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Abstract

This paper introduces a polynomial time approxima-
tion scheme for the metric Correlation Cluster-
ing problem, when the number of clusters returned is
bounded (by k). Consensus Clustering is a funda-
mental aggregation problem, with considerable applica-
tion, and it is analysed here as a metric variant of the
Correlation Clustering problem. The PTAS ex-
ploits a connection between Correlation Cluster-
ing and the k-cut problems. This requires the intro-
duction of a new rebalancing technique, based on mini-
mum cost perfect matchings, to provide clusters of the
required sizes.

Both Consensus Clustering and Correlation
Clustering have been the focus of considerable recent
study. There is an existing dichotomy between the
k-restricted Correlation Clustering problems and
the unrestricted versions. The former, in general, admit
a PTAS, whereas the latter are, in general, APX-hard.
This paper extends the dichotomy to the metric case,
responding to the result that Consensus Clustering
is APX-hard to approximate.
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1 Introduction

In this paper, we present a polynomial-time approxima-
tion scheme for the k-Consensus Clustering prob-
lem. The interest in this problem, and our solution to
it, lies in the following three areas.

Application Consensus Clustering, in which
we are asked to produce a single clustering that best
summarizes a number of input clusterings, is a natural
example of an aggregation problem. It bears some
similarity to Rank Aggregation, which is useful
for combining the outputs of a collection of search
tools. There will be situations in which a user wishes
to restrict the number of clusters returned from this
process, perhaps due to some prior knowledge, which
motivates the study of k-Consensus Clustering.

Answering a theoretical question With the
particular metric we use to describe the distance
between two clusterings, the Consensus Cluster-
ing problem becomes a special case of the metric-
Correlation Clustering problem. There is a di-
chotomy between variants of the Correlation Clus-
tering problem in which there is no restriction on the
number of clusters returned, and those that have a (k-)
bound on the number of clusters returned. The latter
are frequently easier to approximate (see below), and
we show that this dichotomy extends to metric variants.
There has been considerable recent interest in the ap-
proximability of the Consensus Clustering [1] and
Rank Aggregation problems [6, 20]. In particular,
Bonizzoni et al. showed that Consensus Clustering
is APX-hard [5]; our paper is a response to this result.

We have recently learnt that, in work simultane-
ous to ours, two other papers have each produced a
PTAS for k-Consensus Clustering [4, 19]. Boniz-
zoni et al.’s result is an extension of Giotis and Gu-
ruswami’s [16] PTAS for Correlation Clustering
on 0/1-weighted graphs. Karpinski and Schudy’s PTAS
is part of a broader study of PTASes for Constraint Sat-
isfaction Problems. The PTAS in this paper extends to
the (more general) metric-Correlation Clustering
problem.

Theoretical techniques This paper is the first
to develop an explicit link between results and proof
approaches to k-Cut problems and those for k-
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Correlation Clustering (also called k-CC) prob-
lems. We observe that once the optimum cluster sizes
have been determined—in a k-restricted problem this
can be done by guessing—we ought to be able to trans-
form k-Cut-inspired algorithms to k-CC. Developing
the techniques to achieve this is the nub of this paper.

With these points in mind, we open the paper with
some background concerning the Consensus Clus-
tering and Correlation Clustering problems, and
their link to k-Cut problems.

2 Background

2.1 Problem definitions In the Consensus Clus-
tering problem, we are given m input clusterings
C1, C2, . . . , Cm of some collection of items and a metric
∆ on the clusterings. The task is to return a single clus-
tering, C, of the collection that minimizes

∑
i ∆(C, Ci),

that is, a median clustering.
The Mirkin metric, commonly used in the theory

community, states that the distance between two clus-
terings is the number of pairs of items that are separated
in one clustering yet co-clustered in the other cluster-
ing. We now cast this as a graph problem and, there-
fore, view pairs of items as edges in a graph. If we let
wc(e) be the proportion of the {Ci} that separate the
endpoints of e and wu(e) be the proportion that cluster
them together, then our objective is to minimize

(2.1)
∑

e∈Ec(C)

wu(e) +
∑

e∈Eu(C)

wc(e) ,

where Ec(C) are the edges that are cut by C and Eu(C)
those not cut by C. In fact, Equation 2.1 is exactly
the min-CC objective [1]; we note in passing that the
complementary max-CC objective is∑

e∈Ec(C)

wc(e) +
∑

e∈Eu(C)

wu(e) .

Now, when the edge weights wu and wc are gener-
ated from a Consensus Clustering instance, the wc

quantities obey the triangle inequality. We can therefore
view Consensus Clustering as a specific case of the
metric version of min-CC, which is the problem that
will be the principal focus of this paper. Henceforth, we
will refer to wc as δ and wu as 1 − δ. The Consen-
sus Clustering min-CC and max-CC problems, and
relatives, can be specified to have an upper bound, k,
on the number of clusters produced, which is of utmost
relevance to us here.

2.2 Our observations There has been some prior
work on PTASes for the metric k-Cut and min-k-
uncut problems, which we introduce below. The stan-
dard objectives for these problems are max-k-Cut(C) =

∑
e∈Ec(C) δ(e) and min-k-Uncut(C) =

∑
e∈Eu(C) δ(e).

