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Abstract

The Multiple Knapsack problem (MKP) is a natural and well known generalization of the single

knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such

that each item i has a profit p�i� and a size s�i�, and each bin j has a capacity c�j�. The goal is to find a

subset of items of maximum profit such that they have a feasible packing in the bins. MKP is a special

case of the Generalized Assignment problem (GAP) where the profit and the size of an item can vary

based on the specific bin that it is assigned to. GAP is APX-hard and a �-approximation for it is implicit

in the work of Shmoys and Tardos [26], and thus far, this was also the best known approximation for

MKP. The main result of this paper is a polynomial time approximation scheme for MKP.

Apart from its inherent theoretical interest as a common generalization of the well-studied knapsack

and bin packing problems, it appears to be the strongest special case of GAP that is not APX-hard. We

substantiate this by showing that slight generalizations of MKP are APX-hard. Thus our results help

demarcate the boundary at which instances of GAP become APX-hard. An interesting aspect of our

approach is a ptas-preserving reduction from an arbitrary instance of MKP to an instance with O�logn�

distinct sizes and profits.

1 Introduction

We study the following natural generalization of the classical knapsack problem:

Multiple Knapsack Problem (MKP)

INSTANCE: A pair �B�S� where B is a set of m bins (knapsacks) and S is a set of n items. Each bin j � B

has a capacity c�j�, and each item i has a size s�i� and a profit p�i�.

OBJECTIVE: Find a subset U � S of maximum profit such that U has a feasible packing in B.

The decision version of MKP is a generalization of the decision versions of both the knapsack and bin

packing problems and is strongly NP-Complete. Moreover, it is an important special case of the generalized

assignment problem where both the size and the profit of an item are a function of the bin:
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Generalized Assignment Problem (GAP)1

INSTANCE: A pair �B�S� where B is a set of m bins (knapsacks) and S is a set of n items. Each bin j � B

has a capacity c�j�, and for each item i and bin j, we are given a size s�i� j� and a profit p�i� j�.

OBJECTIVE: Find a subset U � S that has a feasible packing in B and maximizes the profit of the packing.

GAP and its restrictions capture several fundamental optimization problems and have many practical appli-

cations in computer science, operations research, and related disciplines. The Multiple Knapsack problem

with its uniform sizes and profits is an important special case; the book on knapsack variants by Martello

and Toth [24] has a chapter devoted to MKP. Also referred to as the loading problem in operations re-

search, it models the problem of loading items into containers of different capacities such that container

capacities are not violated. In many practical settings items could be more complex geometric objects,

however the one dimensional case (MKP) is useful in its own right and has been investigated extensively

[12, 9, 10, 21, 22, 23, 4].

Knapsack, bin packing, and related problems have attracted much theoretical attention for their simplic-

ity and elegance, and their study has been instrumental in the development of the theory of approximation

algorithms. Though knapsack and bin packing have an FPTAS (asymptotic for bin packing), GAP, a strong

generalization of both, is APX-hard and only a �-approximation exists. In fact some very special cases of

GAP can be shown to be APX-hard. In particular we can show that for arbitrarily small � � � (which can

even be a function of n) the problem remains APX-hard on the following very restricted set of instances:

bin capacities are identical and for each item i and machine j, p�i� j� � �, and s�i� j� � � or s�i� j� � ���.

The complementary case where item sizes do not vary across bins but profits do, can also be shown to be

APX-hard for a similar restricted setting. In light of this, it is particularly interesting to understand the com-

plexity of MKP where profits and sizes of an item are independent of the bin but the item sizes and profits as

well as bin capacities may take arbitrary values. Establishing a PTAS shows a very fine separation between

cases that are APX-hard and those that have a PTAS. Until now, the best known approximation ratio for

MKP was a factor of � derived from the approximation for GAP.

Results: In this paper we resolve the approximability of MKP by obtaining a PTAS for it. It can be easily

shown via a reduction from the Partition problem that MKP does not admit an FPTAS even if m � � (see

Proposition 1). A special case of MKP is when all bin capacities are equal. It is relatively straightforward

to obtain a PTAS for this case using ideas from approximation schemes for knapsack and bin packing

[11, 3, 15]. However the problem with different bin capacities is more challenging. Our paper contains

two new technical ideas. Our first idea concerns the set of items to be packed in a knapsack instance. We

show how to guess, in polynomial time, almost all the items that are packed by an optimal solution. More

precisely, we can identify a polynomial number of subsets such that one of the subsets has a feasible packing

and profit at least ��� ��OPT. This is in contrast to earlier schemes for variants of knapsack [11, 1, 5] where

1GAP has also been defined in the literature as a (closely related) minimization problem (see [26]). In this paper, following [24],

we refer to the maximization version of the problem as GAP and refer to the minimization version as Min GAP.
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only the ��� most profitable items are guessed. An easy corollary of our strategy is a PTAS for the identical

bin capacity case, the details of which we point out later. Even with the knowledge of the right subsets, the

problem remains non-trivial since we need to verify for each subset if it has a feasible packing. Checking

for feasibility is of course at least as hard as bin packing. To get around this difficulty we make crucial use

of additional properties satisfied by the subsets that we guess. In particular we show that each subset can

be transformed such that the number of distinct size values of the items in the subset is O���� log n�. An

immediate consequence of this is a dynamic programming based quasi-polynomial time algorithm to pack

all of the items into bins. Our second set of ideas shows that we can exploit the restriction on the number of

distinct sizes to pack, in polynomial time, a subset of the item set that has at least a �� � �� fraction of the

profit. Approximation schemes for number problems are usually based on rounding instances to have a fixed

number of distinct values. In contrast, MKP appears to require a logarithmic number of values. We believe

that our techniques to handle logarithmic number of distinct values will find other applications. Figure 1

summarizes the approximability of various restrictions of GAP.

only 2 distinct profits

Maximization GAP

Multiple non-identical capacity bins

Multiple identical capacity bins

Both size and profit
vary with bins.

