one end in the independent set and one outside, and zi have both ends outside. Then 
we have 

(6) Xi Jr- 2(yi  q- Z,) ~ di(di  q- 1), 

(7) Yi < ki(di  q- 1 - -  ki) .  

Multiply (7) by - 1 (reversing the inequality) and add it to (6) to obtain 

Xi q- Yi q'- 2Zi >_ di(di q'- l )  - k i ( d i  + 1 - k i )  

(di + 1 ) ( d i + l ) _ k i ( d i + l _ k i  ) 
= 2 + 2 

--C 
Since the number of  edges deleted in the ith step is precisely xi + .)'i + zi, we have the 
following extension of (5): 

(8) 

We also count the total degree of vertices outside the maximum independent set, 
which entails counting edges incident on the independent set vertices once but those 
fully outside the independent set twice: 

t 

- ~ ) A  ~ y~z~ + IEI. (9) (n 
i= I 

Now add twice (8) and twice (9) to obtain 

t 

2(tl - a ) A  _> ~ d i (d  i + l) + ki(ki  -- 1) + (di q 1 - k i ) (di  - ki) .  
i=1 
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To simplify the right-hand side, we add ,3_.~'i= I (di + 1) -I- k, + (di + 1 - ki ) and compensate 
for this by adding 2n to the left--hand side (invoking (2)). Then 

( 1 O) 
l 

2(n --or + 2 n  _> Z ( d i  + 1) 2 + k  2 + (di + 1 - k i )  2. 
i=1 

Using (2), (4), and the Cauchy-Schwarz  inequality, we obtain 

2((1 -- r ) A  + l)n > - -  
[1 + r 2 + (1 - r)2]n 2 

The claim follows from this. [] 

3.2. Performance Guarantees.  The following bound on the performance of  Greedy  
on sparse graphs follows easily. We use the bound of Theorem 2 in the denominator of 
the performance ratio function, use the identity ot = rn  in the numerator, and observe 
that the ratio is maximized when r = 1. 

COROLLARY 4. PGr <-- (d + 2)/2.  

For bounded-degree graphs, the general expression obtained in Theorem 3 a l m o s t - -  
but not qu i te - -y ie lds  our main claim about the performance ratio of  Greedy.  We now 
proceed to analyze the performance of Greedy  using a liner scalpel. 

Let ta.k be the number of reductions performed by Greedy  where a vertex of degree d 
was chosen and exactly k vertices of  the independent set were removed. More precisely, 
fo rd  = 0, 1 . . . . .  A andk = 0, 1 . . . . .  max(d,  l ), we define ta.k = [{i : di = d and ki -= 
k}l. With this notation, we may rewrite the constraints (2), (4), and (10) as 

(11) Z ( d  + l)td.k = n, 
d.k 

(12) Z kta.~ =a,  
d,k 

(13) E [(d + 1) 2 + k  2 + (d + 1 - k)2]td.k < 2n(A -t- 1) - 2A~.  
d,k 

We wish to extract from these constraints the best possible lower bound for t = 
Y~d,k td.k. For this we use the method of  multipliers desci ibed by Chv~tal [6, p. 54]. 

THEOREM 5. P G r  < (A  + 2)/3.  

PROOF. We need to consider two cases based on the value of A. 
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CaseA -~ 0, 1 (mod 3) [i.e., ` 5 +  1 ~ -4-1 (mod 3)1. We construct thel inear  combina- 
tion of the constraints (11) and (13), with multipliers 2(,5 + 1) and - 1  respectively, and 
obtain 

(14) 

Let 

and 

E [ 2 ( d  + I ) (A  + 1) - ((d + 1) 2 + k  2 + (d + 1 - k)2)]td.k > 2`5a. 
d , k  

fl(d) = min[(d + 1) 2 + k 2 + (d + 1 - k) 2] 

C(d) = 2(d + 1)(A + 1) - - /3(d) .  