The inspiration for the proof approach in this paper
came from the following observation.

max-k-CC(C)

= 2
∑
Ec(C)

δ(e) +
∑
Eu(C)

(1− δ(e))−
∑
Ec(C)

δ(e)

= 2 max-k-Cut(C) + |Eu(C)| −∆

(2.2a)

min-k-CC(C)

= 2
∑
Eu(C)

δ(e) +
∑
Ec(C)

(1− δ(e))−
∑
Eu(C)

δ(e)

= 2 min-k-Uncut(C) + |Ec(C)| −∆ ,

(2.2b)

where ∆ is the sum of the edge weights:
∑
e δ(e) (a

constant). If we find a good approximation to min-
k-uncut with the same cluster sizes (and thus the
same number of edges cut) as the optimal min-k-CC
solution, we have a good approximation to min-k-CC.
The existing algorithms for the metric min-k-uncut
problem do not, however, provide a sufficient guarantee
concerning the consequent cluster sizes.

As far as the authors are aware, there is no previ-
ous work on metric min-k-uncut cut problems with
constrained cluster sizes. Fernandez de la Vega et
al. [10] made some progress with a PTAS for the metric-
min-Bisection problem; they conjecture that it could
lead to an algorithm for metric-min-2-uncut with con-
strained cluster sizes.

Our contribution, therefore, is to add significant
components to these algorithms so that we can obtain
appropriate cluster sizes. We achieve this principally
through a novel re-balancing step, based on a Bipartite
Matching problem, which we analyse in Section 5.3.
There are many other technical details that we develop
to incorporate the re-balancing.

2.3 Applications Gionis et al. highlight a number
of applications of Consensus Clustering algorithms.
These include: clustering categorical data, where we
view each category as a separate clustering of the same
data, clustering heterogeneous data, dealing with miss-
ing values in some attribute, inferring the correct num-
ber of clusters (though not in the k-restricted case), de-
tecting outliers, making more robust clusterings, and
preserving privacy [15]. Filkov and Skiena apply Con-
sensus Clustering to the task of combining clustering
solutions from diverse microarray data sources, incorpo-
rating noise elimination [13].
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2.4 Prior work on Consensus Clustering and
Correlation Clustering Table 1 summarizes the ap-
proximation results for the variants of Consensus
Clustering, providing a context for our contributions.
We note a few results that are of particular relevance to
this paper.

The Correlation Clustering problem was first
introduced to the theory community by Bansal et al. [3].
Giotis and Guruswami [16] were the first to investigate
the fixed-k (number of clusters) case, providing a PTAS
for 0/1 instances for both min-k-CC and max-k-CC. It
is was not clear to us how to extend their result to arbi-
trary, or even metric or consensus-based weights; Boniz-
zoni et al. were, however, able to exploit a connection
to the Giotis and Guruswami PTAS [4]. In the con-
text of metric weights, Ailon et al. [1] showed that their
LP-based algorithm is a 2-approximation for general
metric-min-CC and, further, an 11/7-approximation for
Consensus Clustering. The minimisation version
of Consensus Clustering is known to be APX-hard
even with just three input clusterings [5].

2.5 Outline of paper In the next section, we then
provide an overview of the theoretical techniques, before
developing them in full in the remainder of the paper.
In Section 4 we describe the algorithms in sufficient
detail to understand their operation. Their full details,
and the justification of their properties, are developed
in Section 5. The Appendix contains all proofs of
theorems, lemmas, et cetera that are not presented in
the main text.

3 Proof Techniques

In order to understand our PTASes for max-k-CC and
min-k-CC, we must grasp the basic intuition behind the
PTASes for the metric min-k-uncut problem [18, 11].

3.1 Maximization The maximization PTAS for
metric-max-k-cut was developed by Fernandez de la
Vega and Kenyon [12], based on (amongst others) the
dense-Max-Cut PTAS of Arora et al. [2]. For k-CC,
we can use another dense-max-k-cut PTAS, by Frieze
and Kannan [14], in a straightforward way to give a
PTAS for the metric-max-k-CC problem, exploiting
that PTAS’s ability to work on negatively-weighted in-
stances. We demonstrate this approach in Section 4.1.

3.2 Minimization The idea is to employ a maxi-
mization PTAS for a minimization problem. For some
instances, a good maximization approximation is not
good for the minimization objective, as the optimal min-
imization objective is very low. However, such instances
have (other) special properties. Indeed, Indyk [18], and

subsequently Fernandez de la Vega et al. [11], exploit
a well-separatedness quality of min-k-uncut instances
that are not approximable by the max-k-cut PTAS.
They show that an algorithm based on representative
sampling will lead to a good-quality solution to the
metric-min-k-uncut problem. In Section 5.4, we will
show that the pairs of clusters in min-k-CC instances
that the max-k-CC PTAS does not approximate well
also share the same well-separatedness quality, and thus
can be separated by representative sampling.

Phases of the PTAS Fernandez de la Vega et al.’s
algorithm for metric min-k-uncut operates in three
basic phases. In phase one, they sample representatives
in order to approximately separate large clusters from
one another.1 In phase two, they extract small clusters
(which could not be obtained by sampling). In phase
three they apply a maximisation PTAS to properly
separate the large clusters that could not be easily
separated in phase one, because they were too close to
one another.

For the min-k-CC problem, in addition to exploit-
ing the closeness of the clusters, a PTAS would need to
follow Equation 2.2b. That is, the PTAS would need
to ensure that the number of edges cut is the same as
the optimal solution; this is ensured by obtaining the
correct cluster sizes. Fernandez de la Vega et al.’s al-
gorithm makes no guarantee about cluster sizes, and
there is no straightforward way to ensure that it does.
We therefore develop a new phase two, which achieves
Fernandez de la Vega et al.’s purpose (separating small
clusters), but has the additional, more important prop-
erty of ensuring correct sizes of all clusters.

