
Approximation Algorithms for Data Placement in
Arbitrary Networks

Ivan D. Baev* R a j m o h a n R a j a r a m a n t

Abstract

We study approximation algorithms for placing repli-
cated data in arbitrary networks. Consider a network
of nodes with individual storage capacities and a metric
communication cost function, in which each node pe-
riodically issues a request for an object drawn from a
collection of uniform-length objects. We consider the
problem of placing copies of the objects among the
nodes such that the average access cost is minimized.
Our main result is a polynomial-time constant-factor
approximation algorithm for this placement problem.
Our algorithm is based on a careful rounding of a linear
programming relaxation of the problem. We also show
that the data placement problem is MAXSNP-hard.

We extend our approximation result to a general-
ization of the data placement problem that models ad-
ditional costs such as the cost of realizing the place-
ment. We also show that when object lengths are non-
uniform, a constant-factor approximation is achievable
if the capacity at each node in the approximate solution
is allowed to exceed that in the optimal solution by the
length of the largest object.

1 Introduction

Consider a set of distributed caches in a large-scale in-
formation system such as a digital library, an informa-
tion repository within an organization, or the World
Wide Web. A powerful paradigm to improve cache ef-
fectiveness is cooperation, whereby caches cooperate in
serving one another's requests and in making storage
decisions. Such cooperation is particularly attractive in
environments where the caches trust one another such
as within an Internet service provider, a web hosting ser-
vice, or a corporate intranet. Cooperative caching helps
for two reasons: it prevents excessive replication by hav-
ing caches access objects from other nearby caches and
it allows a busy cache to utilize a nearby idle cache.

- " ~ t . of Electrical and Computer Engineering, Northeastern
University, Boston, MA 02115. Email: baev@ece.neu.edu.

tCollege of Computer Science, Northeastern University,
Boston MA 02115. Emaih rraj0ccs.neu.edu. Supported by
NSF CAREER award NSF CCR-9983901.

A number of studies, beginning with the taxonomy de-
veloped in [15] have discussed the benefits of coopera-
tive caching in distributed file systems and large-scale
information systems. These studies include analytical
results (e.g., [5, 21, 24, 35]), simulation experiments
(e.g., [8, 16, 18, 33]) and prototypes and products (e.g.,
Harvest [9, 10], xFS [2, 14]).

This paper considers the data placement component
of cooperative caching, which determines a static place-
ment of replicated objects among the nodes of a net-
work in accordance with a given access pattern. More
precisely, given a network of nodes with a communica-
tion cost function, individual storage capacities of the
node caches, and a demand function describing the ac-
cess pattern of each node for each object, we study the
problem of determining a placement of objects to the
caches such that the average access cost, taken over all
nodes and all objects, is minimized.

Overview of the model . The "cost" of communica-
tion in wide-area networks is a function of many pa-
rameters, including edge delays, edge capacities, buffer
space, communication overhead, and patterns of user
communication. Ideally, we would like to take all
of these factors into account when optimizing perfor-
mance; such a task, however, may not be feasible in
general because the network parameters interact in a
complex manner. For this reason, we adopt a simplified
model in which the combined effect of the detailed net-
work parameter values is captured by a single function
that specifies the cost of communicating a fixed-length
message between any given pair of nodes. As in several
previous studies [3, 7, 22, 25], we assume that the cost
function defines a metric; i.e., it satisfies nonnegativity,
symmetry, and the triangle inequality.

We evaluate the quality of a given placement by the
average cost of an access request under the placement,
the average being taken over all nodes and all objects.
Since a placement may place multiple copies of an object
in the network, we need to specify the cost of satisfying
an access request for a given object at a given node.
We assume that any request at a node is satisfied by
a copy of the requested object that is nearest to the
node. This assumption is justified by the existence of

661

distributed directory services that direct each request
to a nearby, if not the nearest, copy of the requested
object [6, 16, 29, 34].

Our problem formulation is most suitable for ap-
plications where the objects are rarely written and the
global pattern of accesses does not change rapidly. For
simplicity, we assume throughout that the objects are
read-only. Our results also apply to the case where the
objects are written infrequently and there is a separate
mechanism to maintain consistency among the replicas.

Overview of our results. The main result of this pa-
per is a polynomial-time constant-factor approximation
algorithm for the data placement problem with uniform-
length objects. Our algorithm, described and analyzed
in Section 4, is based on a careful rounding of a linear
programming relaxation of the problem. Our rounding
scheme builds on techniques developed recently for the
k-median problem [11] and consists of a series of trans-
formations to the problem instance and the fractional
LP solution. A major technical challenge in the round-
ing process is to preserve the individual node capac-
ity constraints in the final integral solution, while only
giving up a constant factor in the approximation. The
problem transformations that we perform during round-
ing lead to a fractional solution in which the assignment
of individual node demands to fractional object copies
forms a flow. This enables the formulation of an ap-
propriate minimum cost flow problem that captures the
capacity constraints. We finally invoke the flow integral-
ity theorem to derive an integral solution. We also show
that the placement problem is MAXSNP-hard (see Sec-
tion 3), thus indicating that our approximation result is
asymptotically the best possible.

We extend our approximation results in two direc-
tions in Section 5. First, we derive a constant-factor ap-
proximation for a generalization of the placement prob-
lem that also models the cost of realizing the place-
ment. Second, we give a polynomial-time algorithm for
the placement problem with non-uniform object lengths.
This algorithm yields a solution with cost within a con-
stant factor of the optimal cost, assuming a slight in-
crease in the capacity of each node. It can be easily
shown that when object lengths are non-uniform, it is
NP-hard to obtain any polynomial-time approximation
algorithm without resource augmentation.

Re la t ed work. The data placement problem, even
though formulated in the specialized context of access-
ing a distributed data repository, can be viewed as a
generalization of the facility location problem with mul-
tiple types of facilities and constraints on the number
of facilities located at a point. Indeed, as mentioned
above, our approximation algorithms draw on several

techniques developed for the k-median and facility lo-
cation problems in recent years. For a survey of results
related to facility location see [13, 32].

