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Abstract

The Multiple Knapsack problem (MKP) is a natural and well known generalization of the single
knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such
that each item ¢ has a profit p(i) and asize s(7), and each bin j has a capacity ¢(j). Thegoal isto find a
subset of items of maximum profit such that they have a feasible packing in the bins. MKP is a specid
case of the Generalized Assignment problem (GAP) where the profit and the size of an item can vary
based on the specific bin that it is assigned to. GAP is APX-hard and a 2-approximation for it isimplicit
in the work of Shmoys and Tardos [26], and thus far, this was also the best known approximation for
MKP. The main result of this paper is a polynomial time approximation scheme for MKP.

Apart from its inherent theoretical interest as a common generalization of the well-studied knapsack
and bin packing problems, it appears to be the strongest special case of GAP that is not APX-hard. We
substantiate this by showing that slight generalizations of MKP are APX-hard. Thus our results help
demarcate the boundary at which instances of GAP become APX-hard. An interesting aspect of our
approach is a ptas-preserving reduction from an arbitrary instance of MKP to an instance with O(log n)
distinct sizes and profits.

1 Introduction

We study the following natural generalization of the classical knapsack problem:

Multiple Knapsack Problem (MKP)

INSTANCE: A pair (B,S) where B isaset of m bins (knapsacks) and S isaset of n items. Each binj € B
has a capacity ¢(j), and each item ; has asize s(i) and a profit p(i).

OBJECTIVE: Find asubset U C S of maximum profit such that U has a feasible packing in 5.

The decision version of MKP is a generalization of the decision versions of both the knapsack and bin
packing problems and is strongly NP-Complete. Moreover, it isan important special case of the generalized
assignment problem where both the size and the profit of an item are afunction of the bin:
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Generalized Assignment Problem (GAP)!

INSTANCE: A pair (B,S) where B isaset of m bins (knapsacks) and S isaset of n items. Each binj € B
has a capacity ¢(j), and for each item i and bin j, we are given asize s(i, j) and a profit p(i, 7).
OBJECTIVE: Find asubset U C S that has afeasible packing in B and maximizes the profit of the packing.

GAP and its restrictions capture several fundamental optimization problems and have many practical appli-
cations in computer science, operations research, and related disciplines. The Multiple Knapsack problem
with its uniform sizes and profits is an important special case; the book on knapsack variants by Martello
and Toth [24] has a chapter devoted to MKP. Also referred to as the loading problem in operations re-
search, it models the problem of loading items into containers of different capacities such that container
capacities are not violated. In many practical settings items could be more complex geometric objects,
however the one dimensiona case (MKP) is useful in its own right and has been investigated extensively
[12, 9, 10, 21, 22, 23, 4].

Knapsack, bin packing, and related problems have attracted much theoretical attention for their simplic-
ity and elegance, and their study has been instrumental in the development of the theory of approximation
agorithms. Though knapsack and bin packing have an FPTAS (asymptotic for bin packing), GAP, a strong
generalization of both, is APX-hard and only a 2-approximation exists. In fact some very specia cases of
GAP can be shown to be APX-hard. In particular we can show that for arbitrarily small 6 > 0 (which can
even be a function of n) the problem remains APX-hard on the following very restricted set of instances:
bin capacities are identical and for each item 7 and machine j, p(i,j) = 1,and s(7,j) = 1 or s(i,j) = 144.
The complementary case where item sizes do not vary across bins but profits do, can aso be shown to be
APX-hard for asimilar restricted setting. In light of this, it is particularly interesting to understand the com-
plexity of MKP where profits and sizes of an item are independent of the bin but the item sizes and profits as
well as bin capacities may take arbitrary values. Establishing a PTAS shows a very fine separation between
cases that are APX-hard and those that have a PTAS. Until now, the best known approximation ratio for
MKP was afactor of 2 derived from the approximation for GAP.

Results: In this paper we resolve the approximability of MKP by obtaining a PTASfor it. It can be easily
shown via a reduction from the Partition problem that MKP does not admit an FPTAS even if m = 2 (see
Proposition 1). A specia case of MKP iswhen all bin capacities are equal. It isrelatively straightforward
to obtain a PTAS for this case using ideas from approximation schemes for knapsack and bin packing
[11, 3, 15]. However the problem with different bin capacities is more challenging. Our paper contains
two new technical ideas. Our first idea concerns the set of items to be packed in a knapsack instance. We
show how to guess, in polynomial time, almost all the items that are packed by an optimal solution. More
precisely, we can identify apolynomial number of subsets such that one of the subsets has afeasible packing
and profit at least (1 — €)OPT. Thisisin contrast to earlier schemes for variants of knapsack [11, 1, 5] where

1GAP has al so been defined in the literature as a (closely related) minimization problem (see[26]). In this paper, following [24],
we refer to the maximization version of the problem as GAP and refer to the minimization version as Min GAP.



only the 1/e most profitable items are guessed. An easy corollary of our strategy isaPTASfor the identical
bin capacity case, the details of which we point out later. Even with the knowledge of the right subsets, the
problem remains non-trivial since we need to verify for each subset if it has a feasible packing. Checking
for feasibility is of course at least as hard as bin packing. To get around this difficulty we make crucial use
of additional properties satisfied by the subsets that we guess. In particular we show that each subset can
be transformed such that the number of distinct size values of the items in the subset is O(€2logn). An
immediate consequence of thisis a dynamic programming based quasi-polynomial time algorithm to pack
al of the itemsinto bins. Our second set of ideas shows that we can exploit the restriction on the number of
distinct sizes to pack, in polynomial time, a subset of the item set that has at least a (1 — ¢) fraction of the
profit. Approximation schemes for number problems are usually based on rounding instances to have afixed
number of distinct values. In contrast, MKP appears to require alogarithmic number of values. We believe
that our techniques to handle logarithmic number of distinct values will find other applications. Figure 1
summarizes the approximability of various restrictions of GAP.