A Perfect Matching We achieve the correct clus-
ter sizes in phase two by solving a perfect matching
problem instance. In order to analyse this matching
and bound the cost of the clustering that it generates,
we develop a novel approach, which could be used for
any application of such a matching step. The idea is to
bound the mistakes that the matching makes in assign-
ing points to clusters.

The key technique here is the use of pairing func-
tions. These functions pair a point v that, at the end of
phase two, should have, according to the optimal solu-
tion, been in a particular cluster, but was not, with an-
other point, p(v), that was placed in that cluster at the
end of phase two, but should not have been. Through
judicious choice of such a pairing function p, we ob-
tain for each relevant mis-classified point, a small orbit
of points that could be simultaneously re-classified to
reach an alternative clustering that is also a potential
solution to the matching problem. In this way, we can

1Concepts such as large will be defined carefully in Section 5.
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Table 1: Summary of approximation results for k-CC and k-Cut type problems. Our contributions are indicated
by (∗). Note that in most cases a problem is APX-hard if the number of output clusters is not restricted, but has
a PTAS if there is a k-bound.

MAX MIN

unrestricted fixed-k unrestricted fixed-k

k-Cut N/A N/A
` 0/1 0.878 [17, 21]
` dense PTAS [2]
` metric PTAS [12] PTAS [18, 11]

k-CC
` 0/1 PTAS [3] PTAS [16] 3 [3, 7, 1] PTAS [16]

APX-hard [7]
` weighted 0.7666 [7, 22] APX-hard [9, 7]

APX-hard [7]
` metric PTAS (∗) 2 [1] PTAS (∗)
` consensus PTAS (∗) 11/7 [1] PTAS (∗) [4, 19]

APX-hard [5]

make the smallest number of changes possible to the
optimal clustering in order to achieve the essential fea-
tures of our output clustering (that is, the observance
of group boundaries).

4 The Algorithms

4.1 Maximization The first step for the max-k-CC
algorithm is to form a new set of edge weights (some
of which may be negative) thus. Define Ḡ = (V,E, δ̄),
where δ̄ = 2δ − 1. The second step is to apply Frieze
and Kannan’s PTAS for dense max-k-cut to Ḡ [14].

The following theorem of Frieze and Kannan, com-
bined with the fact that the optimum solution must be
at least |E|/2, shows that the two comprise a PTAS for
metric max-k-CC.

Theorem 1. (Frieze and Kannan [14], Thm 1)
There is an algorithm, that given a graph Ḡ = (V,E, w̄),
with weight function w̄ : E → [−1, 1], and a fixed ε > 0,
computes in polynomial time a k-clustering C such that:

max-k-Cut(C) ≥ max-k-Cut∗−εn2

Corollary 1. If |E| ∈ Ω(n2), then the Frieze-Kannan
algorithm, acting on Ḡ provides a PTAS for max-k-CC
(on G).

4.2 Minimization Recall that, following the style of
Fernandez de la Vega et al.’s PTAS for min-k-uncut,
our algorithm operates in a number of phases.

Phase Zero: Guess the size |Ci| of each cluster in
the optimal solution C; we assume |Ci| ≥ |Ci+1|.
Given these sizes, let k0 be the number of clusters

that are large, also guessed. Guess a function g
that assigns the large clusters to groups; a group
consists of a contiguous subsequence of the {Ci} in
which Ci and Ci+1 are close. The small clusters
are assigned to a single group, separate from the
large clusters. For each large cluster Ci, uniformly
sample a point ci ∈ V . If ci satisfies some centrality
property, defined in Section 5, we say that ci is
a representative of Ci. Section 5 shows that this
happens with sufficiently high probability for all
large clusters.

Phase One: Define a clustering D1 by assigning each
point v ∈ V to the large cluster such that the quan-
tity |Ci|δ(v, ci)—an estimate of

∑
x∈Ci

δ(v, x)—is
minimised.

Phase Two: Define D2 by solving the following Bi-
partite Matching problem:

1. Guess the number of mistakes made by Phase
One. That is, let Fii′ = Ci ∩ D1

i′ , and guess
the size of each Fii′ . For each i, i′ we therefore
wish to place |Fii′ | points from D1

i′ in D2
i .

2. The cost of placing v in D2
i we define to be

δ̃i(v) =

{
|Ci|δ(v, ci) if Ci is large, or
0 if Ci is small.

3. We can choose a D2, subject to the |Fii′ |
terms, to minimise the total δ̃ using an ap-
plication of Bipartite Matching.
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Phase Three: Consider the cluster groups formed by
D2. Cluster those points assigned to the group of
small clusters by recursing this algorithm. Each
group of large clusters will in fact have its internal
clusters determined by the max-k-CC PTAS de-
scribed above; note that the group boundaries of
D2 are observed.

5 Analysis of the PTAS for metric min-k-CC

To understand the analysis, we first need to understand
the purpose of phases two and three. Phase three makes
no inter-group changes: we need to ensure that D2

creates clusters that observe the optimal groups well.
Phase three totally recreates the clusters within each
group, forming clustering D3, so we are not so concerned
with D2’s intra-group boundaries.

Instead of D2, we will consider another clustering
C2: a combination of D2 and C. C2 makes the same
inter-group mistakes as D2, and is thus a candidate
solution for phase three. However, within each group,
C2 will be like C, and thus will be a good solution to the
Correlation Clustering problem.