Dowdy and Foster [15] initiated the study of co-
operative caching in the context of allocating files in
a distributed network. A sequence of results [3, 7, 25]
describe improved algorithms for centralized as well as
distributed file allocation. These results, however, do
not consider cache capacities at the individual nodes.
Awerbuch, Bartal, and Fiat [4] provide a polylog(n)-
competitive on-line algorithm for the general placement
problem under the assumption that the size of each
cache in the on-line algorithm is polylog(n) times more
than the size in the optimal algorithm. In contrast, we
obtain a constant-factor approximation algorithm for
the off-line version of the problem on arbitrary networks
without any blowup in the cache sizes.

Left, Wolf, and Yu [24] study the placement prob-
lem for a network of workstations, which they model
as a single-level hierarchy. In addition to providing an
optimal centralized algorithm, they give heuristics for a
distributed solution. These results have been improved
upon in [23], where exact and approximation algorithms
are given for the placement problem in hierarchical net-
works. In a recent experimental study [22], Korupolu
and Dahlin evaluate the practical performance of sev-
eral placement and replacement algorithms including
the ones developed in [23] for cooperative caching in
hierarchical networks.

By adopting a fixed cost function as our communi-
cation model, we endeavor to separate the concerns of
caching (a higher-level operation) from routing (a lower-
level operation). In contrast, several previous studies
have incorporated network topology and routing infor-
mation into the caching problem. For example, the al-
gorithms developed in [19, 30, 35] tend to cache copies
of an object in nodes that are close to the path along
which the object is being transferred. Routing informa-
tion is also used in the placement algorithms developed
in [26, 28], where the primary goal is to minimize net-
work congestion that may occur when access requests
and objects are routed within the network.

2 P r o b l e m def in i t ion

Let Af be a network of n nodes and let • be a collection
of m objects. For each pair of nodes i and j , let
cost(i, j) denote the cost of transmitting a unit-length
message between these two nodes. We assume that
the cost function defines a metric space; that is, it
is nonnegative, symmetric and satisfies the triangle
inequality. Each node i, which may act as both a client
and a server, has capacity Size(i) of space devoted to
the storage of the objects in ~. The n nodes periodically

662

issue access requests for the m objects, the rate of which
is given by the demand function d. For each node j
and object a, el(j, a) represents the frequency of node i
accessing object a.

A placement P is a function Af --~ 2 ~ that yields
for each node the set of objects stored in that node.
For a placement to be valid, the sum of the lengths of
the objects stored at any node must be at most the
capacity of the node. For any node j and object a,
the demand-weighted cost access(j,a) of accessing a
at j equals d(j, a) • cos t (i , j) , length(a), where i is the
node nearest to j that has a copy of a in the placement
and length(a) is the length of object a. The cost of a
placement is given by the sum, taken over all nodes j
and all objects a, of access(j, a).

The data placement problem can be written as an
integer linear program (ILP) as follows. For each object
a in ~, let binary variable y(i ,a) , i E A f, indicate if
node i is selected to store a copy of object k, and binary
variable x (i , j , a) , i , j EAf, indicate if node j is assigned
to access the copy of object a stored at node i.

min E E d(j ,a) . cost(i , j) . length(c~) . x (i , j , a)
aEO i,jE N

subject to

(2.1) Z x (i , j , a) = 1
iEN

x (i , j , a) _< y(i ,a)

length(a), y(i, a) < Size(i)

x (i , j , a) E {0,1}

y(i, a) E {0, 1}

j E A f , a E ~

i , j E Af, a e

i e A f

i , j E A f , a E ¢

i E A f , a E @ .

3 Hardness of approximability

This section establishes two results on the hardness
of approximating the optimal data placement. Our
first result concerns the data placement problem with
uniform-length objects. By means of an approximation-
preserving reduction from a special case of the unca-
pacitated facility location problem, we show that the
problem is MAXSNP-hard.

THEOREM 1. The data placement problem with
uniform-length objects is MAXSNP-hard.

Proof: We use a reduction from the metric uncapac-
itated facility location problem, henceforth referred to
as UFL. In UFL, we are given a set N = {1 , . . . ,n} of
n locations and a subset F C N of locations at which
we may open a facility. For each location i in F , there
is a cost f i for opening a facility at i. Each location
j in N has demand dj. Given a set S of open facility

locations, the demand at any location j in N is served
by the location in S nearest to j . For any two locations
i and j , we have a cost c/j of shipping a unit of demand
from i to j . These costs form a metric. The objective
in U F L is to determine a set of open facilities such that
the total facility and shipping cost is minimized.

Our reduction is from a special case of U F L in
which the facility cost at each node in F is identical. It
has been shown in [17] that U F L with uniform facility
costs is MAXSNP-hard. Given such an instance of
UFL, we construct the following instance of the metric
data placement problem. The set of nodes is the set
N of n locations in U F L and a special node F. The
communication cost function among the nodes in N
is the same as the shipping cost in UFL, while the
communication cost between any node i in N and F
is given by a large number M which is set to be the
maximum among all the distances in the U F L instance.
We have [F I + 1 objects, an object labeled 0, and an
object having a label for every node in F. For each j
in { 1 , . . . , n } , if the demand at j in U F L is dj, then in
the metric data placement instance, j has demand dj
for object 0. In addition, each node j in F has demand
f / M for object j , where f is the facility cost in the UFL
instance. Finally, each node in F has capacity 1, each
node in N - F has capacity 0, and node F has capacity
I F] + 1. This completes the construction of the instance
of the data placement problem.

For any solution S for the given U F L instance with
cost C, we construct the following placement that also
has cost C. Each node i in S stores a copy of object 0,
each node i in F - S stores a copy of object i, while node
F stores a copy of every object. The total access cost for
object 0, taken over all nodes in N, equals the shipping
cost in the U F L instance, while the total access cost for
the objects in F - S equals the facility cost. Hence the
total cost of the placement is C.

Given any placement P for the data placement
instance with cost C, we now show that if S is the set
of nodes in F that have a copy of the object 0 in P ,
then the cost of the solution S for the U F L instance is
at most C. Clearly, the shipping cost of S equals the
total access cost for object 0 in P . Of the objects in
F , only IF - SI of them are stored in F; thus, the total
access cost associated with the objects in F is at least
ISI • M . (f / M) = [sir, which is the facility cost of S.