Knapsack
FPTAS

l Multiple identical capacity bins

Uniform MKP
PTAS
No FPTAS even with 2 bins

M ultiple non-identical capacity bins

MKP
PTAS
Item size varies with bins Item profit varies with bins
APX-hard even when APX-hard even when each item takes
_each item takes c_)nly 2 _dlstl nct only 2 distinct profits
sizes and all profits are identical. However, it is polynomial time solvable

if all sizesareidentical.

Both size and profit
vary with bins,

Maximization GAP
2-approximable

Figure 1: Complexity of Various Restrictions of GAP



Related work: MKPisclosely related to knapsack, bin packing, and GAP. A very efficient FPTAS exists
for the knapsack problem; Lawler [17], based on ideas from [11], achieves arunning time of O(nlog1/e +
1/e*) for a (1 + €) approximation. An asymptotic FPTAS is known for bin packing [3, 15]. Kellerer [16]
has independently developed a PTASfor the special case of the MKP where all bins have identical capacity.
As mentioned earlier, this case is much simpler than the general case and falls out as a consequence of our
first idea. We defined the generalized assignment problem as a maximization problem. Thisis natural when
we relate it to the knapsack problem (see [24]). There is also a minimization version, which we refer to as
Min GAP (also known as the cost assignment problem) where the objective is to assign al the items while
minimizing the sum of the costs of assigning items to hins. In this version, item 5 when assigned to bin
J incurs a cost w(i, j) instead of obtaining a profit p(7, j). Even without costs, deciding the feasibility of
assigning all items without violating the capacity constraints isan NP-Complete problem, therefore capacity
constraints need to berelaxed. An («, 3) bi-criteria approximation algorithm for Min GAPisonethat givesa
solution with cost at most «C' and with bin capacities violated by afactor of a most 5 where C' isthe cost of
an optimal solution that does not violate any capacity constraints. Work of Lin and Vitter [20] yieldsa (1 +
€,241/¢) bi-criteriaapproximation for Min GAP. Shmoys and Tardos [26], building on thework of Lenstra,
Shmoys, and Tardos [19], give an improved (1, 2) bi-criteria approximation. Implicit in this approximation
is also a 2-approximation for the profit maximization version which we sketch later. Lenstra et al. [19]
also show that it is NP-hard to obtain a bi-criteria approximation of the form (1, 3) for any 5 < 3/2. The
hardness relies on a NP-Compl eteness reduction from the decision version of the 3-Dimensional Matching
problem. Our APX-hardness for the maximization version, mentioned earlier, isbased on asimilar reduction
but instead relies on APX-hardness of the optimization version of 3-Dimensional Matching problem [14].

MKP is aso related to two variants of variable size bin packing. In the first variant we are given a set
of items and set of bin capacities C. The objective is to find a feasible packing of items using bins with
capacities restricted to be from C so as to minimize the sum of the capacities of the bins used. A PTASfor
this problem was provided by Murgolo [25]. The second variant is based on a connection to multi-processor
scheduling on uniformly related machines[18]. The objective isto assign aset of jobs with given processing
times to machines with different speeds so as to minimize the makespan of the schedule. Hochbaum and
Shmoys [8] gave a PTAS for this problem using a dual based approach where they convert the scheduling
problem into the following bin packing problem. Given items of different sizes and bins of different ca-
pacities, find a packing of al the items into the bins such that maximum relative violation of the capacity
of any bin is minimized. Bi-criteria approximations, where both capacity and profit can be approximated
simultaneously, have been studied for several problems (Min GAP being an example mentioned above) and
it is usualy the case that relaxing both makes the task of approximation somewhat easier. In particular,
relaxing the capacity constraints allows rounding of item sizes into a small number of distinct size values.
In MKP we are neither allowed to exceed the capacity constraints nor the number of bins. This makes the
problem harder and our result interesting.



Organization: Section 2 describes our PTAS for MKP. In Section 3, we show that GAP is APX-hard on
very restricted classes of instances. We also indicate here a 2-approximation for GAP. In Section 4, we
discuss a natural greedy algorithm for MKP and show that it gives a (2 + €)-approximation even when item
sizes vary with bins.

2 A PTASfor the Multiple Knapsack Problem

We first show that MK P does not admit an FPTAS even for m = 2.

Proposition 1 If MKP with two identical bins has an FPTAS then the Partition problem can be solved in
polynomial time. Hence there isno FPTASfor MKP even with m = 2 unless P = N P.

Proof. Aninstance to the Partition problem consists of 2n numbersa, as, . . . , as, and the goal isto decide
if the numbers can be partitioned into two sets S and Ss such that the sum of humbers in each set add up
toexactly A = % 2?21 a;. We can reduce the Partition problem to MKP with two bins as follows. We set
the capacity of the binsto be A. We have 2n items, one for each number in the Partition problem: the size
of item 7 is a; and the profit of item ¢ is 1. If the Partition problem has a solution, the profit of an optimum
solution to the corresponding MKP problem is 2n, otherwise it isat most 2n — 1. Thus, an FPTASfor MKP
can be used to distinguish between these two situations in polynomial time. O

We start with aremark on guessing. When we guess a quantity in polynomial time we mean that we can
identify, in polynomial time, a polynomial size set of values among which the correct value of the desired
guantity resides. Coupled with the guessing procedure is a polynomial time checking procedure which can
verify whether afeasible solution with a given value exists. We can run the checking procedure with each
of the values in the guessed set and will be guaranteed to obtain a solution with the correct value. We will
be using this standard idea several times in this section and implicitly assume that the above procedure is
invoked to complete the algorithm.