Our first aim is to show that C2 is a good min-k-CC
approximation to C. Our second is to prove that D3,
the outcome of Phase Three, will indeed approximate
C2, and thus C, well.

5.1 Phase Zero We must now define carefully a
number of quantities and constructs.

• c∗ is the min-k-uncut cost of the clustering C
(which is optimal for the min-k-CC objective).

• If δ(u, v) is the distance between u and v, define
δ(A,B) =

∑
a∈A,b∈B δ(a, b), and δ(A) = δ(A,A).

Let δi(v) = δ({v}, Ci) be the distance between v
and Ci from the optimal solution.

• Since we are describing a PTAS, we have been
given an ε, so let Ij = (εj+1, εj ]. Let j0 < k2 be
the minimum j such that for every i, i′, the ratio
|Ci|/|Ci′ | /∈ Ij . Let k0 = argmaxi |Ci| ≥ εj0 |C1|. A
cluster Ci is large if i ≤ k0 and small otherwise,
and m is the size of the smallest large cluster. We
can see by the above definition that the size of all
small clusters is in O(ε)m.

• A point ci is a representative point of cluster Ci if
δi(ci) ≤ 2δ(Ci)/ni. There is a good chance that our
sampled representatives will satisfy this definition:

Lemma 1. (F. de la Vega et al., Lemma 5)
For each i ≤ k0 large, let ci be chosen uniformly
at random, and independently, from V . Then with

probability at least [εj0/(2k)]k: each ci chosen is a
representative of Ci.

If all ci are representatives, then the following
lemma holds:

Lemma 2. (F. de la Vega et al., Lemma 4)
For all i ≤ k0 large, |δ̃i(v)− δi(v)| ≤ 2δ(Ci)/|Ci|.

• Let β = |C1|/(mε). Let Ci, Cj be two large clusters.
Then i and j are close if δ(Ci, Cj) ≤ β

[
δ(Ci) +

δ(Cj)
]
. We now define a group mapping function

g : [k] → {0, 1, . . . , γ}, for some γ ≤ k0. If i > k0,
g(i) = 0. Otherwise, if i, i′ ≤ k0, and there exists
a sequence of indices x1 = i, x2, . . . , x` = i′ such
that Cxz

and Cxz+1 are close, and z < `, then
g(i) = g(i′). We say two clusterings X and Y are
g-equivalent if g(X (v)) = g(Y(v)) for all v ∈ V .

5.2 Phase One Phases one and two together form
good group boundaries. The aim of phase one is to
separate large clusters in a min-k-uncut sense (it is a
step from a min-k-uncut algorithm). Phase one makes
no attempt to separate small clusters, nor to ensure
cluster sizes are correct (which would lead to a good
min-k-CC solution). The only result we need to borrow
from Fernandez de la Vega et al. concerns the number of
items that are in incorrect clusters at the end of phase
one.

Lemma 3. (F. de la Vega et al. Lemma 11) Let
i, i′ ≤ k0, g(i) 6= g(i′) be large clusters in different
groups. Then |Fii′ | ≤ O(ε)m.

This lemma arises from the definition of closeness and
the properties of cluster representatives.

5.3 Phase Two To analyse phase two, we define a
clustering C2 and show that it is a good min-k-CC
clustering of V . Remember that we want C2 to make
the same inter-group mistakes as D2, whilst imitating C
within groups. It is tempting to define C2 in a similar
fashion to Fernandez de la Vega et al.’s C as:
(5.3)

C2FKKR(v) =

{
D2(v) if v grouped wrongly by D2,
C(v) otherwise.

However, this clustering is unfair to D2; it ignores
one main aim of D2, which is to get the cluster sizes
right. If we instead choose a C2 that also has correct
cluster sizes, we will be able to use (2.2) to relate C2 min-
k-uncut performance to its min-k-CC performance.
In addition, since we will use the fact that D2 is a
minimum-cost matching, we will require that C2 also
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be the result of a matching, albeit not one of minimum
cost.

In order to achieve correct cluster sizes, we will have
to relax the condition (5.3) slightly. As D2 has correct
cluster sizes, for each v that is mis-clustered across
group boundaries from cluster i to cluster i′ by D2, there
is another point u (which we will later call p−1(v)) which
is mis-clustered into cluster i by D2. Although u may
not be mis-clustered across group boundaries, we will
make sure that C2 also mis-clusters u.

In the next section we will precisely define a set V1,
with the property that

(5.4)
{
v is placed in the wrong group by D2

}
⊆ V1

Then we define:

C2(v) =

{
D2(v) if v ∈ V1,
C(v) otherwise.

Our main focus will be to ensure V1 is not too large—we
want C2 to be as similar to C as possible.

Defining V1. Define Gii′ to be D2
i ∩ D1

i′ . The
elements of Gii′ are the vertices that move from cluster
i′ to cluster i in Phase Two. By definition, |Gii′ | =
|Fii′ |. Indeed, Gii′ is our attempt at finding Fii′ ; if we
had Gii′ = Fii′ for all i, i′, we would have D2 = C.

For each (i, i′), the sets Fii′ and Gii′ are of the
same size. We can therefore find a pairing function p
(a bijection) between them. There are many choices of
such pairing functions, but we will choose one that has
the following property.

Definition 1. A pairing function p has small-loops, if,
for each v ∈ Ci, the orbit of v (the set of points reachable
from v by repeated application of p) enters each Gii′ at
most once for each i ∈ [k].

Remark 1. There exists a pairing function p with
small-loops.