We now establish the MAXSNP-hardness of the
data placement problem. Let S* be an optimal solution,
with cost C*, for a given instance of UFL. It follows
that there exists a placement for the corresponding
data placement instance with cost at most C*. Since
any placement for the data placement instance can be
transformed into a solution to the U F L instance with

663

no increase in cost, any p-approximation to the data
placement problem implies a p-approximation to UFL,
thus yielding a contradiction. •

A reduction from the PARTITION problem estab-
lishes the following theorem. We defer the proof to the
full version of the paper.

THEOREM 2. There is no polynomial-time approxima-
tion for the data placement problem with non-uniform
object lengths unless P = NP. II

4 A constant-factor approximation algorithm
for uniform-length objec ts

Our approximation algorithm for uniform-length ob-
jects is obtained by rounding a linear programming re~
laxation of ILP (2.1) with length(a) = 1 for every ob-
ject a. We relax the integrality constraints for the bi-
naxy variables to obtain a linear program (LP) in which
y(i ,a) e [0,1] and x (i , j , a) E [0,1] for all i , j ,a . This
LP, which can be solved efficiently, forms the basis for
an approximation algorithm. Let (x*, y*) denote an op-
timal solution to the LP relaxation and let C* denote
its objective function value. By means of several trans-
formations, we round (x*,y*) to a feasible solution to
ILP (2.1) of cost at most 20.5C*. We begin with a brief
outline of our rounding algorithm.

1. We first simplify the given problem instance I by
consolidating demands of nearby nodes (along the
lines of [12] for the k-median problem). We show
that any integral solution for the new instance I1 can
be transformed into a solution for I at the expense of
at most 4C* in total cost.

2. We next modify the assignment of "demand nodes"
(the nodes with positive demand) to object copies so
that at least a (1/2)-fraction of any requested object
is accessible within a "local neighborhood" of the
requesting node. Furthermore, the remaining at most
(1/2)-fraction is satisfied by fractional copies located
in a local neighborhood around the nearest demand
node. This transformation increases the cost by a
factor of at most 3.

3. We next change the fractional object locations and
the fractional assignment such that for each demand
node, either exactly a (1/2)-fraction or the entire
object is satisfied by the fractional copies in the local
neighborhood around the node. This is done without
any increase in cost by solving an appropriately
formulated minimum-cost flow problem involving all
objects. We refer to the resulting solution as a hail-
primary solution.

4. For each object, we construct a directed graph, which
we refer to as a demand graph, that has a vertex for

each demand node and an arc from vertex j to vertex
j ' if the fractional object copies in the local neigh-
borhood of j ' together serve half an object to j. We
perform another set of demand consolidations that
moves demand from certain nodes to their neighbors
in the demand graphs, and splits the demand graphs
into a collection of one-level trees. This leads to a new
instance Z2 for which the current solution has cost no
more than 15C*/4. Furthermore, any solution to the
new instance can be transformed to a solution for I1
for an additive cost of 3C*.

5. On the basis of the one-level trees derived in Step 4,
we perform a final set of demand and assignment con-
solidations. In the resulting fractional solution each
fractional object copy serves at most one demand
node. This implies that the assignment of demand
to fractional object copies in the new solution forms
a flow for the new instance 2~3. The increase in cost
as a result of this transformation is at most 51C*/4.

6. Finally, we formulate instance I3 as a minimum-
cost flow problem for which the fractional solution
obtained after Step 5 is feasible. This flow problem
involves all objects and captures the individual cache
capacity constraints. Since the problem instance
consists of integral edge capacities only, there is an
optimal solution that is integral and can be computed
in polynomial-time.

Steps 1 through 6 yield an integral placement for Z3,
which can then be converted to an integral placement
for I via the reverse transformations arising out of
Steps 5, 4, and 1. We obtain the following theorem.

THEOREM 3. There exists a polynomial-time 20.5-
approximation algorithm for the data placement problem
with uniform-length objects.

The following six subsections (Sections 4.1
through 4.6) describe Steps 1 through 6, respectively.
In the following, we will adopt the notation that (Xk, Yk)
is the solution obtained after Step k. In Section 4.7, we
put together the claims of Sections 4.1 through 4.6 to
derive Theorem 3.

4.1 Consolidating demands. We simplify the given
problem instance Z by consolidating demands of nearby
nodes. We do not change the LP solution (x*,y*) but
modify the demands to obtain a new instance Z1. This
transformation is separately applied for the individual
objects. The demand consolidation we perform for
a given object is identical to Step 1 of [12]. In the
following, we briefly describe the consolidation step and
state a lemma that bounds the resulting cost increase.

664

Let a be any object. Let the average access cost Cj~
denote the cost that the optimal LP solution pays for
assigning one unit of demand at node j for c~. Tha t is,
Cja equals ~ i e N cost(i,j)x*(i,j,v~). Let Bja denote
the ball of radius 2Cja around j . We set the new
demands such that for all pairs of nodes j , j ' , both with
positive demand, cost(j,j ') > 2max(Cja,Cj,~). We
go through the nodes in nondecreasing order of their
average access cost for object a and move the demands
at certain nodes to others. Without loss of generality,
let us renumber the nodes in nondecreasing order of
their average access cost for a. While processing
node j we perform the following operation: if there
exists a node j ' < j with positive demand such that
cost(j,j ') < 4Cj~, then we move the demand at j to
j ' , and set the demand at j for c~ to be 0. It is easy
to see that at the end of this step, for all pairs j , j ' of
nodes with positive demand, the condition cost(j, j ') >
4max{Cjc~,Cj,~} implies that the balls Bja and Bj, a
around j and j ' , respectively, do not overlap. Since the
above transformation does not modify the solution, we
have (xl, yl) = (x, y). The following lemma establishes
an upper bound on the increase in cost due to Step 1.