We denote by OPT the value of an optimal solution to the given instance. Given aset Y of items, we use
p(Y) to denote -, .y p(y). The set of integers 0,1,.. ., k is denoted by [k]. We will assume throughout
this section that e < 1; when € > 1 we can use the 2 approximation for GAP from Section 3. In the rest of
the paper we assume, for smplicity of notation, that 1/¢ and Inn are integers. Further we also assume that
e > 1/n for otherwise we can use an exponential time algorithm to solve the problem exactly. In severa
places in the paper, to simplify expressions, we use the inequality In(1 + €) > e — /2 > ¢/2.

Our problem is related to both the knapsack problem and the bin packing problem and some ideas used
in approximation schemes for those problems will be useful to us. Our approximation scheme conceptually
has the following two steps.

1. GUESSING ITEMS: Identify aset of itemsU C S suchthat p(U) > (1 — ¢)oPT and U has afeasible
packing in .



2. PackING ITEMS: Givenaset U of items that has afeasible packing in 13, find a feasible packing for
aset U’ C U suchthat p(U') > (1 — ¢)p(U).

The overall scheme is more involved since there is interaction between the two steps. The guessed
items have some additional properties that are exploited in the packing step. We observe that both of the
above steps require new ideas. For the regular single knapsack problem the second step is trivial once we
accomplish thefirst step. Thisis however not the case for MKP. Before we proceed with the detail s we show
how our guessing step immediately gives a PTASfor the identical bin capacity case.

2.1 MKP with Identical Bin Capacities

Suppose we can guess an item set as in our first step above. We show that the packing step is very simple
if the bin capacities are identical. There are two cases to consider depending on whether 1, the number
of bins, isless than egqual to [1/€] or not. If m < [1/e€],the number of bins can be treated as a constant
and a PTAS for this case exists even for instances of GAP (implicit in earlier work [5]). Now suppose
m > [1/e]. Bin packing has an asymptotic PTAS. In particular there is an agorithm [3] that packs the
itemsinto (1 + €)OPT + 1 binsin polynomial time for any fixed e > 0. We can thus use this algorithm to
pack all the guessed items using at most (1 + ¢)m + 1 bins. We find afeasible solution by simply picking
the m largest profit bins and discarding the rest along with their items. Here we use the fact that me > 1
and that the bins are identical. It is easily seen that we get a (1 + O(e)) approximation. We note that a
different PTAS, that does not rely on our guessing step, can be obtained for this case by directly adapting the
ideas used in approximation schemes for bin packing. Thetrick of using extra bins does not have a simple
analogue when bin capacities are different and we need more sophisticated ideas for the general case.

2.2 Guessing Items

Consider the case when items have the same profit for al items; without loss of generality assume it is 1.
Thus the objective is to pack as many items as possible. For this case, it is easily seen that OPT is an integer
in [n]. Further, given a guess O for opPT, we can always pick the smallest (in size) O items to pack. Thus
knowing O alowed usto fix the item set as well. Therefore there are only a polynomia number of guesses
for the set of items to pack. In the following we build on this useful insight.

Let pmax denote the largest value among item profits. For the general case the first step involves mas-
saging the given instance into a more structured one that has few distinct profits. This is accomplished as
follows.

1. Guess a value O such that max{pmax, (1 — €)OPT} < O < opT and discard al items y where
p(y) < €O/n.

2. Divide dl profits by e /n such that after scaling each profit is at most 7 /e.

3. Round down the profits of items to the nearest power of (1 + ¢).



It is easily seen that only an O(e) fraction of the optimal profit islost by our transformation. Since we do
not know oPT, we need to establish an upper bound on the number of values of O that we will try out. We
make use of the following easy bounds on OPT.

Pmax < OPT < N - Pmax.

Therefore, one of the values in {pmax - (1 +¢€)* | 0 < i < 2¢'Inn)} is guaranteed to satisfy the desired
properties for O. Summarizing:

Lemma2.1 Given aninstance I = (B,S) with n items and a value O such that (1 — €)oPT(I) < O <
OPT(I) we can obtain in polynomial time another instance / = (B, S’) such that

e S'CS.
o Foreveryy € &', p(y) = (1 + €)' for somei € [4e ! Inn).
o (1 —¢€)OPT(I) < Z50PT(I") < OPT(I).

For the bound in the second item above we upperbound n /e by +2. The above lemma allows us to
work with instances with O(¢ ! Inn) distinct profits. We now show how we can use this information to
guess the items to pack. Let h < 4 'Inn 4 1 be the number of distinct profits in our new instance. We
partition S into h sets 5y, . .., S, with itemsin each set having the same profit. Let U be the items chosen
in some optimal solution and let U = S; N U. Recal that we have an estimate O of the optimal value.
If p(U;) < eO/h for some i, we ignore the set \S;; no significant profit is lost. Hence we can assume that
eO/h < p(U;) < O and approximately guess the value p(Uj;) for 1 < i < h. More precisely, for each i we
guess avauek; € [h/e?] such that k;(20/h) < p(U;) < (k; + 1)(e2O/h).