Some properties of small-loop pairing functions p
are immediate. Each vertex v ∈ Fii′ ∩Gii′ has p(v) = v;
consequently, each value D2(v) is unique in a given
orbit, and so every orbit must be of length at most k.
Note also, from the definition, that an orbit is a subset
of some D1

i , all D1(v) values are the same, and that
D2(p(v)) = C(v), a fact that will be used often.

Definition 2. An orbit o is group-contained if for all
v ∈ o, g(C(v)) = g(D1(v)).

Let V1 be all vertices not in group-contained orbits. It is
not hard to show that g(D2(v)) = g(C(v)) for all v in a
group-contained orbit, and thus (5.4) holds. We notice

a few important properties of C2 immediately. The first
pertains to the points where C2 differs from C. Using
Lemma 3, we can see that:

Remark 2. The size of the set V1 is in O(εm).

The second tells us that C2 is indeed a candidate
solution for Phase Three.

Remark 3. For all v ∈ V , g(C2(v)) = g(D2(v)).

The min-k-uncut cost of C2. We now have a
definition of C2; we must work towards our first goal,
and bound its min-k-CC cost. In this section we will
bound its min-k-uncut cost, as the correctness of its
cluster sizes means that we can use (2.2) turn this into
a bound on min-k-CC cost.

To begin with, we need a Lemma which is a simple
consequence of the fact that D2 was defined using an
optimal solution to the Bipartite Matching problem
we set up in Phase Two.

Lemma 4. ∑
v∈V1

δ̃D2(v)(v) ≤
∑
v∈V1

δ̃C(v)(v)

The pairing function p linked mis-clustered vertices
with vertices that would have been better choices. In
order to show that our mistakes are not too costly, we
will show that these points are close together.

Lemma 5. ∑
v∈V1

δ(v, p(v)) ≤ O(1)
c∗

m

Proof. We sketch the proof here; a full proof appears in
the appendix.

Fix some v ∈ V1. We know that v and p(v) are
co-clustered by D1, onto say cluster D1

I , so we can use
the triangle inequality to write:

|CI |δ(v, p(v)) ≤ |CI |δ(v, cI) + |CI |δ(p(v), cI)

= δ̃I(v) + δ̃I(p(v)) .

Straightforward, but technical, arguments show
that as v ∈ V1, either C(v) or D2(v) must be large—
so by the choice made in Phase One, the first term on
the right is less than δ̃C(v)(v) + δ̃D2(v)(v).

Applying the same argument to p(v) and the second
term, summing over v ∈ V1 gives∑

v∈V1

δ(v, p(v)) ≤ 2
m

∑
v∈V1

[
δ̃C(v)(v) + δ̃D2(v)(v)

]
≤ 4
m

∑
v∈V1

δ̃C(v)(v) .

734 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



The second inequality follows from an application of
Lemma 4.

Finally, we use the fact that δ̃i approximates
δi and the bound on |V1| along with the fact that∑
v∈V δC(v)(v) = c∗ to complete the proof.

It is useful to split V1 into two different families of
subsets:

Definition 3. For each i, let Ini = C2
i \ Ci, and

Outi = Ci \ C2
i , so that C2

i = Ci + Ini−Outi.

Note that V1 =
⋃
i∈[k] Ini =

⋃
i∈[k] Outi, and that

Ini = {p(v) | v ∈ Outi}, and so |C2
i | = |Ci|.

Lemma 6. C2 is a (1 + O(ε)) approximation to C in
terms of min-k-uncut cost. Equivalently,∑

i

δ(C2
i ) ≤ (1 +O(ε))c∗ .

Proof. Again, we sketch the proof. We begin by
expanding δ(C2) in terms of Ini and Outi.

δ(C2) =
∑
i∈[k]

(
δ(Ci) + 2 [δ(Ci, Ini)− δ(Ci,Outi)] +

[δ(Ini)− δ(Ini,Outi)] +

[δ(Outi)− δ(Outi, Ini)]
)
.

Consider the second-last term,∑
i∈[k]

δ(Ini)− δ(Ini,Outi) ≤
∑
i∈[k]

∑
u∈Ini

∑
v∈Ini

δ(v, p(v))

(by the triangle inequality)

≤ |V1|O(1)
c∗

m
≤ O(ε)c∗ .

(Remark 2 and Lemma 5).

We can bound the final term the same way. Now
consider the second term, remembering the definitions
of Ini and Outi, and our notational conveniences:∑

i∈[k]

δ(Ci, Ini)− δ(Ci,Outi) =

∑
v∈V1

[
δC2(v)(v)− δC(v)(v)

]
Now, we can split this sum into those v which are

clustered in large clusters by D2 and those which are
not. For the first group, we can use Lemma 2 and our
bound on |V1| to replace the δs with δ̃s, followed by an
application of Lemma 4 to form a bound. For the second
group, as the total number of points in small clusters is
O(ε)m, we can use the triangle inequality and Lemma 5.

The min-k-CC cost of C2. Now that we have
established that C2 is a good min-k-uncut solution,
and that |C2

i | = |Ci|, we can apply (2.2) to obtain the
following theorem:

Theorem 2. C2 is a (1 + O(ε)) approximation to C in
terms of min-k-CC cost.

5.4 Phase Three We have achieved our first aim.
We have shown that there is a candidate solution C2
that phase three could find, which is a min-k-CC
approximation to C. We now show that in fact phase
three will approximate C2, and thus C.