Set ta = Y~k td.k and conclude from (14) that 

(15) E C(d)td > 2A~.  
d 

We show below that, f o r d  = 0, 1 . . . . .  A, C(d) < 2A(`5 + 2 ) / 3 .  That with (15) then 
gives 

` 5 + 2  
- - t  > u, 

3 
as required. It remains only to establish the following claim. 

CLAIM. F o r d : 0 ,  1 . . . . .  A , C ( d )  < ~ A ( A + 2 ) .  

PROOF OF CLAIM. It can easily be verified that 

= / ~ - ( d + l ) 2  if d i s o d d ,  

I if d is even. fl(d) [ 3 ( d +  1)2 + ~_ 

Let f0: ,~tt -~ ~ and f l :  !~t --+ 9t be defined by 

fo(x) 2x(A + 1) -- a 2 1 = :~X , fl(X) --- fo(X) 2"  

Note: 

C ( d ) =  ] f o ( d + l )  if d i s o d d ,  
[ f L ( d + l )  if d i s e v e n .  

Now, f~(x), f ((x)  = 0 i f fx  = 2(A + 1)/3, and fd'(x), f( '(x) = --3. Thus, both f0 
and f l  are concave functions that achieve their unique maximum at ~ = 2(A + 1)/3. 
Since f0 and f l  are polynomials  of degree 2 in x, fo0? + e) = fo(x - e) and f l  (.'2 + e) = 
f l  (.~ - ~), for all e. Thus, to establish the claim, it is enough to verify that f0 at the nearest 
even integer to s and .1"1 at the nearest odd integer to .~ are at most 2 A ( A  + 2)/3.  

Let A -- 1 = 3m -t- r,  where i" = +1 (since A + 1 = • (mod 3)). The nearest even 
integer to .~ is 2m and the nearest odd integer to 2 is 2m + r. Plugging in, we find that 

f0(2m) = f l(2m + r )  = 6m 2 +4mr = ~A(A + 2 ) ,  

establishing the claim. 
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Case A ~ -- 1 (mod 3). This time, we construct a linear combination of the constraints 
(11), (12), and (13), with multipliers 2(A + 1), 2, and - 1  respectively, and obtain 

( 1 6 )  ZC(d ,k ) ta ,k  > 2 ( A  + 1 )~ ,  
d.k 

where 

C(d .k )  = 2 ( d + l ) ( A + l )  + 2k - - ( d  + 1) 2 - k 2 - ( d +  1 - k )  2 

= 2 ( d + l ) ( A - d ) + 2 k ( d + 2 - k ) .  

Let C(d) =: maxk C(d, k). To obtain the an upper bound on C(d) in terms of A, we 
consider the functions j~): .'~r ~ :~r and .fl" :~ ~ ~)r defined as follows: 

I = ( x +  I ) ( 2 A  3 ./])(ix) -- 2(x + I)(A - x) + �89 + 2) 2 - ~7 - sx -1- 2 ), 

f l ( x )  -- 2(x + I)(A x) + 4(x + 2) 2 x(2A - -  _ = - ~ x )  + 2 ( A  + 1). 

It can be verified that 

C(d) = I f~ i fd  is odd, 
[ fl (d) if d is even. 

We wish to bound fo(d) for odd values of d, and fj (d) for even values of d. Now, 
f~i(x), fl '(x) = 0 iff x = 2 A / 3  and f~'(x), f[ '(x) = - 3 ;  thus ./o and .fj attain their 
unique maximum at ,~ = 2A/3 .  Since jS) and ft are polynomials of degree 2 in x, it is 
enough to bound f0 at the nearest odd integer to .;r (i.e. (2A -- 1)/3), and fl  at the nearest 
even integer to .~ (i.e., 2(A § 1)/3). Plugging in, we find that 

= ~(A + I)(A + 2 ) ;  

fl  ( 2 ( A ;  1) )  2 ( A +  1) 
-- - ~ ( 2 A -  (A + 1)) + 2 ( A  + 1) 

= 3 ( A +  1 ) ( A -  1 q-3) 

= 3(A + 1)(A + 2 ) .  