Item size varies with bins

However, it is polynomial time solvable

2-approximable

if all sizes are identical.

PTAS
MKP

APX-hard even when each item takes

Knapsack
FPTAS

PTAS

Item profit varies with bins

No FPTAS even with 2 bins

Uniform MKP

sizes and all profits are identical.
each item takes only 2 distinct

APX-hard even when

Figure 1: Complexity of Various Restrictions of GAP

3



Related work: MKP is closely related to knapsack, bin packing, and GAP. A very efficient FPTAS exists

for the knapsack problem; Lawler [17], based on ideas from [11], achieves a running time of O�n log ����

����� for a �� � �� approximation. An asymptotic FPTAS is known for bin packing [3, 15]. Kellerer [16]

has independently developed a PTAS for the special case of the MKP where all bins have identical capacity.

As mentioned earlier, this case is much simpler than the general case and falls out as a consequence of our

first idea. We defined the generalized assignment problem as a maximization problem. This is natural when

we relate it to the knapsack problem (see [24]). There is also a minimization version, which we refer to as

Min GAP (also known as the cost assignment problem) where the objective is to assign all the items while

minimizing the sum of the costs of assigning items to bins. In this version, item i when assigned to bin

j incurs a cost w�i� j� instead of obtaining a profit p�i� j�. Even without costs, deciding the feasibility of

assigning all items without violating the capacity constraints is an NP-Complete problem, therefore capacity

constraints need to be relaxed. An ��� �� bi-criteria approximation algorithm for Min GAP is one that gives a

solution with cost at most �C and with bin capacities violated by a factor of at most � where C is the cost of

an optimal solution that does not violate any capacity constraints. Work of Lin and Vitter [20] yields a �� �

�� ������ bi-criteria approximation for Min GAP. Shmoys and Tardos [26], building on the work of Lenstra,

Shmoys, and Tardos [19], give an improved ��� �� bi-criteria approximation. Implicit in this approximation

is also a �-approximation for the profit maximization version which we sketch later. Lenstra et al. [19]

also show that it is NP-hard to obtain a bi-criteria approximation of the form ��� �� for any � � ���. The

hardness relies on a NP-Completeness reduction from the decision version of the 3-Dimensional Matching

problem. Our APX-hardness for the maximization version, mentioned earlier, is based on a similar reduction

but instead relies on APX-hardness of the optimization version of 3-Dimensional Matching problem [14].

MKP is also related to two variants of variable size bin packing. In the first variant we are given a set

of items and set of bin capacities C. The objective is to find a feasible packing of items using bins with

capacities restricted to be from C so as to minimize the sum of the capacities of the bins used. A PTAS for

this problem was provided by Murgolo [25]. The second variant is based on a connection to multi-processor

scheduling on uniformly related machines [18]. The objective is to assign a set of jobs with given processing

times to machines with different speeds so as to minimize the makespan of the schedule. Hochbaum and

Shmoys [8] gave a PTAS for this problem using a dual based approach where they convert the scheduling

problem into the following bin packing problem. Given items of different sizes and bins of different ca-

pacities, find a packing of all the items into the bins such that maximum relative violation of the capacity

of any bin is minimized. Bi-criteria approximations, where both capacity and profit can be approximated

simultaneously, have been studied for several problems (Min GAP being an example mentioned above) and

it is usually the case that relaxing both makes the task of approximation somewhat easier. In particular,

relaxing the capacity constraints allows rounding of item sizes into a small number of distinct size values.

In MKP we are neither allowed to exceed the capacity constraints nor the number of bins. This makes the

problem harder and our result interesting.
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Organization: Section 2 describes our PTAS for MKP. In Section 3, we show that GAP is APX-hard on

very restricted classes of instances. We also indicate here a �-approximation for GAP. In Section 4, we

discuss a natural greedy algorithm for MKP and show that it gives a �� � ��-approximation even when item

sizes vary with bins.

2 A PTAS for the Multiple Knapsack Problem

We first show that MKP does not admit an FPTAS even for m � �.

Proposition 1 If MKP with two identical bins has an FPTAS then the Partition problem can be solved in

polynomial time. Hence there is no FPTAS for MKP even with m � � unless P � NP .

Proof. An instance to the Partition problem consists of �n numbers a�� a�� � � � � a�n and the goal is to decide

if the numbers can be partitioned into two sets S� and S� such that the sum of numbers in each set add up

to exactly A � �
�

P�n
i�� ai. We can reduce the Partition problem to MKP with two bins as follows. We set

the capacity of the bins to be A. We have �n items, one for each number in the Partition problem: the size

of item i is ai and the profit of item i is �. If the Partition problem has a solution, the profit of an optimum

solution to the corresponding MKP problem is �n, otherwise it is at most �n� �. Thus, an FPTAS for MKP

can be used to distinguish between these two situations in polynomial time. �

We start with a remark on guessing. When we guess a quantity in polynomial time we mean that we can

identify, in polynomial time, a polynomial size set of values among which the correct value of the desired

quantity resides. Coupled with the guessing procedure is a polynomial time checking procedure which can

verify whether a feasible solution with a given value exists. We can run the checking procedure with each

of the values in the guessed set and will be guaranteed to obtain a solution with the correct value. We will

be using this standard idea several times in this section and implicitly assume that the above procedure is

invoked to complete the algorithm.