LEMMA 4.1. The cost of (xx,yl) on instance 271 is
at most C*. Furthermore, any integral solution for
instance 271 can be transformed into an integral solution
for instance 27 at an additional cost of at most 4C*. •

In the remainder of Section 4, we use the term
"demand node" for an object c~ to refer to any node
that has positive demand for a.

4.2 Consolidating assignments. The second step
transforms the assignment xa to a new assignment x2.
Fix object a and consider any demand node j for c~.
We transform the fractional assignment x l (- , j , a) to
x2(. , j , cr) as follows. We differentiate between three
kinds of nodes that serve a fractional copy of a to
node j . We refer to a node i in B/a serving object
a to node j as a primary server of a for j . We refer
to a node i ¢ Bja serving ct to j as a secondary
server of a to j if j is the demand node for c~ that
is nearest to i (breaking ties arbitrarily). We refer
to any other node serving o~ to j as a tertiary server
of c~ for j . For each primary and secondary server
i, we keep the assignment xl (i , j , vO; that is, we set
x2 (i, j , a) = xl (i, j , c~). For each tert iary server i, we set
x2(i,j , a) to 0 and distribute the fractional assignment
xl(i,j,c~) among the nodes in a ball Bj, a around j ' ,
where j ' # j is the demand node for a tha t is nearest
to j . The preceding transformation leads to a valid
fractional solution since the sum of fractional object
copies in the primary servers for any node is at least

1/2, while the fractional demand of j served by tert iary
servers is at most 1/2.

We now place an upper bound on the increase in
cost incurred as a result of the transformation in Step 2.
Let P , S, and T denote the total cost of accessing the
objects from primary, secondary, and tert iary servers,
respectively, in the solution (xl ,yl) for instance 51.
Since the assignment to primary and secondary servers
is unchanged, the cost of accessing the objects from the
primary and secondary servers in (x2, Y2) is P and S,
respectively. We note that P + S + T equals C*.

We now consider the cost of accessing objects from
the tert iary servers. For any demand node j , the per-
unit cost of accessing object c~ from a tert iary server
is at most cost(j,j ') + 2Cfc,, where j ' is the demand
node for a that is nearest to j . Since cost(j,j ') >
4Cj, a, it follows that the per-unit cost of accessing a
from a tert iary server is at most 3cost(j, j l) /2. While
considering the cost of assigning to ter t iary servers, we
charge 3cost(j, y) / 2 per unit demand, and refer to the
resulting cost as the auxiliary tertiary cost. We denote
the auxiliary tert iary cost for a at node j by t(j, a).
Throughout the remainder of our analysis, we maintain
the invariant that the auxiliary tert iary cost is an upper
bound on the total tert iary cost. Consider a tert iary
server i of j for object a in xl . We now show that
the per-unit auxiliary tert iary cost for serving a to j in
x2 is at most 3cost(i,j). Let j l # J be the demand
node for cr that is nearest to i. Since cost(i,j) >
cost(i,jl), it follows from the triangle inequality that
cost(j,j ') <_ cost(j, jx) < cos t (j , i)+ cost(i,jl) <
2cost(i, j). Therefore, the auxiliary tert iary cost of
(x2,y2) is at most thrice the tert iary cost of (xl ,yl) .
We thus have the following lemma.

LEMMA 4.2. The primary and secondary cost of
(x2,y2) for Z1 equal P and S, respectively, while the
auxiliary tertiary cost of (x2, Y2) is at most 3T. •

4.3 A half-primary solution. The solution (x2, y~)
satisfies the following properties for each object c~: (i)
for each demand node j for object ~, at least a (1/2)-
fraction of the demand at j is satisfied by primary
servers; (ii) the remaining at most (1/2)-fraction is
served by secondary arid ter t iary servers. In Step 3, we
construct a solution (x3,Y3) in which for any demand
node j of object a, the primary servers together serve
either exactly a (1/2)-fraction of a or the whole object
c~ to j . We refer to the solution thus obtained as a
half-primary solution.

To obtain a half-primary solution, we formulate a
minimum cost flow problem on a network N that is an
extension of a bipartite graph G = (A, B, E) , where A
and B form the bipartition of G and E is the set of

665

edges between them. The set A contains two copies
of each pair (j , a) such that a is an object and j is
a demand node for a. We refer to the two copies as
primary and nonprimary. The set B consists of all
nodes, together with a special node labeled F. We
have an edge between the primary copy of (j,a) in
A to every node i in B that is a primary server of
object a for j in the solution (x2,y2). This edge has
a lower capacity of 0 and an upper capacity of 2. (For
an edge in a minimum-cost flow problem, we use the
terms lower capacity and upper capacity to refer to the
lower and upper bounds, respectively, on the amount
of flow that can pass through the edge.) The cost of
the edge is dl(j,a)cost(i,j), where dl is the demand
function for instance 271. Similarly, we have an edge
between the nonprimary copy of (j, a) in A to every
node i in B that is a secondary server of object c~ to
j in the solution (x2,y2). This edge too has a lower
capacity of 0 and an upper capacity of 2. The cost of the
edge is dx(j, a)cost(i,j). We also have an edge from the
nonprimary copy of j to the special node F with lower
capacity 0, upper capacity 2, and cost t(j, ~). (Recall
tha t t(j, a) is the auxiliary ter t iary cost of accessing
object a at node j .)

In addition to the nodes in G, the network N
includes a set D of nodes and a distinguished source
s and a distinguished sink t. The set D is another copy
of the set of all node-object pairs. For every node-object
pair (j, a) , there are two edges outgoing from its copy
in D: (i) one to the primary copy of the pair in A with
lower and upper capacities 1 and 2, respectively; and
(ii) the other to the nonprimary copy of the pair in A
with lower and upper capacities 0 and 1, respectively.
The cost of both of these edges is 0. The source s has
an edge to every node (j, a) in D with a lower capacity
of 2, upper capacity of 2, and cost 0. Finally, we have
a sink t which has an edge incoming from every vertex
i in B with a lower capacity of 0, upper capacity of
2Size(i), and cost 0, and an edge incoming from the
special vertex F with a lower capacity of 0, an upper
capacity of cx~, and cost 0. The minimum-cost flow
formulation is illustrated in Figure 1.