Thus, C(d) < ~(A + I)(A + 2), and using (16) we obtain ((A + 2)/3)t  > a.  [] 

3.3. Limitations. The performance ratios proved above cannot be improved. 

THEOREM6. Pr >__ ( A + 2 ) / 3 - - O ( A 2 / n ) , f o r e v e o ; A  >__3. 

PROOF. We give a detailed construction for A = 1 (mod 3). Consider the following 
family of graphs H~, g >_ 2. We have a chain of repetitions of  a pair of  subgraphs: a 
clique on g vertices followed by an independent set on ~ vertices. The two subgraphs 
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Fig. 1. Initial portion of a hard graph for Greedy, A = 7. 

are completely connected, while the connections between the independent set and the 
clique of the following pair miss only a single perfect matching (i.e., each vertex in the 
independent set is adjacent to g - 1 vertices in the following clique). The chain ends 
with one additional clique. 

An instance of this graph with g = 3 is shown in Figure 1, with the vertices picked 
by Greedy  shown in black and the maximum independent set vertices in grey. 

The essential property of the graph is that the degree of the independent set vertices 
equals the degree of the vertices of  the first clique of the chain. We can therefore assume 
that Greedy  will pick one of the vertices from the first clique and remove the remaining 
vertices from the pair, reducing the graph to an identical chain with one fewer pairs. 

Thus, Greedy  selects one vertex from each pair, plus one from the final clique, for a 
total of (n - g)/2g + 1. The optimal solution contains all the independent set vertices 
for a total of  (n - g)/2.  This yields a ratio of  

2~ 2 
P G r ( H e )  > g - -  - -  

To relate that to the degree measures, we have that A = 3f -- 2, and 

Thus, 

(17) 

and 

(18) 

a~<2((~2)_  + ~ 2 + g ( ~ _ 1 ) ) / 2 s  5 e - 3 2  

P G r  > ~ - -  0 
- 3 

P G r  > - -  O 
- -  5 

even when r < ! 
- -  2 '  

For the case of A -- 0, 2 (rood 3) we need more complicated chains of groups of six 
subgraphs. For 0 (mod 3), the elements are of the form: 

Ke-1 - /~e - Ke_l - / ~  - Kg - /~e-l, 
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Fig. 2. Initial portion of a hard graph for Greedy, A = 6. 

where K, (Ks) denotes a clique (independent set) on s vertices, respectively. In all cases, 
a clique is completely connected to the following independent set, while connections 
from the independent set to the next clique miss a single perfect matching. In addition, 

- 1 edges from the first independent set (the second subgraph) go toward the first clique 
in the next group rather than to the one immediately following. The chain is finished 
with an additional 2g - I clique. 

An example for g = 3 is given in Figure 2. 
The graphs are designed so that the minimum degree will stay as 2g - 2 and equal the 

degree of the leftmost remaining clique. Hence, we may assume that Greedy  will pick 
exactly one vertex per clique, or three nodes per group, while the number of vertices in 
the maximum independent set is 3f - 1 per group. Hence, ignoring the end of  the chain, 
the approximation ratio is ~ - ~ = (A + 2)/3,  since the maximum degree is 3g - 3. 

The case of A = 2 (rood 3) is similar, with each element of  the form: 

K~, i - -  /~ ' s  --  Ke - K t  - K~ - k e ,  

and edges going from the second to the fifth subgraph. We leave the details to the curious 
reader. [] 

We now show that the bound on the performance ratio in terms of average degree 
(Corollary 4 ) i s  optimal in an asymptotic sense. 

THEOREM 7. p~;,. >__ (d + 2) /2  - O ( l / d ) .  

PROOF. For each value of d, we describe an infinite family of graphs for which the 
claimed ratio holds. The graphs consists of  chains of  pairs of  subgraphs as in the previous 
example with the cliques reduced to single vertices. Each pair consists of a vertex adjacent 
to an e-element independent set, each of  whose nodes are adjacent to the ~ - 1 following 
single vertex cliques. The chain then ends with a single g-clique that the vertices of the 
last s - 1 independent sets are adjacent to. An example is given in Figure 3. 