A naive way of guessing the values ki, . . . , kj, requires n®(n7/<*) time, We first show how the numbers
k; enable usto identify theitems to pack and then show how thevalues i, . .., k;, canin fact be guessed in

polynomial time. Let «; denote the profit of an itemin S;. Consider an index i such that ¢; < eO/h. Given

the value k; we order theitemsin S; in increasing size values and pick the largest number of items from this
ordered set whose cumulative profit does not exceed k (e20/h). If a; > ¢O/h we pick the smallest number

of items, again in order of increasing size, whose cumulative profit exceeds k(¢20O/h). The asymmetry is

for technical reasons. The choice of itemsisthus completely determined by the choice of the k. For atuple

of values ki, ..., kp, let U(kq,. .., k) denote the set of items picked as described above.

Lemma 2.2 There exists a valid tuple (ki, ..., k) with each k; € [h/e?] such that U (ky, ..., k) has a
feasible packing in B and p(U (ki, ..., k) > (1 —€)O.

Proof. Let U be the items in some optimal solution and let Tf = S; N U. Define k; to be |p(U;)h/ (€20)].
The tuple so obtained satisfies the required properties. O

Asremarked earlier, anaive enumeration of al integer h-tuples takes quasi-polynomial time. The crucial
observation isthat the k;’sare not independent. They must satisfy the additional constraint thaty"; k; < h/e?
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since the total profit from al the sets 5, ..., S, cannot exceed OPT. This constraint limits the number of
tuples of relevance. We make use of the following claims.

Claim 1 Let f be the number of g-tuples of non-negative integers such that the sum of tuple coordinates is

equal tod. Then f = (71971 If d + g < ag then f = O(e™).

Proof. Thefirst part of the claim is elementary counting. If d + g < ag then f < (go‘_gl) < ((O;f’_)gl;,l. Using

Stirling’s formula we can approximate (g — 1)! by \/2w(g — 1)((g — 1)/e)9 L. Thus f = O((ea)? ') =
0(e9). 0

Claim 2 Let h € [4e ! Inn]. Then the number of h-tuples (ki, ..., k) suchthat k; € [h/e?] and Y, k; <
[h/€2]is O(nP0/e),

Proof. The number of tuples satisfying the claim is easily seen to be(h/ EZ*'"“). We now apply the bound
from Claim 1; we have @« = (1 + 1/€?) and ¢ = 4¢ 'Inn + 1 and hence we get an upper bound of

elde 7 Inn+1+¢7%) The claim follows. -

Using the restricted number of distinct profit values we can also reduce the number of distinct sizesin the
given instance to O(Inn). This property will be crucial in packing the items. The basic idea s shifting, an
ideathat is used in approximation schemes for bin packing [3]. Let A be aset of g itemswith identical profit
but perhaps differing sizes. We order itemsin A in non-decreasing sizes and dividethem intot = (1 + 1/e)
groups Ay, ..., A with A;,..., A, containing |g/t| items each and A4; containing (g mod ¢) items. We
discard theitemsin A; | and for each 7 < ¢t — 1 we increase the size of every item in 4 to the size of the
smallest item in A; 1. Since A is ordered by size, no item in A4; is larger than the smallest item in A4;14
foreach1 < i < t. Itiseasy to see that if A has afeasible packing then the modified instance also has
afeasible packing. We discard at most an e fraction of the profit and the modified sizes have at most 2/¢
distinct values. Applying thisto each profit class we obtain an instance with O(¢ 2 Inn) distinct size values.

Lemma 2.3 Given an instance I = (B, S) with n items we can obtain in polynomial time v = 7£(1/<*)
instances I, ..., I, such that

[ FOI’ISj SU,IJ' = (B,S])
e For 1 <j <uw,itemsinS; have O(e ! Inn) distinct profit values.
e For 1 <j <w,itemsinS; have O(e~2Inn) distinct size values.

e Thereisanindex ¢, 1 < ¢ < wv, such that & has a feasible packing in B and p(&) > (1 —
O(e))oPT(I).



Proof. Asindicated earlier, we can guess avalue O such that (1 — ¢)oPT < O < oPT from O(¢ ! Inn)
values. For each guess for O we round profits of items to geometric powers (see Lemma 2.1) and guess the
partition of @ among the profit classes. The number of guesses for the partition is /(1/<"). Therefore the
distinct number of instances is n°(1/<*). Each instance is modified to reduce the number of distinct sizes.
Each step potentially losesa (1 — ¢) factor so overall welose a (1 — O(e)) factor in the profit. O

We will assume for the next section that we have guessed the correct set of items and that they are
partitioned into O(e~2 Inn) sets with each set containing items of the same size. We denote by {} the items
of the ith size value and by n; the quantity |Uj]|.

2.3 Packing Items

From Lemma 2.3 we obtain a restricted set of instances in terms of item profits and sizes. We also need
some structure in the bins and we start by describing the necessary transformations.

2.3.1 StructuringtheBins

Assume without loss of generality that the smallest bin capacity is 1. We order the bins in increasing order
of their capacity and partition them into blocks Ry, By, ..., By such that block B; consists of al bins z with
(14 €)' < c(z) < (1 + €)1, Let m; denote the number of binsin block B.

Definition 2.1 (Small vs. Large Blocks) A block B; of bins is called a small bin block if m; < 1/€; itis
called large otherwise.

Let  be the set of indices i such that B; is small. Define Q' tobetheset of t = 1/e + [4¢ In1/e]
largest indices in the set . Note that we are choosing from (@ the blocks with the largest indices and not
the blocks with the most number of bins. Let &) and Bgr be the set of al bins in the blocks specified
by the index sets @ and () respectively. The following lemma makes use of the property of geometrically
increasing bin capacities.