Lemmas 4.3 and 4.4 establish the correspondence
between 271 and the minimum-cost flow problem.

LEMMA 4.3. For any feasible flow f in N, there is a
fractional solution for instance 271 with cost at most half
off the cost of f .

P r o o f : We construct a fractional solution (x l , y I)
for instance 271 as follows. We set yl(i ,a) equal to
half the total flow coming into i from any primary or
nonprimary node labeled (j, a) for any j . Clearly, y l
satisfies the capacity constraints. We now define the

[2, 2, 0 ~ - ~ - - ~ , a) ~l~O~jfl, Size(i), oJ

D A B

Figure 1: The minimum-cost flow problem formulated in
Step 3. Each edge is labeled with a triple [£,u,c], where ~,
u, and c represent the lower capacity, upper capacity, and
the cost of the edge, respectively. Labels have been shown
for the edges from the source to vertices in D, from vertices
in D to vertices in A, and from vertices in B to the sink.
An edge from the vertex "primary (j, o~}" in A to the vertex
i in B has the label [1,2,dl(j,v~)cost(i,j)], while an edge
from the vertex "nonprimary (j, a)" to the vertex i in B
has the label [0, 1,dl(j ,a)cost(i , j)] . An edge from vertex
"nonprimary (j, a)" to F has label [0, 1, t(j, a)].

assignment x f. For each pair of nodes i and j and
object a, we set x](i , j ,a) equal to half the flow from
a primary or nonprimary node (j, o~) to i. (Note that
there is an edge from at most one of the primary or
nonprimary copies of (j, a) to any other node i.) As a
result of the assignment, the fraction of the demand at
any node for object a tha t is satisfied by the primary
servers is at least 1/2. Furthermore, the cost incurred by
the assignment thus far is exactly half the cost incurred
along the edges to the nodes in the set B.

It still remains to assign a fraction of the demand
for object a at node j tha t corresponds to half the flow
from the nonprimary copy of (j, c~/ in A to the special
node F. This can be distributed among the pr imary
servers of a for a node jt ~ j which is the demand node
nearest to j . Since there is at least half a copy of c~
located among the pr imary servers, the assignment is a
valid one. Since t(j, a) is an upper bound on the per-
unit cost of the assignment to ter t iary servers, the upper
bound on the cost follows. •

LEMMA 4.4. There is a flow in N with cost at most
twice the cost of the solution (x2,Y2) for instance 271.

P r o o f : Consider the following flow along the edges
from A to B. For an edge from a copy of (j , a) to
i, we have a flow of 2x2 (i, j, a). Since x2 (i, j , o~) < 1,
the capacity constraints at these edges are satisfied.
The flow from nonprimary vertices (j, a) to the special
vertex F equals twice the fraction of the demand for
object c~ at node j satisfied by ter t iary servers.

We now define the flows from the vertices in D, the
source, and the sink. The flow from a vertex (j, a) in D

666

to a copy of (j, c~) in A is the sum of the flows going out
of the copy in A. Since the fraction of the demand
satisfied by the primary (resp., secondary) servers is
at least 1/2 (resp., 0) and at most 1 (resp., 1/2), the
capacity constraints on these edges are satisfied. The
flow from the source s to (j, c~) in D is the sum of the
flows going out of (j, c~) and the flow from vertex i in
B to sink t is the sum of the flows coming into i. The
capacity constraints at the edges coming out of s are also
satisfied since the total fraction of the demand satisfied
in solution (x2, Y2) is 1. Finally, the capacity constraints
at the edges coming into t are satisfied since the capacity
constraints at the nodes are satisfied in (x2, Y2).

Since the flows are twice the assignment values, the
upper bound on cost immediately follows from the flow
definitions. •

Lemma 4.3 and 4.4 lead to the following claim.

LEMMA 4.5. There exists a half-primary solution
(x3,Y3) for 271 with cost at most the cost of (x2,y2).

Proof: By the integrality theorem, we can determine
in polynomial time an integral flow f* in N of minimum
cost that satisfies all of the capacity constraints. From
the integral flow f*, we derive a new solution (x3,Y3)
using the correspondence defined in Lemma 4.3. Since
ff* is integral, we see that the fraction of demand served
by the primary servers of each node is either exactly
1/2, or exactly 1. Moreover, the cost of (x3,y3) is at
most the cost of (x2, y2). •

At the end of Step 3, we have a half-primary
solution (x3,y3) with total cost at most P + S + 3T.

4.4 Constructing demand graphs and consoli-
dating demands. For each object c~, we construct de-
mand graphs, the edges of which indicate the assignment
of demand at the demand nodes for a to ter t iary servers.
We construct a directed graph D~(N', A') in which N '
is the set of demand nodes for object a. We have an
arc from node j E N ' to node j ' E N ' if the primary
servers in the ball Bj, c~ around j ' are tert iary servers for
j with respect to object c~ in the solution (x3, Y3). Since
each node has out-degree at most 1 and there is an edge
from a demand node j to another demand node j ' only
if j ' is the closest demand node to j , it follows that any
cycle in each connected component of the graph Da is
of length at most 2. Furthermore, there is at most one
such cycle in any component of Da.

For each component of Da, we select a root. If the
component is a tree, then the root is simply the root
of the tree. Otherwise, we break the unique 2-cycle in
the component as follows. We move the demand from
the node in the cycle with smaller demand to the node
with larger demand. We then select the node with zero

demand as the root. We define the level of each node
as the distance to the root, in terms of the number of
edges in Dot. By definition, each node j that is not a root
has exactly (1/2)-fraction of its demand for a served by
its primary and secondary servers, and exactly (1/2)-
fraction served by the servers located in the ball Bj, a,
where j ' is the parent of j in Da.

We now consolidate the demand to obtain a new
instance I2. If the total auxiliary tert iary cost of odd-
level nodes is at most half the total auxiliary tert iary
cost of all nodes, then we move the demand at every
odd-level node of the demand graph (except the root)
to its parent; otherwise, we move the demand at every
even-level node (except the root) to its parent. Note
that the solution (x3, Y3) is a valid solution for Z2.