We denote by OPT the value of an optimal solution to the given instance. Given a set Y of items, we use

p�Y � to denote
P

y�Y p�y�. The set of integers �� �� � � � � k is denoted by �k	. We will assume throughout

this section that � � �; when � � � we can use the � approximation for GAP from Section 3. In the rest of

the paper we assume, for simplicity of notation, that ��� and lnn are integers. Further we also assume that

� � ��n for otherwise we can use an exponential time algorithm to solve the problem exactly. In several

places in the paper, to simplify expressions, we use the inequality ln�� � �� � �� ���� � ���.

Our problem is related to both the knapsack problem and the bin packing problem and some ideas used

in approximation schemes for those problems will be useful to us. Our approximation scheme conceptually

has the following two steps.

1. GUESSING ITEMS: Identify a set of items U � S such that p�U� � �� � ��OPT and U has a feasible

packing in B.
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2. PACKING ITEMS: Given a set U of items that has a feasible packing in B, find a feasible packing for

a set U � � U such that p�U �� � ��� ��p�U�.

The overall scheme is more involved since there is interaction between the two steps. The guessed

items have some additional properties that are exploited in the packing step. We observe that both of the

above steps require new ideas. For the regular single knapsack problem the second step is trivial once we

accomplish the first step. This is however not the case for MKP. Before we proceed with the details we show

how our guessing step immediately gives a PTAS for the identical bin capacity case.

2.1 MKP with Identical Bin Capacities

Suppose we can guess an item set as in our first step above. We show that the packing step is very simple

if the bin capacities are identical. There are two cases to consider depending on whether m, the number

of bins, is less than equal to d���e or not. If m � d���e,the number of bins can be treated as a constant

and a PTAS for this case exists even for instances of GAP (implicit in earlier work [5]). Now suppose

m � d���e. Bin packing has an asymptotic PTAS. In particular there is an algorithm [3] that packs the

items into �� � ��OPT � � bins in polynomial time for any fixed � � �. We can thus use this algorithm to

pack all the guessed items using at most �� � ��m � � bins. We find a feasible solution by simply picking

the m largest profit bins and discarding the rest along with their items. Here we use the fact that m� � �

and that the bins are identical. It is easily seen that we get a �� � O���� approximation. We note that a

different PTAS, that does not rely on our guessing step, can be obtained for this case by directly adapting the

ideas used in approximation schemes for bin packing. The trick of using extra bins does not have a simple

analogue when bin capacities are different and we need more sophisticated ideas for the general case.

2.2 Guessing Items

Consider the case when items have the same profit for all items; without loss of generality assume it is �.

Thus the objective is to pack as many items as possible. For this case, it is easily seen that OPT is an integer

in �n	. Further, given a guess O for OPT, we can always pick the smallest (in size) O items to pack. Thus

knowing O allowed us to fix the item set as well. Therefore there are only a polynomial number of guesses

for the set of items to pack. In the following we build on this useful insight.

Let pmax denote the largest value among item profits. For the general case the first step involves mas-

saging the given instance into a more structured one that has few distinct profits. This is accomplished as

follows.

1. Guess a value O such that maxfpmax� �� � ��OPTg � O � OPT and discard all items y where

p�y� � �O�n.

2. Divide all profits by �O�n such that after scaling each profit is at most n��.

3. Round down the profits of items to the nearest power of �� � ��.
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It is easily seen that only an O��� fraction of the optimal profit is lost by our transformation. Since we do

not know OPT, we need to establish an upper bound on the number of values of O that we will try out. We

make use of the following easy bounds on OPT.

pmax � OPT � n � pmax�

Therefore, one of the values in fpmax � �� � ��i j � � i � ���� lnn�g is guaranteed to satisfy the desired

properties for O. Summarizing:

Lemma 2.1 Given an instance I � �B�S� with n items and a value O such that �� � ��OPT�I� � O �

OPT�I� we can obtain in polynomial time another instance I� � �B�S �� such that

� S � � S .

� For every y � S�, p�y� � �� � ��i for some i � �
��� lnn	.

� ��� ��OPT�I� � n
�OOPT�I �� � OPT�I�.

For the bound in the second item above we upperbound n�� by n�. The above lemma allows us to

work with instances with O���� lnn� distinct profits. We now show how we can use this information to

guess the items to pack. Let h � 
��� lnn � � be the number of distinct profits in our new instance. We

partition S into h sets S�� � � � � Sh with items in each set having the same profit. Let U be the items chosen

in some optimal solution and let Ui � Si � U . Recall that we have an estimate O of the optimal value.

If p�Ui� � �O�h for some i, we ignore the set Si; no significant profit is lost. Hence we can assume that

�O�h � p�Ui� � O and approximately guess the value p�Ui� for � � i � h. More precisely, for each i we

guess a value ki � �h���	 such that ki���O�h� � p�Ui� � �ki � �����O�h�.