As Phase Three operates on one group of clusters at
a time, we now need to show that the approximate so-
lutions that phase three obtains on groups are sufficient
for our purposes. Let G|j =

⋃{
D2
i , g(i) = j

}
. For the

group of small clusters, we just recurse the min-k-CC
algorithm; since

∣∣G|0∣∣ ≤ ε|V |, we can apply an inductive
argument.

For the groups of large clusters, phase three uses
the max-k-CC PTAS of Section 4.1. Remember that
a maximisation PTAS can be used for a minimisation
problem if the minimisation cost is not too low. We
will use the fact that groups of clusters are not well-
separated to show that indeed the min-k-CC is high.

We begin with the relevant lemma from Fernandez
de la Vega et al., which shows that this is the case for
the min-k-uncut objective.

Lemma 7. (F. de la Vega et al.) Let j be a group of
clusters. Then∑

g(i)=j

δ(Ci) ≥ Ω(ε3j0+1)
∑

u,v∈G|j

δ(u, v) .

This lemma tells us that a max-k-cut PTAS will
work on a group, and this is how Fernandez de la Vega
et al. use it. But we can turn it into a similar statement
about min-k-CC using the following technical lemma:

Lemma 8. Let C be a clustering of G. Let M =
maxi |Ci|. Suppose that there exist f and g such that
for all i, |Ci| ≥ f(ε)M , and that

(5.5) g(ε) max-k-cut(C) < min-k-uncut(C) ,

then

(5.6)
f2(ε)g(ε)

2
max-k-CC(C) < min-k-CC(C) .

If we let min-k-CC|j(X ) be the the min-k-CC cost
of X as a clustering of the set G|j , we have:

Corollary 2.

min-k-CC|j(C2) ≥ Ω(ε5j0+2)
(∣∣G|j∣∣

2

)
.
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Corollary 2 and the inductive argument about the
group of small clusters show us that Phase Three will
approximate C2 within each group. Finally, we need
another technical lemma to ensure that a clustering
which is good on each group is good on the entirety
of V .

Lemma 9. Suppose X and Y are g-equivalent cluster-
ings. If for each j,

min-k-CC|j(X ) ≤ (1 + f(ε))min-k-CC|j(Y)

Then, over all of V ,

min-k-CC(X ) ≤ (1 + f(ε)) min-k-CC(Y) .

Theorem 3. The algorithm in Section 4.2 is a PTAS
for the min-k-CC problem.

Proof. Lemma 9 along with Corollary 2 is enough to
show that Phase Three will find a good approximation
to the best solution g-equivalent to D2 that exists.
Theorem 2 has shown that C2, which is g-equivalent
to D2, is a good approximation to C. Thus we have the
required bound on the quality of the solution of D3. The
running time of the algorithm is polynomial, as it is the
combination of PTASes, the guessing of O(k) values,
and the solution of a Bipartite Matching problem.

6 Conclusions

The main contribution of this paper was a PTAS for
the metric-min-k-CC problem, a generalization of the k-
Consensus Clustering problem, which has a number
of key applications. The minimization PTAS has a novel
rebalancing step, involving a minimum-cost perfect bi-
partite matching, and complements the APX-hardness
of Consensus Clustering. We anticipate that this
rebalancing technique will find application in other sit-
uations where the sizes of clusters are constrained.

Naturally, the PTAS presented here, like that of
Giotis and Guruswami [16], is too slow to run in
practice. It would be fruitful, therefore, to look for local-
search approaches that have approximation guarantees,
as we have done in the past [8].
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A Proofs

A.1 Proof of max-k-CC PTAS First we prove
that a solution to the negatively-weighted max-k-cut
problem that we set up in Section 4.1 will indeed provide
a solution to our max-k-CC problem. Note that ec(C)
is defined to be |Ec(C)|, and eu(C) is |Eu(C)|.

Remark 4. Let G = (V,E, δ) be a weighted graph.
Define Ḡ = (V,E, δ̄), where δ̄ = 2δ − 1. Then, for
any k-clustering C,

max-k-CC(G, C) = max-k-Cut(Ḡ, C) + |E| −∆ .

Proof.

max-k-CC(G, C) = max-k-Cut(G, C) + eu(C)
−min-k-Uncut(G, C)

= max-k-Cut(G, C) +
[
|E| − ec(C)

]
+
[
max-k-Cut(G, C)−∆)

]
= 2 max-k-Cut(G, C)
− ec(C) + |E| −∆

=
∑

e∈Ec(C)

(2w(e)− 1) + |E| −∆

= max-k-Cut(Ĝ, C) + |E| −∆ .

Remark 4 tells us, for instance, that the optimal solution
to max-k-cut on Ḡ is the same as the optimal solution
of max-k-CC on G.

Proof of Corollary 1

Proof. Let C be the solution returned by algorithm FK,
run on Ĝ, and C∗ be the optimal solution to max-k-CC.
Then, by Remark 4,

max-k-CC∗ −max-k-CC(C)
= max-k-cut(Ĝ, C∗)−max-k-cut(Ĝ, C)
≤ max-k-cut(Ĝ)∗ −

[
max-k-cut(Ĝ)∗ − εn2

]
= εn2

and we are done, since max-k-CC* is in Ω(n2).

A.2 Proofs from Phase Two

Proof of Remark 1

Proof. It is simple to find such a pairing function;
suppose we have a pairing function p such that v1, v2 ∈
Gi′i are in the same orbit. That is, px(v1) = v2 for some
x. Then, as v1, v2 are both in Gi′i, there are two nodes
w1, w2 ∈ Fi′i such that p(w1) = v1 and p(w2) = v2.
Then we can define a new pairing function p′ such that
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Gi’i
w1

v1

v2

w2

p

p
p i−1

(a) Pairing function p: v1 and v2 are on

the same orbit, yet both in Gi′i.