There a r e  s  edges for each pair consisting of g + 1 vertices. Thus, if we ignore the 
end of  the chain, the average degree is 2 g 2 / ( f  + 1) = 2~ - 2 + 2/(g -~ 1) and the ratio 
obtained is 

d + 2  2 
g_> 

2 d + 2 "  
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Fig. 3. Hard graph for Groocly in terms of average degree. 

The end of the chain increases tile average degree by roughly O (eZ/n), which disappears 
into the lower-order term. [] 

Variations of the above constructions show that the bounds of Theorems 2 and 3 are 
tight for a range of values of r. This involves varying the size of the cliques relative to 
the size of the independent sets, possibly by connecting each independent set to several 
subsequent cliques. We omit the details. 

4. Greedy with Preprocessing. Finding a maximum independent set of a graph G = 
(V, E) can be fornmlated as an integer programming problem which maximizes ~ , x i  
over the 0-1 solutions of the system of linear inequalities: 

and 

xi >~0 for each vi ~ V 

xi + x j  ~ 1 foreach (vi, vj) ~ E. 

If the integrality condition on the solutions is dropped, we obtain the fractional indepen- 
dent set problem, or the linear programming relaxation of the independent set problem. 
As shown by Edmonds and Pulleyblank (see [24]), this can be solved efficiently via a 
bipartite graph constructed as follows: Form two copies of the vertex Set V, and let ver- 
tices in different copies be adjacent iff they correspond to adjacent vertices in G. Given 

' v' �9 , y,',) of a maximum independent set of a characteristic vector (Yl, Y2 . . . . .  Y,,, Yl,. 2' " " 

this bipartite graph, an optimal LP solution of G is given by 

1 t 
xi = v_(Yi + Yi)" 

By the K6nig-Egervary theorem [20, p. 90], the independence number of a bipartite 
graph equals the number of vertices less the number of edges of a maximum matching. 
The bipartite matching problem can be computed in time O (x/~[ El) by an algorithm of 
Hopcroft and Karp [15], and hence the LP relaxation of the independent set problem. 

We can partition V into the sets ONE, HALF, and ZERO, corresponding to the values 
of the vertices in a given (arbitrary but fixed) LP solution. Nemhauser and Trotter [24] 
showed that the set ONE is contained in some optimal independent set O of G. Further- 
more, ZERO cannot be contained in O, as otherwise the value of those vertices could be 
unilaterally increased. 

Based on these results, Hochbaum [ 14] proposed a preprocessing method to improve 
the performance of approximate independent set algorithms. Compute an LP solution, 
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and apply the approximation algorithm only on the graph H induced by HAI.F. To the 
solution found by the algorithm, we can now add the vertices of  ONE. possibly resulting 
in a considerable improvement. The independence number of  H can be at most the sum 
of the values of the LP solution, or n/2. so this approach is particularly valuable when 
the independence number of G is greater than that. 

THEOREM 8. Greedy with preprocessing attains a ratio ~r (A + 2)/3, which is tight 
when A = 1 (mod 3). 

PROOF. The upper bound of  (A + 2)/3 already follows from Theorem 5, but here it 
l can also be obtained directly from Theorem 3 by arguing that r < ~. This is because 

both the approximate and the optimal solution consist of  ONE along with the respective 
1 solutions on the graph H, and in H the independence fraction is at most 52_. 

For A = 1 (rood 3), the tightness of this ratio is demonstrated by the graphs given 
in the proof of Theorem 6. They have the property that. for any independent set I, the 
number of neighbors of the vertices in I exceeds the size of I. It then follows from 
Theorem 4 of [24] that any LP solution has all values equal to HALF, i.e., preprocessing 
is of no help, so H = G. [] 

We can improve on this bound slightly when A ------ 0, 2 (mod 3) to (A + 2)/3 
1/(3A + 2). For instance, we have a tight ratio of  3/2 when A = 3. Also, for A = 5 we 
get a ratio of 16/7 ~ 2.286, down from the 2.35 promised by Theorem 5, while there is 
a graph that forces a ratio of 2.27. We omit the details. 