Lemma2.4 Let U bea set of items that can be packed in the bins &,. There existsa set U’ C U such that
U’ can be packed into the bins By, and p(U’) > (1 —¢) - p(U).

Proof. Fix some packing of U in the bins B;. Consider the largest 1/e bins in By. One of these bins
has a profit less than ep(U). Without loss of generality assume its capacity is 1. We will remove the items
packed in this bin and use it to pack items from smaller bins. Let B be the block containing this bin.
Let j be the largest index in Q such that j < i —4¢ 'Inl/e. If no such j exists ' = Q and there is
nothing to prove. For any k& < 4, abin in block B, has capacity at most 1/(1 + €)~* since the bin from
B; had capacity 1 and the bin capacities decrease geometrically with index. Thus the bin capacity in B
isat most (1 + €)= /(1 + €)7F+1 < €2/(1 + €)I~*+1. The latter inequality follows from the fact that
j—i+1< —4etInl/eand (14 €)% 'L/ < ¢2 Since By issmall bin block, it hasno morethan 1/e
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bins, therefore the total capacity of al binsin B, isat most ¢/(1+¢)~*+1. Hence, the total capacity of bins
in small bin blocks with indices less than equal to j isy";.; €/(1 + €)’ **! which is at most 1. Therefore
we can pack all theitemsinblocks B, withk € B, k < j inthebin we picked. Thetotal number of blocks
in Q between i and j is4e~!In1/e. Each of the 1/¢ largest binsin By could bein their own blocks. Hence
the largest ¢ indices from () would contain al these blocks. From the above, we conclude that bins of blocks
with indicesin ' are sufficient to pack aset U" C U such that p(U’) > (1 —€) - p(U). O

Therefore we can retain the ¢ small bin blocks from ¢J and discard the blocks with indicesin Q \ ¢.
Hence from here on we assume that the given instance is modified to satisfy |Q| < ¢, and it follows that the
total number of binsin small bin blocks is at most ¢/e. When the number of binsisfixed a PTASis known
(implicit in earlier work) even for the GAP. The basic idea in that PTAS will be useful to us in handling
small bin blocks. For large bin blocks, the advantage, as we shall seelater, isthat we can exceed the number
of bins used by an ¢ fraction. The main task is to integrate the alocation and packing of items between the
different sets of bins. We do thisin three steps that are outlined below.

For the rest of the section we assume that we have a set of items that can be feasibly packed in the given
set of bins. We implicitly refer to some fixed feasible packing as the optimal solution.

2.3.2 Packingthe Most Profitable Itemsinto Small Bin Blocks

We guess, for each bin b in By, the 1/e most profitable items that are packed in b in the optimal solution.
The number of guesses needed is nO(n(1/e)/¢*),

2.3.3 Packing Largeltemsinto Large Bin Blocks

The second step is to select items and pack them in large bin blocks. We say that an item is packed as a
large itemif its size is at least € times the capacity of the bin in which it is packed. Since the capacities of
the blocks are increasing geometricaly, an item can be packed asalargeiteminat most f = [2¢!1n1/e]
different blocks. Our goal isto guess all the items that are packed as large and a so to which blocks they are
assigned. We do this approximately as follows.

Let n; be the number of items of the ith size class U and let ¢; be the number packed as large in some
optimal solution. Let f; < f bethe number of blocks in which items of U can be packed as large. Let é{{ ,
1 < j < f; bethe number of items packed in each of those blocks. If 6 < i, We can discard those items,
overall losing at most an e fraction of the profit from {j. Our objective is to guess a number 4 such that
(1 —e)¢) < h! < 1. The number of guesses required to obtain asingle // is bounded by g = 2¢ 1 In f; /e
and therefore the total number of guesses for all hg is bounded by ¢/. Using f as an upper bound for f;
and simplifying we claim an upper bound of (1/<*), Therefore the total number of guesses required for
al the O(e 2 Inn) size classesis bounded by n?(1/<*), Here is where we take advantage of the fact that the
number of distinct sizesis small (logarithmic).

Suppose we have correctly assigned all large items to their respective bin blocks. We describe now a
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procedure for finding a feasible packing of these items. Here we ignore the potential interaction between
items that are packed as large and those packed as small. We can focus on a specific block since the large
items are now partitioned between the blocks. Note that even within a single block the large items could
contain Q(Inn) distinct sizes. The abstract problem that we have is the following. Given a collection of m
bins with capacities in the range [1, 1 + ¢€), and a set of n items with sizes in the range (e, 1 + ¢), decide
if there is a feasible packing for them. We do not know if this problem can be solved in polynomial time
when the number of distinct sizes is O(Inn). Here we take a different approach. We obtain a relaxation
by allowing use of extra bins to pack the items. However, we restrict the capacity of the extra binsto be 1.
We give an algorithm that either decides that the instance is infeasible or gives a packing with at most an
additional em bins of capacity 1.

The first step in the agorithm is to pack the items of size strictly greater than 1. Let L be these set of
items. Consider items of L in non-decreasing order of their sizes. When considering an item of size s, find
the smallest size bin available that can accommodate it. If no such bin exists we declare that the items cannot
be packed. Otherwise we pack the item into the bin and remove the bin from the available set of bins.

Lemma 2.5 If the algorithm fails then there is no feasible packing for L. Further, if there is a feasible
packing for all the items, then there is one that respects the packing of L produced by the above algorithm.

Proof. In our instance, each bin's capacity is at most 1 + e and every item is of size strictly larger than e.
Therefore each item of L is packed in abin by itself.