We now place upper bounds on the cost of (x3,y3)
and the increase in cost when a solution for Z2 is
transformed to a solution for Z1 by simply moving the
relevant demands back. Let M denote the set of nodes
the demands of which are moved in this consolidation.

LEMMA 4.6. The total primary and secondary cost of
(x3,Y3) for 172 is at most P + S + 3T/4. The total
auxiliary tertiary cost of (x3,y3) for 172 is at most 3T.

Proof." The cost of (xa,y3) for 172 can be expressed
in terms of the cost of the same solution for 171 as
follows. For any node j in M, the per-unit auxiliary
tert iary cost in 17~ is at most the per-unit auxiliary
tert iary cost in 171 since the distances along the arcs
are nondecreasing with increasing level. Therefore, the
total auxiliary tert iary cost of (xa, Y3), when applied to
172, is at most 3T. Furthermore, the per-unit primary
and secondary cost at j for 172 is at most half the per-
unit auxiliary tert iary cost at j for 171. Since the total
auxiliary tertiary cost associated with the nodes in M
is at most 3T/2, it follows that the total primary and
secondary cost of the solution (x3, Y3), when applied to
instance 272, is at most P + S + 3T/4. •

LEMMA 4.7. Any integral solution for 272 can be trans-
formed to an integral solution for 171 at the cost of an
additional 3T in total cost.

Proof: We transform any solution for 172 into a
solution for 171 as follows. We maintain the object copy
locations as in the given solution. For a demand node
j in instance 171 that is also a demand node in 172, we
maintain the same assignment. Finally, for a demand
node j of 271 that is not a demand node in 172, the
assignment is the same as for that node j ' to which the
demand at j is moved as a result of the transformation.
The per-unit cost increase at j equals the per-unit
auxiliary tert iary cost at j of solution (x3, Y3) for 271.
Since half of the demand at j is satisfied by tert iary

667

servers in the solution (xa,y3), and the total auxiliary
tert iary cost of the nodes in M is at most 3T/2, the
increase in total cost is at most 3T. []

We note that Step 4 transforms instance/71 to 52
but does not modify the fractional solution. Thus,
(x4,y4) equals (x3,y3).

4.5 A f inal c o n s o l i d a t i o n o f demands and as-
signments. Step 4 effectively decomposes each demand
graph into several two-level trees, that is, a star config-
uration with a root at level 0 and leaves at level 1. In
each such tree, the root has no demand. We make two
transformations in Step 5. We first transform the solu-
tion (x4, Y4) to a new solution (xs, y5) as follows. In each
star, we arrange the leaves in left-to-right order accord-
ing to decreasing demand. Consider any non-leaf node
j with root r. In the assignment x4, j is served half a
copy of a by ter t iary servers located in the ball Br~. In
the new assignment Xs, we set the tert iary servers of
for j to be the servers located in the ball Bj,~, where j '
is the leaf node immediately to the left of j . The object
copy locations remain as in y4; therefore, Y5 = Y4- By
triangle inequality, the auxiliary tert iary cost of the new
solution is at most twice that of the old one, while the
total primary and secondary cost remains unchanged.
Therefore, the total primary and secondary cost is at
most P + S + 3T/4, while the total auxiliary tert iary
cost is at most 6T.

We now compute a new instance/73 by consolidating
assignments. Let the leaves of each star be numbered
left to right, starting from 1. We move the demand from
every even leaf node to its immediate left neighbor. We
now place an upper bound on the cost of the solution
(xs,ys) for the new instance/73.

LEMMA 4.8. There exists a real number C such that
the cost of (xs,ys) for instance Z3 is at most 2P +
2S + 3T/2 + C and any integral solution for/73 can
be transformed into an integral solution for Z2 with an
increase in cost of at most 12T - C.

Proof." Since the leaves are arranged left to right in
increasing order of demand, the increase in the total
primary and secondary cost due to the movement of
the demand is at most the total primary and secondary
cost of (x~, Y5) in/72, which is at most P + S + 3 T / 4 . For
the same reason, the new auxiliary tertiary cost can be
upper bounded by twice the total auxiliary tert iary cost
of the demand nodes in 172 with odd labels. Therefore,
if C/2 is the total auxiliary tert iary cost of the demand
nodes in/72 that have odd labels, the total pr imary and
secondary cost (resp., auxiliary tert iary cost) of (x4, Y4)
for instance/73 is at most 2P + 2S + 3T/2 (resp., C).
We thus obtain that the cost of (x4, Y4) for instance/73

is at most 2P + 2S + 3T/2 + C.
What remains to be calculated is an upper bound

on the increase in cost, when an integral solution for/73
is transformed into an integral solution for I2. Since the
fraction of demand satisfied by ter t iary servers is 1/2,
this transformation can be done at an additional cost
of at most twice the auxiliary ter t iary cost of (x4, Y4)
incurred by the evenly labeled demand nodes in instance
/72, which is at most 2(6T - C/2) = 12T - C. []

4.6 C o m b i n i n g solutions for all objects. After
Steps 1 to 5, we obtain a solution (xs,ys) in which
each fractional copy, whether primary, secondary, or
secondary, serves at most one demand node. The last
step of our algorithm finds an integral solution to the
problem. We define a minimum cost flow problem in
which we have a biparti te graph G = (A, B, E). The
set A is the set of all node-object pairs with positive
demand, while the set B is the set of all nodes. The
flow network also includes a source s and sink t. There
is an edge between each node-object pair (j,c~) and
node i with lower capacity 0, upper capacity 1, and
cost d3 (j, o~) cost (i, j) , where d 3 (j, o~) is the demand for
a at j in/73- There is an edge from s to each node-
object pair in A with lower capacity 1, upper capacity
1, and cost 0. Finally, there is an edge between each
node j in B to t with lower capacity 0, upper capacity
Size(j) and cost 0. Clearly, the assignment x5 defines
a (fractional) flow through the network with cost equal
to the total cost of the solution (x5,y5). Note that we
crucially use the fact that for each object ~, each node
in B receives flow from at most one node-object pair
of the type (.,c~). Since all of the capacities in this
minimum-cost flow problem are integral, we obtain an
optimal integral solution (x0, Y6) to the flow problem [1]
in polynomial time. This solution yields the integral
location of the copies as well as the assignment, thus
giving an integral solution for/73.