4.1. Average Degree. Greater care is needed for a result in terms of average degree. 
Once preprocessing has been applied, the average degree may have changed for the 
worse and we cannot immediately apply the bounds proved on Greedy. Nevertheless, a 
closer look shows that the bounds will complement each other, as hoped for. Hochbaum 
[14] showed that the Turfin bound on Greedy can be complemented with the r < �89 

promise to yield a performance ratio bound of (el -~ 1)/2. We follow her lead to obtain 
a similar result as expected from Theorem 2. 

TttEOREM 9. PGr+Pre < (2d + 3)/5. 

PROOF. Let d', r ' ,  n' denote the average degree, independence fraction, and number of 
vertices of H, respectively. Recall that H is the subgraph induced by HALl-, and note 

1 that r '  < s. 
F o l l o w i n g  [14], we use two properties. The first is that lONE] >]ZERO], as otherwise 

the LP solution value is smaller than if HALF = V. The second property is that the 
number of edges in G is at least (d'/2)n' + IONEI -~- ]ZERO], since we may assume that 
G is a connected graph and that n' is positive. Thus, the average degree of G is bounded 
by 

d 'n '  + 2[ONEI 

- n '+21ONEI 
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The size of the greedy solution will be at least ((1 + r ' e ) / (d  ' + I + r ' ) )n '  + IONEI, 
invoking Theorem 2, and the size of the optimal solution r ' n '  + IONEI. Our goal is now 
to argue that 

r ' n '  + IONEI 
((1 + r '2 ) / (d  ' + I + r ' ) )n '  + IONEI -- 

(}d '  + ~)n' + 21ONEI 

n " +  21ONEI 

from which the theorem follows. Cross-multiplying, we find that this entails establishing 

r '  2d'  + 3 
(19) 1 q- r '2 (d' + 1 + r ' )  _< - - 5  

and, if lONE I > 0, 

(20) 
1 + r '2 2d'  + 3 

2r '  + 1 < 2 + 
- d ' +  1 + r '  5 

Inequality (19) holds because the left-hand side is monotone increasing with r '  for r '  < 1. 
To establish (20), we may note that the function f (x) = 2x + 1 - 2(1 + x2)/(d" + 1 + x) 

l I in (20 )  to is monotone increasing for 0 < x < 3" Thus it suffices to replace r '  with 
obtain 

5 2d '  + 3 
2 <  - - + - -  

- 2d '  + 3 5 

which is true, since a/b + b/a is always at least 2 when a, b are positive. [] 

This again is tight for A = 1 (mod 3) by Theorem 6 and (I 8). 

5. Parallel Algori thm. The minimum-degree greedy algorithm stipulates that in each 
step a vertex of  globally minimum degree be selected, added to the solution, and removed 
from the graph along with its neighbors. As such, it looks impossible to parallelize, and 
offers little freedom tot heuristic improvements. Fortunately, this is a case where the 
analysis guides us toward the design of better and/or more general algorithms. 

As observed in Section 2, it suffices to select a critical vertex, i.e., one satisfying (1). 
This has some interesting implications. For one, it opens up the possibility of the design 
of heuristics using secondary selection rules or ordering heuristics while retaining the 
performance ratios of  Greedy. 

Another application is a straightforward derivation of a parallel as well as a distributed 
approximation algorithm attaining the same performance ratios. Vertices can be selected 
in parallel as long as the selection of one does not affect the above criteria for the other. 
In particular, vertices with disjoint and nonadjacent neighborhoods (i.e., of distance four 
or greater) can be selected and processed concurrently. 