Gi’i
w1

v1

v2

w2

p

pp i−1

(b) Pairing function p′: v1 and v2 are

now on two distinct orbits.

Figure 1: Changing a pairing function p to p′ in order
to make smaller loops.

p′(w2) = v1, p′(w1) = v2, and p′(w) = p(w) otherwise.
The procedure is demonstrated in Figure 1.

After this change, p′ is still a pairing function,
and v1 and v2 are now on separate orbits (v1 on a
loop of length x). Repeated application of the above
procedure will lead to a pairing function with small
loops. Since points that were not on the same orbit
before the procedure are not on the same orbit after the
procedure, the repeated application must terminate.

Proof of Remark 2

Proof. By definition, each non-group contained orbit
has some vertex with g(D1(v)) 6= g(C(v)), that is, in
Fii′ with g(i) 6= g(i′). From Lemma 3, we know that∑
g(i)6=g(i′) |Fii′ | ∈ O(k2εm), if i, i′ ≤ k0. In addition,

if i > k0, then |Fii′ | ≤ |Ci|, as it is a subset, and this
is less than εm. Each (small-loop) orbit has at most k
vertices, which proves the Remark.

Proof of Remark 3

Proof. Clearly points in V1 are g-equivalent. If v ∈
V \ V0, then also p−1(v) ∈ V \ V0, and so we know
g(C(p−1(v))) = g(D1(p−1(v)) = D1(v)) = g(C(v)).
Now, we know by definition that D2(v) = C(p−1(v))
and that C2(v) = C(v), completing the proof.

Proof of Lemma 4

Proof. To prove this, we appeal to the optimality of D2

as a solution to the Bipartite Matching problem on
G̃. Consider another solution to Bipartite Matching,
µ, defined as µ(v) = C(v) for v ∈ V1 and µ(v) = D2(v)
otherwise. This function indeed provides a matching, as
C(v) = D2(p(v)) for any v, and no orbit enters or leaves
V1. So, considering the costs of the two matchings, as
D2 is optimal, and only differs from µ on V1, the lemma
follows.

Full Proof of Lemma 5 The only important detail
that is omitted from the main text is why for any
v ∈ V1 either C(v) or D2(v) is large. This follows from
a corollary to the following remark:

Remark 5. Without loss of generality, if g(C(v)) =
g(D2(v)) = 0, then C(v) = D2(v).

Proof. Suppose this is not the case for some v satisfying
g(D2(v)) = g(C(v)) = 0, but not D2(v) = C(v). We
will define a new optimal solution to the Bipartite
Matching problem, D2′ , which is g-equivalent to D2.
Repeating in this fashion for all v failing the condition
will lead to a clustering that satisfies Remark 5. Define
D2′ identically to D2, except let D2′(v) = C(v), which
is of course D2(p−1(v)), and D2′(p−1(v)) = D2(v).
Thus v and p−1(v) are exchanging roles. We can
then reduce p to regain the small loops property. As
g(D2(v)) = g(D2′(v)) = 0 the assignment cost in the
Bipartite Matching is unchanged, so D2′(v) is an
optimal solution. Moreover, D2′ is g-equivalent to D2,
and has clusters of the same sizes as D2. So none of the
later of the analysis will be affected, and we assume D2

has the required property.

Corollary 3. No orbit has two consecutive nodes
mapped to small clusters by C.

Proof. Suppose that g(C(p−1(v))) = g(C(v)) = 0 for
some v 6= p(v). This would imply that g(D2(v)) = 0
also, and therefore from Remark 5, that D2(v) = C(v).
Finally, this implies D2(v) = D2(p(v)), which breaks
the small loops property.
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Full Proof of Lemma 6 To begin with, we prove the
statements made relating Ini to Outi:

Proof. Let X = {p−1(v) | v ∈ Ini}. If v ∈ Ini,
then C2(v) = i 6= C(v) and v is not in a group-
contained orbit. Let u = p−1(v), then u ∈ X, and
C(u) = D2(p(u)) = D2(v) = C2(v) = i, which also
implies u 6= v. On the other hand, C2(u) 6= C2(v) = i,
by the small loops property, so u ∈ Outi. Consequently,
X ⊆ Outi. A similar argument in the other direction
shows that Outi ⊆ X.

We break the sketch up into a few parts:

Remark 6.

δ(C2
i )− δ(Ci) ≤ 2 [δ(Ci, Ini)− δ(Ci,Outi)] +O(ε)c∗ .

Proof. Expanding δ(C2
i ) gives

δ(C2
i ) = δ(Ci) + 2 [δ(Ci, Ini)− δ(Ci,Outi)]

+ [δ(Ini)− δ(Ini,Outi)]
+ [δ(Outi)− δ(Outi, Ini)] .

Consider the second-last term,

δ(Ini)− δ(Ini,Outi) =
∑
u∈Ini

[δ(u, Ini)− δ(u,Outi)]

=
∑
u∈Ini
v∈Outi

[δ(u, p(v))− δ(u, v)]

≤
∑
u∈Ini
v∈Outi

δ(v, p(v))

(triangle inequality)

≤ |V1|
∑
v∈V1

δ(v, p(v))

(Ini,Outi ⊆ V1)
≤ O(ε)c∗ .