A naive way of guessing the values k�� � � � � kh requires n��lnn��
�� time. We first show how the numbers

ki enable us to identify the items to pack and then show how the values k�� � � � � kh can in fact be guessed in

polynomial time. Let ai denote the profit of an item in Si. Consider an index i such that ai � �O�h. Given

the value ki we order the items in Si in increasing size values and pick the largest number of items from this

ordered set whose cumulative profit does not exceed ki���O�h�. If ai � �O�h we pick the smallest number

of items, again in order of increasing size, whose cumulative profit exceeds ki���O�h�. The asymmetry is

for technical reasons. The choice of items is thus completely determined by the choice of the ki. For a tuple

of values k�� � � � � kh, let U�k�� � � � � kh� denote the set of items picked as described above.

Lemma 2.2 There exists a valid tuple �k�� � � � � kh� with each ki � �h���	 such that U�k�� � � � � kh� has a

feasible packing in B and p�U�k�� � � � � kh�� � ��� ��O.

Proof. Let U be the items in some optimal solution and let Ui � Si � U . Define ki to be bp�Ui�h���
�O�c.

The tuple so obtained satisfies the required properties. �

As remarked earlier, a naive enumeration of all integer h-tuples takes quasi-polynomial time. The crucial

observation is that the ki’s are not independent. They must satisfy the additional constraint that
P

i ki � h���
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since the total profit from all the sets S�� � � � � Sh cannot exceed OPT. This constraint limits the number of

tuples of relevance. We make use of the following claims.

Claim 1 Let f be the number of g-tuples of non-negative integers such that the sum of tuple coordinates is

equal to d. Then f �
�d�g��

g��

�
. If d� g � �g then f � O�e�g�.

Proof. The first part of the claim is elementary counting. If d� g � �g then f �
� �g
g��

�
� ��g�g��

�g���� . Using

Stirling’s formula we can approximate �g � ��� by
p
�	�g � ����g � ���e�g��. Thus f � O��e��g��� �

O�e�g�. �

Claim 2 Let h � �
��� lnn	. Then the number of h-tuples �k�� � � � � kh� such that ki � �h���	 and
P

i ki �

dh���e is O�nO����
���.

Proof. The number of tuples satisfying the claim is easily seen to be
�h����h

h

�
. We now apply the bound

from Claim 1; we have � � �� � ����� and g � 
��� lnn � � and hence we get an upper bound of

e���
�� lnn�������. The claim follows. �

Using the restricted number of distinct profit values we can also reduce the number of distinct sizes in the

given instance to O�lnn�. This property will be crucial in packing the items. The basic idea is shifting, an

idea that is used in approximation schemes for bin packing [3]. Let A be a set of g items with identical profit

but perhaps differing sizes. We order items in A in non-decreasing sizes and divide them into t � ��� ����

groups A�� � � � � At with A�� � � � � At�� containing bg�tc items each and At containing �g mod t� items. We

discard the items in At�� and for each i � t� � we increase the size of every item in Ai to the size of the

smallest item in Ai��. Since A is ordered by size, no item in Ai is larger than the smallest item in Ai��

for each � � i � t. It is easy to see that if A has a feasible packing then the modified instance also has

a feasible packing. We discard at most an � fraction of the profit and the modified sizes have at most ���

distinct values. Applying this to each profit class we obtain an instance with O���� lnn� distinct size values.

Lemma 2.3 Given an instance I � �B�S� with n items we can obtain in polynomial time v � nO����
��

instances I�� � � � � Iv such that

� For � � j � v, Ij � �B�Sj�.

� For � � j � v, items in Sj have O���� lnn� distinct profit values.

� For � � j � v, items in Sj have O���� lnn� distinct size values.

� There is an index 
, � � 
 � v, such that S� has a feasible packing in B and p�S�� � �� �

O����OPT�I�.
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Proof. As indicated earlier, we can guess a value O such that �� � ��OPT � O � OPT from O���� lnn�

values. For each guess for O we round profits of items to geometric powers (see Lemma 2.1) and guess the

partition of O among the profit classes. The number of guesses for the partition is nO����
��. Therefore the

distinct number of instances is nO����
��. Each instance is modified to reduce the number of distinct sizes.

Each step potentially loses a ��� �� factor so overall we lose a ���O���� factor in the profit. �

We will assume for the next section that we have guessed the correct set of items and that they are

partitioned into O���� lnn� sets with each set containing items of the same size. We denote by Ui the items

of the ith size value and by ni the quantity jUij.

2.3 Packing Items

From Lemma 2.3 we obtain a restricted set of instances in terms of item profits and sizes. We also need

some structure in the bins and we start by describing the necessary transformations.

2.3.1 Structuring the Bins

Assume without loss of generality that the smallest bin capacity is �. We order the bins in increasing order

of their capacity and partition them into blocks B	� B�� ���� B� such that block Bi consists of all bins x with

�� � ��i � c�x� � �� � ��i��. Let mi denote the number of bins in block Bi.

Definition 2.1 (Small vs. Large Blocks) A block Bi of bins is called a small bin block if mi � ���; it is

called large otherwise.

Let Q be the set of indices i such that Bi is small. Define Q� to be the set of t � ��� � d
��� ln ���e

largest indices in the set Q. Note that we are choosing from Q the blocks with the largest indices and not

the blocks with the most number of bins. Let BQ and BQ� be the set of all bins in the blocks specified

by the index sets Q and Q� respectively. The following lemma makes use of the property of geometrically

increasing bin capacities.