4.7 Putt ing it all together. The solution (x6,y6)
is an integral solution for instance I3 with cost 2P +
2S + 3T/2 + 2C. We now obtain an integral solution
to the original instance /7 by performing the reverse
transformations mentioned in Steps 5, 4, and 1. By
Lemmas 4.8, 4.7, and 4.1, the additional cost equals
12T - 2C + 3T + 4 P + 4S + 4T = 4 P + 4S + 19T - 2C.
Thus, the total cost is at most 6P+6S+41T]2 , which is
at most 20.5C*. This completes the proof of Theorem 3.

5 Generalizations

This section extends the approximation result of Sec-
tion 4 in two directions, one modeling additional costs,
and the other involving non-uniform object lengths.

668

5.1 Model ing addi t iona l costs. In the data place-
ment problem studied thus far, we have assumed that
the access pattern is static; that is, the demand for each
object at each node remains fixed. In practice, however,
the demand function is likely to change with time. If
the demands are not volatile and change at a moderate
rate over time, then the data placement can be periodi-
cally recomputed to address the changes in the demand
function. Realizing a new placement from an existing
placement, however, may incur new costs since the ob-
jects need to be copied over to new locations.

Additional costs, such as transmissions required to
obtain a new placement from an existing placement, can
be easily modeled by adding a new cost component to
the objective function. For each node i and object a,
let p(i, a) denote the cost of placing object a at node i.
(This cost is analogous to the facility cost in the facility
location problem.) The cost of any placement equals
the total demand-weighted access cost of all objects and
nodes and the total cost of placing the object copies at
the nodes according to the placement. The objective
function in ILP (2.1) is redefined as

min Z Z d(j,a) . cost(i,j) . x (i , j ,a) . length(a) +
a E ~ i,jE.hf

Z P (i , a) Y (i , a) .
aE~ iEH

The additional cost of placing objects only affects those
steps of our rounding scheme where the placement
is modified. The transformation of the placement
obtained after solving the linear program only occurs
in the two minimum-cost flow calculations in Steps 3
and 6. In the full paper, we show that the flow problems
can be reformulated such that the same approximation
factor (20.5) is achieved for the new problem.

5.2 Non-uni form object lengths. This section con-
siders the data placement problem with non-uniform
object lengths. Theorem 2 of Section 3 states that no
nontrivial approximation can be obtained for the prob-
lem in polynomial time, unless P = NP. We now show
that a constant-factor approximation can be obtained in
polynomial-time with "resource augmentation". More
precisely, we show how to modify the algorithm of Sec-
tion 4 so as to achieve the same approximation for the
case of non-uniform object lengths, under the assump-
tion that the capacity for each node in the approximate
solution exceeds that in the optimal solution by the
length of the largest object.

Steps 1, 2, 4, and 5 of the rounding algorithm in Sec-
tion 4 change the demands and fractional assignments
only. These steps continue to hold the same effect in the
case where objects have non-uniform lengths. In Steps 3

and 6, minimum-cost flow computations are performed
that capture the capacity constraints. In the scenario
where objects have non-uniform lengths, we instead for-
mulate appropriate instances of the generalized assign-
ment problem [31].

We first consider Step 3. Let (x2,y2) denote the
fractional solution obtained after Step 2, and let C be
the total cost of the solution. As before, (x2, y2) satisfies
the following properties for each object a: (i) for each
demand node j for a, at least a (1/2)-fraction of a is sat-
isfied by the primary servers of j; (ii) the remaining at
most (1/2)-fraction is served by secondary and tertiary
fractional servers. We formulate an instance II1 of the
generalized assignment problem in which we have two
clients, primary and nonprimary, for each demand node
of the data placement problem, and we have a server for
each node in the data placement problem. The primary
and nonprimary clients corresponding to demand node j
and object a each have a demand of length(a)/2. Each
server node has a capacity equal to its cache capacity.
There is also a special node F with infinite capacity.
The cost of an edge between a client and a server is
length(a) times the cost of the edge in the original data
placement problem. The cost of an edge between the
vertex F and a client associated with the demand node
j and object a equals length(a) times the per-unit aux-
iliary tertiary cost t(j ,a). The given solution (x~,y2)
yields a feasible fractional solution to II1 with total cost
C. By [31], there is an integral solution to II1 with total
cost C, which, though infeasible, requires at each server
an additional capacity of at most the length of the max-
imum demand. Since the maximum demand equals half
the length of the largest object, this implies that the
capacity used up at any node i in the integral solution
is at most S/2 more than Size(i), where S equals the
length of the largest object.

A similar formulation for Step 6 incurs another
additive penalty of S/2 in the capacity of each node,
without incurring any penalty in the cost of the solution.
Thus, we have the following theorem.

THEOREM 4. For the metric data placement prob-
lem with non-uniform object lengths, there exists a
polynomial-time computable placement with cost at most
20.5 times the optimal cost, in which the capacity of each
node exceeds the capacity of the node in the optimal so-
lution by at most the length of the largest object. •

6 Concluding remarks
The approximation algorithms of Sections 4 and 5 rely
on solving large linear programs and minimum-cost flow
problems, which are computationally intensive and may
not be amenable to efficient distributed implementa-

669

tions. An interesting direction for future research is
to identify simple combinatorial algorithms that use
greedy or local search approaches. Recent results in
facility location using greedy and primal-dual tech-
niques [20, 27] may offer some insight in this regard.
Also of practical interest is a capacitated version of the
data placement problem, in which the number of re-
quests that any node can serve is bounded.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms, and Applications. Prentice Hall,
Englewood Cliffs, N J, 1993.

[2] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson,
D. S. Rosselli, and R. Y. Wang. Serverless network file systems.
In Proceedings of the 15th Sympos ium on Operating Systems
Principles, pages 109-126, 1995.