Suppose there are two bins 2 and y and an item from L of size s such that ¢(z) > ¢(y) > s. Consider
any feasible packing of the itemsinto the binsin which s is packed into z, and y does not contain any item
from L. Then it is easy to see that we can swap s to y and the itemsin y into 2 without affecting feasibility.
Similarly we can argue that if s and s, are two items from L such that s; > s9, then s; occupies a larger
bin than s5. Using these swapping arguments we can see that the properties described in the lemma are
satisfied. |

From the above lemma, we can restrict ourselves to packing items with sizesin (e, 1] into the bins that
remain after packing L. Let m/ be the number of bins that remain. If afeasible packing exists, the shifting
technique for bin packing [3] can be adapted in a direct fashion to pack the items using e additional bins
of size 1 each. We briefly describe the algorithm. Let 1/ be the number of items to be packed. We observe
that each bin can accommodate at most 1/¢ + 1 items. Thusni(1/e + 1) > n’. If m' < 1/e we can check
for afeasible packing by brute force enumeration. Otherwise let ¢t = 2/&. The items are arranged in non-
increasing sizes and grouped into sets Hy, Ho, ..., Hy, Hy 1 suchthat |Hy| = |Hy| = ... = |H| = n'/t
and H;,, = n/(mod)¢. Items in the first group H; that contains the largest items are each assigned to a
separate bin of size 1. For 2 < ¢ <t + 1, the sizes of the itemsin H; are uniformly set to be the size of the
smallest itemin H; ;. Itisclear that the rounded up items have a packing in the i binsif the original items
had a packing. The rounded up items have only ¢ distinct sizes and dynamic programming can be applied
to test the feasibility of packing these items in the given nf binsin O(no(t)) time. Note that the number of
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extrabinswe useis |H;| = n'/t = €2n'/2 < em/ since m/(1/e + 1) > n'. Thus we obtain the following
lemma.

Lemma 2.6 Given m > 1/e bins of capacities in the range [1,1 + €) and items of sizes in the range
(e,1 + ¢€), there is an n®(1/<")-time algorithm that either decides that there is no feasible packing for the
items, or returns a feasible packing using at most em extra bins of capacity 1.

We eliminate the extra bins later by picking the m most profitable among them and discarding the items
packed in the rest. The restriction on the size and number of extra bins is motivated by the elimination
procedure. In order to use extra bins the quantity emn needsto be at least 1. Thisisthe reason to distinguish
between small and large bin blocks. For alarge bin block B let E; be the extra bins used in packing the
large items. We note that |E;| < em' < em;.

2.3.4 Packing the Remaining Items

The third and last step of the algorithm is to pack the remaining items which we denote by R. At this stage
we have a packing of the 1/e most profitable itemsin each of the binsin &, (binsin small bin blocks) and a
feasible packing of the large itemsin the rest of the bins. For each bin § € B let Y; denote the set of items
aready packed into b; in the first two steps. The item set R is packed via an LP approach. In particular we
use the generalized assignment formulation with the following constraints.

1. Each remaining item must be assigned to some bin.

2. Anitemy can be assigned to abin b; in alarge bin block B; only if s(y) < e- (1 +¢)". In other words
y should be small for all binsin B;.

3. Anitem y can be assigned to abin b; inasmall bin block only if p(y) < £-p(Y;) and |Y;| > 1/e.

Constraints 2 and 3 are based on the assumption that we have correctly guessed in the first two steps of
the packing procedure. We make the formulation more precise now. Note that we only check for feasibility.
The variable z;; denotes the fraction of item ¢ that is assigned to bin j. Let V' be the set of item-bin pairs
(4, ) such that 7 cannot be packed into b; because of one of Constraints 2 and 3. The precise LP formulation
is given below.

daiy =1 for eachitem
J
Z s(yi) - xij < c(by) for each bin
Tij = 0 if (Z,j) ev
Tij = 1 ifi e Y]
zi; > 0
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Lemma 2.7 The LP formulation above has a feasible solution if the guesses for the item set, the items
packed as large, and those packed in small bin blocks, are correct.

Proof. Consider afeasible integral packing of the items in the bins (which by assumption exists) and let z
denote that solution. We will use z to construct a feasible fractional solution x for the LP above. Note that
Z need not satisfy the constraints imposed by V' and the Y;sin the LP above.

Let blk(y) denote the block that contains the bin b;. We ensure the following constraint: if z;; = 1 then
- {1|blk(¢)=blk(j)} Tie = 1. Inother words, wefractionally assign each item to the same block that the optimal
solution does. We separately treat the small and large bin blocks.

For aj where blk(j) is small we set z;; = Z;;. If we had correctly guessed the largest profit items in
small bin blocks this assignment is consistent with V" and ¥;.

Consider alarge bin block B;. By our assumption, we already have an integral assignment for the set of
large items that = assigns to By. Let Sj, be the small items that are assigned by z to B;. We claim that Sy,
can be packed fractionally in B; irrespective of the assignment of the large items. Clearly, there is enough
fractional capacity. Since the sizes of the items do not change with the bins, any greedy fractiona packing
that does not waste capacity gives afeasible packing. O

Let z;; be afeasible fractional solution to the above formulation. Lenstra et al. [19] and Shmoys and
Tardos [26] show how a basic feasible solution to the linear program for GAP can be transformed in to an
integral solution that violates the capacities only slightly. We apply their transformation to ; and obtain a
0-1 solution z;; with the following properties.

1. If z;; = 0then 7;; = 0 and if z;; = 1 then 7;; = 1.

2. For each bin b;, either -, 7;; < c¢(b;) or there is an item k(j) such that 3=, .,y Zi; < c¢(b;) and
T ;) < 1. Wecall thisitem k(j) as the violating item for bin b;.