This suggests a natural approach to a parallel algorithm. Let G 3 denote the graph 
obtained by taking the adjacency matrix of G to the third power-- two vertices are 
adjacent in G 3 if they are within distance three in G. The adjacency matrices used here 
are assumed to contain ones on the diagonal. For a vertex subset S, let N(S) denote the 
set of  vertices adjacent to some node in S. 
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Para l l e lGreedy(G)  
I *-- I~ 
while ( V ( G ) ~ ~ ) 

W ~ {v ~ V ( G )  : v is critical} 
H *--- subgraph of G 3 induced by W 
MIS ~-- maximal independent set of H 
I ~ ! U MIS  
G ,-- G - (MIS L) N (MIS ) )  

od 
return I 

end 

We assume the PRAM model, with a finer distinction depending on the MIS algorithm 
used. We remark that this algorithm can also be implemented in the distributed model 
of computation [211. 

The following lemma due to Alon and Szegedy (private communication) shows that 
a significant fraction of the vertices must simultaneously satisfy property (1). 

LEMMA 10. At least (4 / (A 2 + 4))n vertices are critical. 

PROOE Let D,. denote (~.,,~N,.~ d ( w ) )  - d(v)  2. We shall show that 

4 
Pr[,, D~ >_0]>_ A 2 + 4  

which implies the lemma. As observed by Shearer [26], Ev[D,,] = 0. The value of Do is 
bounded above by d ( v ) ( A  - d (v ) )  <_ A2/4, and since it is integral, it must differ from 
zero by at least one when negative. Thus, 

A 2 
- I ( I - P r [ D , , > _ 0 ] ) + ~ - - P r [ D , , > _ 0 ]  >_ 0. 

The claim now follows. [] 

THEOREM 1 1. ParallelGreedy finds an independent set o f  size and performance sat- 
isfving Theorems 3 and 5 in time O(log* n m i n ( p o l y ( A )  logn,  (log A)A!))  using n 

processors in the E R E W  model. 

PROOF. Each vertex added to the solution will satisfy property ( 1 ) regardless of  the order 
of removal of the simultaneously chosen vertices. Hence, the results of  the theorems apply 
to this algorithm. 

We now estimate the time complexity, starting with the number of iterations. From 
Lemma 10, the size of W is at least n / A  2. Every vertex in W is reachable (in G) from 
MIS LJ N ( M I S )  by a (not necessarily simple) path of  length 2. Since the number of  
vertices reachable from a fixed vertex in two steps is at most A 2, we have 

Yl 
IMISU N(MIS)I  A2 >__ IW[ ~ ~52 
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Thus, the number of deleted vertices, that is IMIS U N(MIS)I, is at least n/A 4. Hence, 
the number of  iterations is at most A 4 log n. 

Also notice that for any vertex v in the graph, some vertex u of  distance at most A - 1 
is critical. Either u is selected or some vertex within distance 2 of u, and thus within 
distance at most A + 1 of v. There are at most A ~+1 such nodes, and, hence, number of  
rounds. A more careful counting shows that the number of rounds is at most A !. 

The only nontrivial step in each round is the computation of  a maximal independent 
set of the graph H. An algorithm of  Goldberg et al. 19] finds a maximal independent set 
in time O(log A ( H ) ( A 2 ( H )  + log* n)) using a linear number of processors. 

The combined time complexity is therefore bounded by O ( ( A  6 + log* n)( log A) min 
(A 4 log n, A !)). Note that this is O (log* n) on constant degree graphs. [] 

While  the above algorithm yields a solution satisfying Theorem 2, its time complexity 
is not well bounded in terms of the average degree d. Fortunately, this can be attained 
by first deleting all vertices of  high degree. 

LEMMA 12. Theorem 2 and Corollas. 4 hold even if we first eliminate (simultaneously) 
all vertices of degree at least 3d + 4. 

PROOF. Consider the subgraph induced by vertices of  degree less than 3d + 4. Let 
( 1 - y )n ,  d ' ,  r '  denote the number of vertices, average degree, and independence fraction, 
respectively. Thus, ), represents the fraction of the vertices that were of  high degree. The 
proposition is that 

i + r  '2 1 + r  2 
(21) LHS- -  ( l - y ) n  > - n----RHS. 

d ' + l + r '  d + l + r  

At least ((3d + 3 ) / 2 ) y n  edges are deleted, so 

2 1 E l - ( 6 1 E l / n + 4 ) y n  d ( l  - 3 y ) - 4 V  
d '  < < 

1 - y  n - - y n  

The independence number of the remaining graph is at least the original value less the 
number of  deleted vertices, and thus r '  > r - y .  We consider two cases, depending on 
the value of r - y.  