Lemma 2.4 Let U be a set of items that can be packed in the bins BQ. There exists a set U� � U such that

U � can be packed into the bins BQ� , and p�U �� � ��� �� � p�U�.

Proof. Fix some packing of U in the bins BQ. Consider the largest ��� bins in BQ. One of these bins

has a profit less than �p�U�. Without loss of generality assume its capacity is �. We will remove the items

packed in this bin and use it to pack items from smaller bins. Let Bi be the block containing this bin.

Let j be the largest index in Q such that j � i � 
��� ln ���. If no such j exists Q� � Q and there is

nothing to prove. For any k � j, a bin in block Bk has capacity at most ���� � ��i�k since the bin from

Bi had capacity � and the bin capacities decrease geometrically with index. Thus the bin capacity in Bk

is at most �� � ��j�i����� � ��j�k�� � ����� � ��j�k��. The latter inequality follows from the fact that

j � i� � � �
��� ln ��� and �� � �����
�� ln ��� � ��. Since Bk is small bin block, it has no more than ���
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bins, therefore the total capacity of all bins in Bk is at most �������j�k��. Hence, the total capacity of bins

in small bin blocks with indices less than equal to j is
P

k�j ���� � ��j�k�� which is at most �. Therefore

we can pack all the items in blocks Bk with k � BQ� k � j in the bin we picked. The total number of blocks

in Q between i and j is 
��� ln ���. Each of the ��� largest bins in BQ could be in their own blocks. Hence

the largest t indices from Q would contain all these blocks. From the above, we conclude that bins of blocks

with indices in Q� are sufficient to pack a set U� � U such that p�U �� � ��� �� � p�U�. �

Therefore we can retain the t small bin blocks from Q� and discard the blocks with indices in Q n Q�.

Hence from here on we assume that the given instance is modified to satisfy jQj � t, and it follows that the

total number of bins in small bin blocks is at most t��. When the number of bins is fixed a PTAS is known

(implicit in earlier work) even for the GAP. The basic idea in that PTAS will be useful to us in handling

small bin blocks. For large bin blocks, the advantage, as we shall see later, is that we can exceed the number

of bins used by an � fraction. The main task is to integrate the allocation and packing of items between the

different sets of bins. We do this in three steps that are outlined below.

For the rest of the section we assume that we have a set of items that can be feasibly packed in the given

set of bins. We implicitly refer to some fixed feasible packing as the optimal solution.

2.3.2 Packing the Most Profitable Items into Small Bin Blocks

We guess, for each bin b in BQ, the ��� most profitable items that are packed in b in the optimal solution.

The number of guesses needed is nO�ln�������
��.

2.3.3 Packing Large Items into Large Bin Blocks

The second step is to select items and pack them in large bin blocks. We say that an item is packed as a

large item if its size is at least � times the capacity of the bin in which it is packed. Since the capacities of

the blocks are increasing geometrically, an item can be packed as a large item in at most f � d���� ln ���e

different blocks. Our goal is to guess all the items that are packed as large and also to which blocks they are

assigned. We do this approximately as follows.

Let ni be the number of items of the ith size class Ui and let 
i be the number packed as large in some

optimal solution. Let fi � f be the number of blocks in which items of Ui can be packed as large. Let 
ji ,

� � j � fi be the number of items packed in each of those blocks. If 
ji �
�
fi
ni, we can discard those items,

overall losing at most an � fraction of the profit from Ui. Our objective is to guess a number hji such that

�� � ��
ji � hji � 
ji . The number of guesses required to obtain a single hji is bounded by g � ���� ln fi��

and therefore the total number of guesses for all hji is bounded by gf . Using f as an upper bound for fi

and simplifying we claim an upper bound of �O����
��. Therefore the total number of guesses required for

all the O���� lnn� size classes is bounded by nO����
��. Here is where we take advantage of the fact that the

number of distinct sizes is small (logarithmic).

Suppose we have correctly assigned all large items to their respective bin blocks. We describe now a
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procedure for finding a feasible packing of these items. Here we ignore the potential interaction between

items that are packed as large and those packed as small. We can focus on a specific block since the large

items are now partitioned between the blocks. Note that even within a single block the large items could

contain ��lnn� distinct sizes. The abstract problem that we have is the following. Given a collection of m

bins with capacities in the range ��� � � ��, and a set of n items with sizes in the range ��� � � ��, decide

if there is a feasible packing for them. We do not know if this problem can be solved in polynomial time

when the number of distinct sizes is O�lnn�. Here we take a different approach. We obtain a relaxation

by allowing use of extra bins to pack the items. However, we restrict the capacity of the extra bins to be �.

We give an algorithm that either decides that the instance is infeasible or gives a packing with at most an

additional �m bins of capacity �.

The first step in the algorithm is to pack the items of size strictly greater than �. Let L be these set of

items. Consider items of L in non-decreasing order of their sizes. When considering an item of size s, find

the smallest size bin available that can accommodate it. If no such bin exists we declare that the items cannot

be packed. Otherwise we pack the item into the bin and remove the bin from the available set of bins.

Lemma 2.5 If the algorithm fails then there is no feasible packing for L. Further, if there is a feasible

packing for all the items, then there is one that respects the packing of L produced by the above algorithm.

Proof. In our instance, each bin’s capacity is at most � � � and every item is of size strictly larger than �.

Therefore each item of L is packed in a bin by itself.