Thuswe can find an integral solution where each bin's capacity is exceeded by at most one item. Further
the items assigned to the bins satisfy the constraints specified by V, that isz; = 0if (i, j) € V. Theintegral
solution to the LP also defines an allocation of itemsto each block. Let B be the total profit associated with
all items assigned to binsin block B;. Then clearly, O = 3",-, P;. We however have an infeasible solution
since bin capacities are violated in the rounded solution 5;]-.7 We modify this solution to create a feasible
solution such that in each block we obtain a profit of at least (1 — 3¢) R.

Large Bin Blocks: Let B; be alarge bin block and without loss of generality assume that bin capacities
in B; arein therange [1,1 + ¢€). By constraint 2 on the assignment, the size of any violating item in BB is
less than € and there are at most m; of them. For al e < 1/2 we conclude that at most 2em; extra bins of
capacity 1 each are sufficient to pack al the violating items of B. Recal, from Lemma 2.6 that we may
have used em; extrabinsin packing the large items as well. Thus the total number of extra bins of capacity
1, denoted by E, is at most 3em;. Thus all items assigned to binsin B; have afeasible integral assignment
in the set E! U B;. Now clearly the m; most profitable bins in the collection E U B; must have a total
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associated profit of at least I5/(1 + 3¢). Moreovey, it is easy to verify that all theitemsin these m; bins can
be packed in the bins of B; itself.

Small Bin Blocks. Consider now a small bin block B;. By constraint 3 on the assignment, we know that
the profit associated with the violating item in any bin & of B; isat most (l—ie)p(Yj). Thus we can simply
discard al the violating items assigned to binsin B and we obtain afeasible solution of profit value at |east
P/(1+e).

Thisgivesusafeasibleintegral solution with total profit value at leasty",~, P;/(1+3e€). Putting together
the guessing and packing steps we obtain our main result. B

Theorem 1 Thereisa PTASfor the Multiple Knapsack problem.

3 Generalized Assignment Problem(GAP)

We start by showing that even highly restricted cases of GAP are APX-hard. Then we sketch a2-approximation
agorithm for GAP that easily follows from the work of Shmoys and Tardos [26] on the Min GAP problem.
3.1 APX-hardnessof Restricted I nstances

We reduce the Maximum 3-bounded 3-Dimensional matching (3DM) problem [6, 14] (defined formally
below) in an approximation-preserving manner to highly restricted instances of GAP.

Definition 3.1 (3-bounded 3DM (3DM-3)) GivenasetT C X x Y x Zwhere | X| = Y| =|Z]| =n. A
matching in T isa subset M C T such that no elements in M agree in any coordinate. The goal is to find
a matching in T of largest cardinality. A 3-bounded instance is one in which the number of occurrences of
any element of X UY U Z inT isat most 3.

Kann [14] showed that 3DM-3 is APX-hard, that is, there exists an ¢ > 0 such that it is NP-hard to
decide whether an instance has a matching of sizen or if every matching has size at most (1 — g)n. In what
follows, we denote by m the number of hyperedgesinthe set T'.

Theorem 2 GAP is APX-hard even on instances of the following form for all positive 6.
e p(i,7) = 1for all items and bins ;.
e s(i,j) =1or s(i,j) =1+ 6 for all itemss and bins j.
e ¢(j) =3 for all binsj.

Proof. Given an instance I of 3DM-3 we create an instance I = (B, S) of GAP asfollows. In I’ we have
m bins by, ..., b, of capacity 3 each, one for each of the edges e, ..., e, inT. For each element 7 of X
we have an item z; in I' and similarly y; for j € Y and z;, for k € Z. We also have an additional 2(m — n)
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itemsinl’, uq,...  Ug(m—n)- We set al profitsto be 1. It remains to set up the sizes. For each item 4, and
bin b, we set s(up, b)) = (1 + §). For an item x; and bin b, we set s(z;,by) = 1if i € e, and (1 + 9)
otherwise. The sizes of items y; and z;, are set similarly.

We claim that 3 items can fit in abin & if and only if they are the elements of the edge ¢. Thus bins
with 3 items correspond to a matching in 7'. It then follows that if I has a matching of size n, then I has a
solution of value 3n + 2(m — n). Otherwise, every solution to 7 has value at most 3n — ¢y - n + 2(m —n).
The APX-hardness now follows from the fact that . = O(n) for bounded instances. O

A similar result can be stated if only profits are allowed to vary.
Theorem 3 GAP is APX-hard even on instances of the following form:
e each item takes only two distinct profit values,
e each item has an identical size across all bins and there are only two distinct item sizes, and

e all bin capacities are identical.

Proof. The reduction is once again from 3DM-3. Given an instance I of 3DM-3 we create an instance
I' = (B,S) of GAP asfollows. In I’ we have m bins by, ... , b, of capacity 3 each, one for each of the
edgeser, ..., ey, inT. For each element i of X we have anitem z; in I’ and similarly y; for j € Y and z,
for k € Z. We aso have an additional m — n items w, ..., uy,—n, Where s(up, by) = 3 and p(up, by) = 4
for any additional item w, and a bin b,. Fix a positive constant 6 < 1/3. For an item z; and bin b, we set
p(zi, b)) = 1+ difi € e and 1 otherwise. The profits of items y; and z;, are set similarly. The sizes of
items z;, y; and z;, are all set to 1 each.