Case r - y > 1 / (d  + I). LHS is minimized when r '  is at its minimum, which by 
Tur~in's theorem is l / ( d  + 1). Thus, we plug in r - y for r ' ,  for 

(I + (r  - 2/)2)(1 - y)  
(22) n. 

d ( l -  3 y ) - 4 y  + (1 + r ) ( 1  - y )  

The numerator is at least (1 --t- r2)(1 - 22/)(1 - ?'), which is at least (1 + r2) ( l  - 3y).  
Also, (1 + r ) ( l  - y )  - 4y  is at most (1 + r)(1 - 3y) ,  since r < 1. Hence, (22) is at 
least RHS. 
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Case r - x _< l / ( d + l ) .  L H S i s a t l e a s t  

1 (1 - F )  2 1 + g + ( 4 7 ' 2 ) / ( 1  - 3 F )  
(23) - - ( 1  - F )n  > n = n. 

d '  + 1 (1 - 3 y ) ( d  + 1) d + 1 

On the other hand, R H S  is monotone  increasing with r ,  so when r _< l / ( d  + l ) + F, its 
value is at most 

1 + ( l / ( d +  l ) + y )  2 l + y + F  2 
(24) n < 

d - } -  l + ] / ( d - l -  1) + F -- d + l  

Since (23) is at least (24), (21) holds. [] 

By deleting first all high-degree vertices (in parallel) before applying ParallelGreedy, 
we obtain an efficient approximation in terms of d. 

COROLLARY 13. There is an E R E W  para l le l  a lgor i thm tha t , f inds  an i ndependen t  set  

satisf~.'ing Theorem 2 a n d  Corol lary  4 in t ime 0 (log* n min ( p o l y  (d) log n, d !) ) us ing n 

processors .  

The preprocessing method of the last section requires the solution of bipartite match- 
ing, for which no determinist ic  parallel algorithms are known. However, randomized 
parallel algorithms are known [17], and thus the same applies to Theorem 9. An efficient 
determinist ic  approach that nearly matches the bound of Theorem 9 is to use either the 
complement  of a maximal  matching or the output of  the above algorithm, whichever  
independent  set is larger. As we argue in [I 2], this approach yields a performance ratio 
of  (2d + 4 .5) /5 .  

A c k n o w l e d g m e n t s .  We thank Noga Alon and Mario Szegedy for kindly proving 
Lemma I 0, Vagek Chv~ital for comments  and helpful advice, Dorit Hochbaum for com- 
ments and corrections, and the anonymous  referees for thorough important  corrections. 

R e f e r e n c e s  

[ 1 ] N. Ahm. U. Feige, A. Wigderson, and D. Zuckerman. I)erandomized graph products. Computational 
Comph,xity. 5( 1 ):60-75, 1995. 

[2] S. Arora. C. Lund. R. Motwani. M. Sudan, and M. Szegedy. Proof verification and hardness of approx- 
imation problems. Proc. 33rd Ann. IEEE Syrup. on boundations of Computer Science, pages 14-23. 
Oct. 1992. 

[31 E Berman and T. Fujito. On the approximation properties of the independent set problem in degree 
3 graphs. Proc. Pburth Workshop on Algorithms and Data Structures. pages 449-46(I. LNCS #955. 
Springer-Verlag. Berlin, 1995. 

[41 P. Berman and M. Fi.irer. Approximating maximum independent set in bounded degree graphs. Proc. 
Fifth Ann. ACM SlAM 5~vmp. on Discrete Algorithms, pages 365-371. Jan. 1994. 