Suppose there are two bins x and y and an item from L of size s such that c�x� � c�y� � s. Consider

any feasible packing of the items into the bins in which s is packed into x, and y does not contain any item

from L. Then it is easy to see that we can swap s to y and the items in y into x without affecting feasibility.

Similarly we can argue that if s� and s� are two items from L such that s� � s�, then s� occupies a larger

bin than s�. Using these swapping arguments we can see that the properties described in the lemma are

satisfied. �

From the above lemma, we can restrict ourselves to packing items with sizes in ��� �	 into the bins that

remain after packing L. Let m� be the number of bins that remain. If a feasible packing exists, the shifting

technique for bin packing [3] can be adapted in a direct fashion to pack the items using �m� additional bins

of size � each. We briefly describe the algorithm. Let n� be the number of items to be packed. We observe

that each bin can accommodate at most ���� � items. Thus m����� � �� � n�. If m� � ��� we can check

for a feasible packing by brute force enumeration. Otherwise let t � ����. The items are arranged in non-

increasing sizes and grouped into sets H��H�� � � � �Ht�Ht�� such that jH�j � jH�j � � � � � jHtj � n��t

and H�
t�� � n��mod�t. Items in the first group H� that contains the largest items are each assigned to a

separate bin of size �. For � � i � t� �, the sizes of the items in Hi are uniformly set to be the size of the

smallest item in Hi��. It is clear that the rounded up items have a packing in the m� bins if the original items

had a packing. The rounded up items have only t distinct sizes and dynamic programming can be applied

to test the feasibility of packing these items in the given m� bins in O�nO�t�� time. Note that the number of
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extra bins we use is jH�j � n��t � ��n��� � �m� since m����� � �� � n�. Thus we obtain the following

lemma.

Lemma 2.6 Given m � ��� bins of capacities in the range ��� � � �� and items of sizes in the range

��� � � ��, there is an nO����
��-time algorithm that either decides that there is no feasible packing for the

items, or returns a feasible packing using at most �m extra bins of capacity �.

We eliminate the extra bins later by picking the m most profitable among them and discarding the items

packed in the rest. The restriction on the size and number of extra bins is motivated by the elimination

procedure. In order to use extra bins the quantity �m needs to be at least �. This is the reason to distinguish

between small and large bin blocks. For a large bin block Bi let Ei be the extra bins used in packing the

large items. We note that jEij � �m� � �mi.

2.3.4 Packing the Remaining Items

The third and last step of the algorithm is to pack the remaining items which we denote by R. At this stage

we have a packing of the ��� most profitable items in each of the bins in BQ (bins in small bin blocks) and a

feasible packing of the large items in the rest of the bins. For each bin bj � B let Yj denote the set of items

already packed into bj in the first two steps. The item set R is packed via an LP approach. In particular we

use the generalized assignment formulation with the following constraints.

1. Each remaining item must be assigned to some bin.

2. An item y can be assigned to a bin bj in a large bin block Bi only if s�y� � � � ��� ��i. In other words

y should be small for all bins in Bi.

3. An item y can be assigned to a bin bj in a small bin block only if p�y� � �
���p�Yj� and jYj j � ���.

Constraints 2 and 3 are based on the assumption that we have correctly guessed in the first two steps of

the packing procedure. We make the formulation more precise now. Note that we only check for feasibility.

The variable xij denotes the fraction of item i that is assigned to bin j. Let V be the set of item-bin pairs

�i� j� such that i cannot be packed into bj because of one of Constraints 2 and 3. The precise LP formulation

is given below.

X

j

xij � � for each item

X

i

s�yi� � xij � c�bj� for each bin

xij � � if �i� j� � V

xij � � if i � Yj

xij � �

12



Lemma 2.7 The LP formulation above has a feasible solution if the guesses for the item set, the items

packed as large, and those packed in small bin blocks, are correct.

Proof. Consider a feasible integral packing of the items in the bins (which by assumption exists) and let 
x

denote that solution. We will use 
x to construct a feasible fractional solution x for the LP above. Note that


x need not satisfy the constraints imposed by V and the Yjs in the LP above.

Let blk�j� denote the block that contains the bin bj . We ensure the following constraint: if 
xij � � then
P

fljblk����blk�j�g xi� � �. In other words, we fractionally assign each item to the same block that the optimal

solution does. We separately treat the small and large bin blocks.

For a j where blk�j� is small we set xij � 
xij . If we had correctly guessed the largest profit items in

small bin blocks this assignment is consistent with V and Yj .

Consider a large bin block Bk. By our assumption, we already have an integral assignment for the set of

large items that 
x assigns to Bk. Let Sk be the small items that are assigned by 
x to Bk. We claim that Sk
can be packed fractionally in Bk irrespective of the assignment of the large items. Clearly, there is enough

fractional capacity. Since the sizes of the items do not change with the bins, any greedy fractional packing

that does not waste capacity gives a feasible packing. �

Let xij be a feasible fractional solution to the above formulation. Lenstra et al. [19] and Shmoys and

Tardos [26] show how a basic feasible solution to the linear program for GAP can be transformed in to an

integral solution that violates the capacities only slightly. We apply their transformation to xij and obtain a

�-� solution 
xij with the following properties.

1. If xij � � then 
xij � � and if xij � � then 
xij � �.

2. For each bin bj , either
P

i 
xij � c�bj� or there is an item k�j� such that
P

i��k�j� 
xij � c�bj� and

xik�j� � �. We call this item k�j� as the violating item for bin bj .