It is now easy to verify that if instance I has a matching of size n, there exists a solution to 1 of value
4(m —n) + 3n(1 + J). Otherwise, every solution to I' has value at most 4(m — n) + 3n(1 + ) — nep - 0.
As above, the APX-hardness now follows from the fact that m = O(n). O

Notice that Theorem 3 is not a symmetric analogue of Theorem 2. In particular, we use items of two
different sizesin Theorem 3. Thisis necessary as the special case of GAP where all item sizes are identical
across the bins (but the profits can vary from bin to bin), is equivalent to minimum cost bipartite matching.

Proposition 2 Thereisa polynomial time algorithm to solve GAP instances where all items have identical
sizes across the bins.

3.2 A 2-approximation for GAP

Shmoys and Tardos [26] give a (1, 2) bi-criteria approximation for Min GAP. A paraphrased statement of
their precise result is as follows.

Theorem 4 (Shmoys and Tardos[26]) Given afeasible instance for the cost assignment problem, thereis
a polynomial time algorithm that produces an integral assignment such that

15



e cost of solution isno more than oPT,
e each items assigned to a bin j satisfies s(4, j) < ¢(j), and

e if abin's capacity isviolated then there exists a single itemthat is assigned to the bin whose removal
ensures feasibility.

We now indicate how the above theorem implies a 2-approximation for GAP. The idea is to sim-
ply convert the maximization problem to a minimization problem by turning profits into costs by setting
w(i,j) = L —p(i,5) where L > max; ; p(i, j) isalarge enough number to make all costs positive. To cre-
ate afeasible instance we have an additional bin §,, 1 of capacity 0 and for all items: we set s(i,m—+1) =0
and w(i,m + 1) = L (in other words p(i, m + 1) = 0). We then use the algorithm for cost assignment and
obtain a solution with the guarantees provided in Theorem 4. It is easily seen that the profit obtained by the
assignment is at least the optimal profit. Now we show how to obtain a feasible solution of at least half the
profit. Let j be any bin whose capacity is violated by the assignment and let 4 be the item guaranteed in
Theorem 4. If p(ij;, j) isat least half the profit of bin j then we retain 4; and leave out the rest of the items
in 7. In the other case we leave out 7;. This results in afeasible solution of at least half the profit given by
the LP solution. We get the following resullt:

Proposition 3 Thereis a 2-approximation for GAP.

Remark. The algorithm in [26] is based on rounding an LP relaxation. For MKP an optimal solution to the
linear program can be easily constructed in O(n logn) time by first sorting items by their profit to size ratio
and then greedily filling them in the bins. Rounding takes O(s7 log n) time. We also note that the integrality
gap for the LP relaxation of GAP is afactor of 2 even for instances of MKP with identical bin capacities.

4 A Greedy Algorithm

We now analyse a natural greedy strategy: pack bins one at atime, by applying the FPTAS for the single
knapsack problem on the remaining items. Greedy(e) refersto this algorithm with e parameterizing the error
tolerance used in the knapsack FPTAS.

Claim 3 For instances of MKP with bins of identical capacity, the algorithm Greedy(e) gives a (i%l —
O(€))-approximation.

Proof. Let X be the set of items packed by some optimal solution. Let X; denote the set of itemsin X
that remain after Greedy packs the first (5 — 1) bins and let ¥; be the items packed by Greedy in the jth
bin. Since the bin capacities are identical, by a simple averaging argument it is easy to see that p(¥) >
(1 —€)p(X;)/m. Simple algebra gives the resut. O
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Claim 4 For MKP, the algorithm Greedy(e) gives a (2 + ¢)-approximation.

Proof. Let X; denote the set of items that some fixed optimal solution assigns to the jth bin and which do
not appear anywhere in Greedy’s solution. Also, let Y; denote the items that Greedy packs in the jth bin.
Then we claim that p(Y;) > (1 — €)p(X;) since X; was available to be packed when Greedy processed
bin j. This follows from the greedy packing. Thus we obtain3~7", p(Y;) > (1 —€) 372, p(X;). If

>i=1p(X;) > oPT/2 we are done. Otherwise by definition of the X;'s, Greedy must have packed the
other half of the profit. Thisimplies the claimed (2 + ¢)-approximation. O

Remark. Claim 4 isvalid even if the item sizes (but not profits) are a function of the bins, an important
special case of GAP that is aready APX-hard. The running time of Greedy(e) is O(mnlog1/e + m/é)
using the algorithm of Lawler [17] for the knapsack problem. Claim 4 has been independently observed in

12].

A Tight Example: We show an instance on which Greedy’s performance is no better than 2. There are two
items with sizes 1 and o < 1 and each has a profit of 1. There are two bins with capacities 1 and « each.
Greedy packs the smaller item in the big bin and obtains a profit of 1 while oPT = 2. This also shows that
ordering bins in non-increasing capacities does not help improve the performance of Greedy.

5 Conclusions

An interesting aspect of our guessing strategy is that it is completely independent of the number of bins
and their capacities. This might prove to be useful in other variants of the knapsack problem. One recent
application isin obtaining a PTASfor the stochastic knapsack problem with Bernoulli variables [7].

The Min GAP problem has a (1, 2) bi-criteria approximation and it is NP-hard to obtain a (1,3/2 — €)-
approximation. In contrast GAP has a 2-approximation but the known hardness of approximation is (1 +¢)
for avery small but fixed ¢. Closing this gap is an interesting open problem.

Another interesting problem is to obtain a PTAS for MKP with an improved running time. Though
an FPTAS is ruled out even for the case of two identical bins, a PTAS with a running time of the form
f(1/e)poly(n) might be achievable. The identical bin capacities case might be more tractable than the
general case. Extending our ideas to achieve the above mentioned running time appears to be non-trivial.
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