[5] R.L. Brooks. On coloring the nodes of a network. Matt,. Proc. Cambridge Philos. Soc., 37:194-197. 
t941. 

161 V. Chvfital. Linear Programming. Freeman. New York, 1983. 
17] V. Chv;ital and C. Mcl)iarmid. Small transversals in hypergraphs. Combinatorica, 12(1): 19-26, 1992. 



Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs 163 

[8] E Erd6s. On the graph theorem of Turfin (in Hungarian). Mat. Lapok, 21:249-251, 1970. 
[9] A.V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM 

J. Discrete Math., 1(4):434-446, Nov. 1988. 
[10] J .R. Griggs. Lower bounds on the independence number in terms of the degrees. J. Combin. Theor3., 

Ser. B, 34:22-39, 1983. 
[11] M.M. Halld6L~son and J. Radhakrishnan. Improved approximations of independent sets in bounded- 

degree graphs. Proc. ~burth Scavul. Workshop on Algorithm Theory, pages 195-206. LNCS #824, 
Springer-Verlag, Berlin, 1994. 

[12] M.M. Halld6rsson and J. Radhakrishnan. Improved approximations of independent sets in bounded- 
degree via subgraph removal. Nordic J. Comput., 144):475-492, 1994. 

[13] M.M. Halld6rsson and K. Yoshihara. Greedy approximations of independent sets in low degree graphs. 
Proc. Sixth hltertmt. Synzp. on Algorithms and Computation, pages 152-161. LNCS #1004, Springer- 
Verlag, Berlin, Dec. 1995. 

[14] D.S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing problems. Discrete 
Appl. Math., 6:243-254, 1983. 

[I 5] J. Hopcroft and R. Karp. An n 5/2 algorithm for maximal matchings in bipartite graphs. SIAMJ. Comput., 
4:225-231, 1973. 

[16] D.S.  Johnson. Worst case behavior of graph coloring algorithms. Proc. 5th Southeastern Conf. on 
Combinatorics, Graph Theory, attd Computing, pages 513-527. Congressus Numerantium, X, Utilitas 
Math., Winnipeg, Manitoba, 1974. 

[17] R. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory machines. In J. van 
Leeuwen, editor, Handbook of  Theoretical Computer Science, volume A, Chapter 17, pages 869-941. 
Elsevier. Amsterdam, 199t1. 

[181 S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of 
approximability. Proc. 35th Ann. IEEE Syrup. on Foundations of Computer Science, pages 819-830, 
1994. 

[19] E. Kubicka, G. Kubicki, and D. Kountanis. Approximation algorithms for the chromatic sum. Proc. 1st 
Great Lakes Computer Science Conf LNCS #507. Springer-Verlag, Berlin, Oct. 1989. 

[201 E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New 
York. 1976. 

[21] N. Linial. I~cality in distributive algorithms. SIAMJ. Comput., 21:193-201, 1992. 
[22] L. Lov~.sz. Three short prc~ffs in graph theory. J. Combin. Theory Ser. B, 19:269-271, 1975. 
[23] C. McDiarmid. Colouring random graphs. Ann. Oper. Res., 1:183-200, 1984. 
[24] G.L. Nemhauser and L. Trotter. Vertex packings: Structural properties and algorithms. Math. Program- 

ming, 8:232-248, 1975. 
[25] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Corn- 

put. ,~vstem Sci., 43:425~1.40, 1991. 
[26] J .B. Shearer. A note on the independence number of triangle-free graphs. Discrete Math., 46:83-87, 

1983. 
[27] H.U.  Simon. On approximate solutions for combinatorial optimization problems. SlAM J. Discrete 

Math., 3(2):294-310, May 1990. 
[281 P. Tur,5.n. On an extremal problem in graph theory (in Hungarian). Mat. ki'z. Lapok, 48:436-452. 1941. 
[291 Twentieth Century Fox. Wall Street. Motion picture, 1987. 
[301 V.K. Wei. A lower bound on the stability number of a simple graph. Technical Memorandum No. 81- 

11217-9. Bell Laboratories, 1981. 