(Remark 2 and Lemma 5)

We can bound the final term in the same way, which
completes the proof.

Remark 7.∑
i∈[k]

δ(Ci, Ini)− δ(Ci,Outi)

=
∑
v∈V1

[
δC2(v)(v)− δC(v)(v)

]

Proof. From the statements relating Ini and Outi:∑
i∈[k]

δ(Ci, Ini)− δ(Ci,Outi)

=
∑
i∈[k]

∑
v∈Ini

[
δi(v)− δi(p−1(v))

]
=
∑
i∈[k]

∑
v∈Ini

[
δC2(v)(v)− δC(p−1(v))(p−1(v))

]
For a vertex u in V1 that is not in some Ini, p(u) = u,
so the corresponding term inside the brackets above is
zero. Therefore the right hand side is, after separating
the terms,∑

v∈V1

δC2(v)(v)−
∑
v∈V1

δC(p−1(v))(p−1(v))

=
∑
v∈V1

δC2(v)(v)−
∑
v∈V1

δC(v)(v) ,

as v ∈ V1 implies p−1(v) ∈ V1.

Proof. [Proof of Lemma 6.] From Remarks 6 and 7,∑
i

δ(C2
i ) ≤

∑
i

δ(Ci) +O(ε)c∗

+
∑
v∈V1

[
δC2(v)(v)− δC(v)(v)

]
Now, ∑

v∈V1
g(C2(v))6=0

δC2(v)(v)−
∑
v∈V1

g(C(v))6=0

δC(v)(v)

≤
∑
v∈V1

g(C2(v))6=0

δ̃C2(v)(v)−
∑
v∈V1

g(C(v))6=0

δ̃C(v)(v)

+ |V1|
4c∗

m
∈ O(εc∗) ,

from Lemma 2, Lemma 4, and Remark 2. In contrast,∑
v∈V1

g(C2(v))=0

δC2(v)(v)−
∑
v∈V1

g(C(v))=0

δC(v)(v)

=
∑
v∈V1

g(C(v))=0

δC(v)(p(v))−
∑
v∈V1

g(C(v))=0

δC(v)(v)

Now, an application of the triangle inequality shows
that δC(v)(p(v))− δC(v)(v) ≤ |CC(v)|δ(v, p(v)), so∑

v∈V1,g(C(v))=0

[
δC(v)(p(v))− δC(v)(v)

]
≤

∑
v∈V1,g(C(v))=0

|CC(v)|δ(v, p(v))

≤ O(1)
s

m
c∗+ ≤ O(ε)c∗ ,

739 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



where the final inequality follows from Lemma 5 and
the facts that |CC(v)| ≤ s and s ≤ mε.

Proof of Theorem 2 The theorem is an application
of the following Lemma:

Lemma 10. If f(ε) satisfies min-k-Uncut(C2) ≤ (1 +
f(ε)) min-k-Uncut(C), then

min-k-CC(C2) ≤ (1 + 2f(ε)) min-k-CC(C) .

Proof. Note that, for any clustering X :

min-k-CC(X )
= min-k-Uncut(X ) + ec(X )−max-k-Cut(X )
= 2 min-k-Uncut(X ) + ec(X )−∆ .

Consider

min-k-CC(C2)−min-k-CC(C)
= 2

(
min-k-Uncut(C2)−min-k-Uncut(C)

)
+ ec(C2)− ec(C)

≤ 2f(ε) min-k-Uncut(C))
= f(ε) [min-k-CC(C)− (ec(C)−∆)]
≤ 2f(ε) min-k-CC(C) .

The last inequality above follows from this reasoning

∆− ec(X )
= min-k-Uncut(X ) + max-k-Cut(X )− ec(X )
= min-k-Uncut(X ) + ec(X )−max-k-Cut(X )
− 2(ec(X )−max-k-Cut(X ))

≤ min-k-CC(X ) ,

which is a consequence of

max-k-Cut(X )

=
∑

e∈Ec(X )

δ(e) ≤
∑

e∈Ec(X )

1 = ec(X ) .

A.3 Proofs from Phase Three

Proof of Lemma 8

Proof. For convenience, let

X = max-k-cut(C) W = ec(C)−X
Y = min-k-uncut(C) Z = eu(C)− Y ,

all positive quantities. Also, let f stand for f(ε) and g
for g(ε). Then

X +W = ec(C) =
∑
i<j

|Ci||Cj | ≥
∑
i<j

f2M2

≥ f2M
2k

2
,

And

Y + Z = eu(C) =
∑
i

(
|Ci|
2

)
≤
∑
i

(
M

2

)
= k

(
M

2

)
≤ M2k

2
.

Combining these, we have,

(A.1) X +W ≥ f2(Y + Z) ≥ f2Z

Consider the following:

f2g(X + Z)− 2(Y +W )

= g(f2Z) + f2gX − 2(Y +W )

≤ g(X +W ) + f2gX − (f2 + 1)Y − 2W
(by (A.1), and f ≤ 1)

= (f2 + 1)(gX − Y ) + (g − 2)W < 0
(as gX < Y , and g ≤ 1),

which completes the proof.

Proof of Lemma 9

Proof. Note that

min-k-CC(X ) =
∑
j∈[γ]

min-mj-CC(X|j)

+
∑

g(X(u))6=g(X (v))

(1− δ(u, v)) ,

and similarly for Y. The g-equivalence of X and Y tells
us that the rightmost summation is common to both
clusterings, leading to the statement of the lemma.
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