Thus we can find an integral solution where each bin’s capacity is exceeded by at most one item. Further

the items assigned to the bins satisfy the constraints specified by V , that is 
xij � � if �i� j� � V . The integral

solution to the LP also defines an allocation of items to each block. Let Pi be the total profit associated with

all items assigned to bins in block Bi. Then clearly, O �
P

i�	 Pi. We however have an infeasible solution

since bin capacities are violated in the rounded solution 
xij . We modify this solution to create a feasible

solution such that in each block we obtain a profit of at least ��� ���Pi.

Large Bin Blocks: Let Bi be a large bin block and without loss of generality assume that bin capacities

in Bi are in the range ��� � � ��. By constraint 2 on the assignment, the size of any violating item in Bi is

less than � and there are at most mi of them. For all � � ��� we conclude that at most ��mi extra bins of

capacity � each are sufficient to pack all the violating items of Bi. Recall, from Lemma 2.6 that we may

have used �mi extra bins in packing the large items as well. Thus the total number of extra bins of capacity

�, denoted by E�
i, is at most ��mi. Thus all items assigned to bins in Bi have a feasible integral assignment

in the set E�
i � Bi. Now clearly the mi most profitable bins in the collection E�i � Bi must have a total
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associated profit of at least Pi��� � ���. Moreover, it is easy to verify that all the items in these mi bins can

be packed in the bins of Bi itself.

Small Bin Blocks: Consider now a small bin block Bi. By constraint 3 on the assignment, we know that

the profit associated with the violating item in any bin bj of Bi is at most �
�����p�Yj�. Thus we can simply

discard all the violating items assigned to bins in Bi and we obtain a feasible solution of profit value at least

Pi��� � ��.

This gives us a feasible integral solution with total profit value at least
P

i�	 Pi�������. Putting together

the guessing and packing steps we obtain our main result.

Theorem 1 There is a PTAS for the Multiple Knapsack problem.

3 Generalized Assignment Problem(GAP)

We start by showing that even highly restricted cases of GAP are APX-hard. Then we sketch a �-approximation

algorithm for GAP that easily follows from the work of Shmoys and Tardos [26] on the Min GAP problem.

3.1 APX-hardness of Restricted Instances

We reduce the Maximum �-bounded �-Dimensional matching (3DM) problem [6, 14] (defined formally

below) in an approximation-preserving manner to highly restricted instances of GAP.

Definition 3.1 (3-bounded 3DM (3DM-3)) Given a set T � X 	 Y 	 Z where jXj � jY j � jZj � n. A

matching in T is a subset M � T such that no elements in M agree in any coordinate. The goal is to find

a matching in T of largest cardinality. A �-bounded instance is one in which the number of occurrences of

any element of X � Y � Z in T is at most �.

Kann [14] showed that 3DM-3 is APX-hard, that is, there exists an �	 � � such that it is NP-hard to

decide whether an instance has a matching of size n or if every matching has size at most ��� �	�n. In what

follows, we denote by m the number of hyperedges in the set T .

Theorem 2 GAP is APX-hard even on instances of the following form for all positive �.

� p�i� j� � � for all items i and bins j.

� s�i� j� � � or s�i� j� � � � � for all items i and bins j.

� c�j� � � for all bins j.

Proof. Given an instance I of 3DM-3 we create an instance I� � �B�S� of GAP as follows. In I� we have

m bins b�� � � � � bm of capacity � each, one for each of the edges e�� � � � � em in T . For each element i of X

we have an item xi in I � and similarly yj for j � Y and zk for k � Z . We also have an additional ��m� n�
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items in I�, u�� � � � � u��m�n�. We set all profits to be �. It remains to set up the sizes. For each item uh and

bin b� we set s�uh� b�� � �� � ��. For an item xi and bin b� we set s�xi� b�� � � if i � e� and �� � ��

otherwise. The sizes of items yj and zk are set similarly.

We claim that � items can fit in a bin b� if and only if they are the elements of the edge e�. Thus bins

with � items correspond to a matching in T . It then follows that if I has a matching of size n, then I� has a

solution of value �n���m� n�. Otherwise, every solution to I� has value at most �n� �	 � n���m�n�.

The APX-hardness now follows from the fact that m � O�n� for bounded instances. �

A similar result can be stated if only profits are allowed to vary.

Theorem 3 GAP is APX-hard even on instances of the following form:

� each item takes only two distinct profit values,

� each item has an identical size across all bins and there are only two distinct item sizes, and

� all bin capacities are identical.

Proof. The reduction is once again from 3DM-3. Given an instance I of 3DM-3 we create an instance

I � � �B�S� of GAP as follows. In I� we have m bins b�� � � � � bm of capacity � each, one for each of the

edges e�� � � � � em in T . For each element i of X we have an item xi in I � and similarly yj for j � Y and zk
for k � Z . We also have an additional m � n items u�� ���� um�n where s�uh� b�� � � and p�uh� b�� � 


for any additional item uh and a bin b�. Fix a positive constant � � ���. For an item xi and bin b� we set

p�xi� b�� � � � � if i � e� and � otherwise. The profits of items yj and zk are set similarly. The sizes of

items xi, yj and zk are all set to 1 each.

It is now easy to verify that if instance I has a matching of size n, there exists a solution to I� of value


�m� n� � �n�� � ��. Otherwise, every solution to I� has value at most 
�m� n� � �n�� � ��� n�	 � �.