[3] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed
file allocation. In Proceedings of the P5th Annual A C M Sympo-
s ium on Theory of Computing, pages 164-173, May 1993.

[4] B. Awerbuch, Y. Bartal, and A. Fiat, Heat & Dump: Com-
petitive distributed paging. In Proceedings of the 3~th Annual
IEEE Sympos ium on Foundations of Computer Science, pages
22-31, November 1993.

[51 B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for
general networks. Journal of Algorithms, 28:67-104, 1998.

[6] B. Awerbuch and D. Peleg. Online tracking of mobile users.
Journal of the ACM, 37:1021-1058, 1995.

[7] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms
for distributed data management. Journal of Computer and
Sys tems Sciences, 51:341-358, 1995.

[8] M. A. Blaze. Caching in large-scale distributed file systems.
Technical Report TR-397-92, Department of Computer Science,
Princeton University, January 1993. PhD Thesis.

[9] C.M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F.
Schwartz. The Harvest information discovery and access system.
Computer Networks and ISDN Systems, 28:119-125, 1995.

[10] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical Internet object cache. In Proceed-
ings of the USENIX 1996 Technical Conference, pages 22-26,
January 1996.

[11] M. Charikar and S. Guha. Improved combinatorial algorithms
for the facility location and k-median problems. In Proceedings
of the $Oth Annual IEEE Sympos ium on Foundations of Com-
puter Science, pages 378-388, October 1999.

[12] M. Charikar, S. Guha, D. Shmoys, and E. Tardos. A constant-
factor approximation algorithm for the k-median problem. In
Proceedings of the 31st Annual A C M Sympos ium on Theory of
Computing, pages 1-10, May 1999.

[13] G. Cornu~jols, G. L. Nemhauser, and L. A. Wolsey. The
uncapacitated facility location problem. In Discrete Location
Theory, pages 119-171. Wiley, New York, 1990.

[14] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve file
system performance. In Proceedings of the First Sympos ium on
Operating Sys tems Design and Implementat ion, pages 267-280,
November 1994.

[15] D. Dowdy and D. Foster. Comparative models of the file
assignment problem. A C M Comput ing Surveys, 14:287-313,
1982.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. In Proceed-
ings of the 1998 A C M S I G C O M M Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication, pages 254-265, August 1998.

[17] S. Guha and S. Khuller. Greedy strikes back: Improved facility
location algorithms. In Proceedings of the 9th Annual ACM-
S I A M Sympos ium on Discrete Algorithms, pages 649-657,
January 1998.

[18] J. S. Gwertzman and M. Seltzer. The case for geographical push-
caching. In Proceedings of the 5th Workshop on Hot Topics in
Operating Systems, pages 51-57, May 1995.

[19] A. Heddaya and S. Mirdad. WebWave: Globally load balanced
fully distributed caching of hot published documents. In Pro-
ceedings of the 17th International Conference on Distributed
Computing Systems, pages 160-168, May 1997.

[20] K. Jain and V. Vazlrani. Primal-dual approximation algorithms
for metric facility location and k-median problems. In Proceed-
ings of the 40th Annual IEEE Sympos ium on Foundations of
Computer Science, pages 1-10, October 1999.

[21] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the P9th Annual A C M Sympos ium on Theory
of Computing, pages 654-663, May 1997.

[22] M. Korupolu and M. Dahlin. Coordinated placement and
replacement for large-scale distributed caches. In Proceedings
of the IEEE Workshop on Internet Applications, pages 62-71,
July 1999.

[23] M. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement
algorithms for hierarchical cooperative caching. In Proceedings
of the lOth Annual A C M - S I A M Sympos ium on Discrete Algo-
ri thms, pages 586-595, January 1999.

[24] A. Left, J. L. Wolf, and P. S. Yu. Replication algorithms in a
remote caching architecture. IEEE Transactions on Parallel
and Distributed Systems, 4:1185-1204, 1993.

[25] C. Lund, N. Reingold, J. Westbrook, and D. Yah. On-line dis-
tributed data management. In J. van Leeuwen, editor, Proceed-
ings of the Pnd Annual European Sympos ium on Algorithms,
Lecture Notes in Computer Science, volume 855, pages 202-214.
Springer-Verlag, 1994.

[26] B. M. Maggs, F. Meyer auf der Heide, B. VScking, and M. West-
ermann. Exploiting locality for data management in systems of
limited bandwidth. In Proceedings of the 38th Annual IEEE
Sympos ium on Foundations of Computer Science, pages 284-
293, October 1997.

[27] R. Mettu and C. G. Plaxton. The online median problem. In
Proceedings of the ~ l s t Annual IEEE Sympos ium on Founda-
tions of Computer Science, November 2000. To appear.

[28] Meyer auf der Heide, F. and VScking, B. and Westermann,
M. Caching in networks. In Proceedings of the l l t h Annual
A C M - S I A M Sympos ium on Discrete Algorithms, pages 430-
439, January 2000.

[29] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environment.
Theory of Comput ing Systems, 32:241-280, 1999.

[30] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal.
A dynamic object replication and migration protocol for an In-
ternet hosting service. In Proceedings of the IEEE International
Conference on Distributed Computing Systems, pages 101-113,
May 1999.

[31] D.B. Shmoys and 1~. Tardos. An approximation algorithm for the
generalized assignment problem. Mathematical Programming,
62:461-474, 1993.

[32] D. B. Shmoys, I~. Tardos, and K. Aardal. Approximation
algorithms for facility location problems. In Proceedings of the
Pgth Annual A C M Sympos ium on Theory of Computing, pages
265-274, May 1997.

[33] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design consider-
ations for distributed caching on the Internet. In Proceedings of
the 19th International Conference on Distributed Comput ing
Systems, pages 273-284, May 1999.

[34] M. van Steen, F. J. Hauck, and A. S. Tanenbaum. A model
for worldwide tracking of distributed objects. In Proceedings
of the 1996 Conference on Telecommunicat ions In format ion
Networking Architecture (T INA 96), pages 203-212, September
1996.

[35] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. A CM Transactions on Database Sys tems,
22:255-314, 1997.

670