As above, the APX-hardness now follows from the fact that m � O�n�. �

Notice that Theorem 3 is not a symmetric analogue of Theorem 2. In particular, we use items of two

different sizes in Theorem 3. This is necessary as the special case of GAP where all item sizes are identical

across the bins (but the profits can vary from bin to bin), is equivalent to minimum cost bipartite matching.

Proposition 2 There is a polynomial time algorithm to solve GAP instances where all items have identical

sizes across the bins.

3.2 A �-approximation for GAP

Shmoys and Tardos [26] give a ��� �� bi-criteria approximation for Min GAP. A paraphrased statement of

their precise result is as follows.

Theorem 4 (Shmoys and Tardos [26]) Given a feasible instance for the cost assignment problem, there is

a polynomial time algorithm that produces an integral assignment such that
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� cost of solution is no more than OPT,

� each item i assigned to a bin j satisfies s�i� j� � c�j�, and

� if a bin’s capacity is violated then there exists a single item that is assigned to the bin whose removal

ensures feasibility.

We now indicate how the above theorem implies a �-approximation for GAP. The idea is to sim-

ply convert the maximization problem to a minimization problem by turning profits into costs by setting

w�i� j� � L� p�i� j� where L � maxi�j p�i� j� is a large enough number to make all costs positive. To cre-

ate a feasible instance we have an additional bin bm�� of capacity � and for all items iwe set s�i�m��� � �

and w�i�m � �� � L (in other words p�i�m� �� � �). We then use the algorithm for cost assignment and

obtain a solution with the guarantees provided in Theorem 4. It is easily seen that the profit obtained by the

assignment is at least the optimal profit. Now we show how to obtain a feasible solution of at least half the

profit. Let j be any bin whose capacity is violated by the assignment and let ij be the item guaranteed in

Theorem 4. If p�ij � j� is at least half the profit of bin j then we retain ij and leave out the rest of the items

in j. In the other case we leave out ij . This results in a feasible solution of at least half the profit given by

the LP solution. We get the following result:

Proposition 3 There is a �-approximation for GAP.

Remark. The algorithm in [26] is based on rounding an LP relaxation. For MKP an optimal solution to the

linear program can be easily constructed in O�n log n� time by first sorting items by their profit to size ratio

and then greedily filling them in the bins. Rounding takes O�n� log n� time. We also note that the integrality

gap for the LP relaxation of GAP is a factor of � even for instances of MKP with identical bin capacities.

4 A Greedy Algorithm

We now analyse a natural greedy strategy: pack bins one at a time, by applying the FPTAS for the single

knapsack problem on the remaining items. Greedy(�� refers to this algorithm with � parameterizing the error

tolerance used in the knapsack FPTAS.

Claim 3 For instances of MKP with bins of identical capacity, the algorithm Greedy(�) gives a �e��e �

O����-approximation.

Proof. Let X be the set of items packed by some optimal solution. Let Xj denote the set of items in X

that remain after Greedy packs the first �j � �� bins and let Yj be the items packed by Greedy in the jth

bin. Since the bin capacities are identical, by a simple averaging argument it is easy to see that p�Yj� �

��� ��p�Xj��m. Simple algebra gives the result. �
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Claim 4 For MKP, the algorithm Greedy(�) gives a �� � ��-approximation.

Proof. Let Xj denote the set of items that some fixed optimal solution assigns to the jth bin and which do

not appear anywhere in Greedy’s solution. Also, let Yj denote the items that Greedy packs in the jth bin.

Then we claim that p�Yj� � �� � ��p�Xj� since Xj was available to be packed when Greedy processed

bin j. This follows from the greedy packing. Thus we obtain
Pm

j�� p�Yj� � �� � ��
Pm

j�� p�Xj�. If
Pm

j�� p�Xj� � OPT�� we are done. Otherwise by definition of the Xj’s, Greedy must have packed the

other half of the profit. This implies the claimed �� � ��-approximation. �

Remark. Claim 4 is valid even if the item sizes (but not profits) are a function of the bins, an important

special case of GAP that is already APX-hard. The running time of Greedy(�) is O�mn log ��� � m����

using the algorithm of Lawler [17] for the knapsack problem. Claim 4 has been independently observed in

[2].

A Tight Example: We show an instance on which Greedy’s performance is no better than �. There are two

items with sizes � and � � � and each has a profit of �. There are two bins with capacities � and � each.

Greedy packs the smaller item in the big bin and obtains a profit of � while OPT � �. This also shows that

ordering bins in non-increasing capacities does not help improve the performance of Greedy.

5 Conclusions

An interesting aspect of our guessing strategy is that it is completely independent of the number of bins

and their capacities. This might prove to be useful in other variants of the knapsack problem. One recent

application is in obtaining a PTAS for the stochastic knapsack problem with Bernoulli variables [7].

The Min GAP problem has a ��� �� bi-criteria approximation and it is NP-hard to obtain a ��� ��� � ��-

approximation. In contrast GAP has a �-approximation but the known hardness of approximation is ��� �	�

for a very small but fixed �	. Closing this gap is an interesting open problem.

Another interesting problem is to obtain a PTAS for MKP with an improved running time. Though

an FPTAS is ruled out even for the case of two identical bins, a PTAS with a running time of the form

f�����poly�n� might be achievable. The identical bin capacities case might be more tractable than the

general case. Extending our ideas to achieve the above mentioned running time appears to be non-trivial.
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