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Abstract  

We study approximation algorithms for placing repli- 
cated data in arbitrary networks. Consider a network 
of nodes with individual storage capacities and a metric 
communication cost function, in which each node pe- 
riodically issues a request for an object drawn from a 
collection of uniform-length objects. We consider the 
problem of placing copies of the objects among the 
nodes such that the average access cost is minimized. 
Our main result is a polynomial-time constant-factor 
approximation algorithm for this placement problem. 
Our algorithm is based on a careful rounding of a linear 
programming relaxation of the problem. We also show 
that the data placement problem is MAXSNP-hard. 

We extend our approximation result to a general- 
ization of the data placement problem that models ad- 
ditional costs such as the cost of realizing the place- 
ment. We also show that when object lengths are non- 
uniform, a constant-factor approximation is achievable 
if the capacity at each node in the approximate solution 
is allowed to exceed that in the optimal solution by the 
length of the largest object. 

1 Introduction 

Consider a set of distributed caches in a large-scale in- 
formation system such as a digital library, an informa- 
tion repository within an organization, or the World 
Wide Web. A powerful paradigm to improve cache ef- 
fectiveness is cooperation, whereby caches cooperate in 
serving one another's requests and in making storage 
decisions. Such cooperation is particularly attractive in 
environments where the caches trust one another such 
as within an Internet service provider, a web hosting ser- 
vice, or a corporate intranet. Cooperative caching helps 
for two reasons: it prevents excessive replication by hav- 
ing caches access objects from other nearby caches and 
it allows a busy cache to utilize a nearby idle cache. 
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A number of studies, beginning with the taxonomy de- 
veloped in [15] have discussed the benefits of coopera- 
tive caching in distributed file systems and large-scale 
information systems. These studies include analytical 
results (e.g., [5, 21, 24, 35]), simulation experiments 
(e.g., [8, 16, 18, 33]) and prototypes and products (e.g., 
Harvest [9, 10], xFS [2, 14]). 

This paper considers the data placement component 
of cooperative caching, which determines a static place- 
ment of replicated objects among the nodes of a net- 
work in accordance with a given access pattern. More 
precisely, given a network of nodes with a communica- 
tion cost function, individual storage capacities of the 
node caches, and a demand function describing the ac- 
cess pattern of each node for each object, we study the 
problem of determining a placement of objects to the 
caches such that the average access cost, taken over all 
nodes and all objects, is minimized. 

Overview of  the  model .  The "cost" of communica- 
tion in wide-area networks is a function of many pa- 
rameters, including edge delays, edge capacities, buffer 
space, communication overhead, and patterns of user 
communication. Ideally, we would like to take all 
of these factors into account when optimizing perfor- 
mance; such a task, however, may not be feasible in 
general because the network parameters interact in a 
complex manner. For this reason, we adopt a simplified 
model in which the combined effect of the detailed net- 
work parameter values is captured by a single function 
that specifies the cost of communicating a fixed-length 
message between any given pair of nodes. As in several 
previous studies [3, 7, 22, 25], we assume that the cost 
function defines a metric; i.e., it satisfies nonnegativity, 
symmetry, and the triangle inequality. 

We evaluate the quality of a given placement by the 
average cost of an access request under the placement, 
the average being taken over all nodes and all objects. 
Since a placement may place multiple copies of an object 
in the network, we need to specify the cost of satisfying 
an access request for a given object at a given node. 
We assume that any request at a node is satisfied by 
a copy of the requested object that is nearest to the 
node. This assumption is justified by the existence of 
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distributed directory services that direct each request 
to a nearby, if not the nearest, copy of the requested 
object [6, 16, 29, 34]. 

Our problem formulation is most suitable for ap- 
plications where the objects are rarely written and the 
global pattern of accesses does not change rapidly. For 
simplicity, we assume throughout that the objects are 
read-only. Our results also apply to the case where the 
objects are written infrequently and there is a separate 
mechanism to maintain consistency among the replicas. 

Overview of our  results.  The main result of this pa- 
per is a polynomial-time constant-factor approximation 
algorithm for the data placement problem with uniform- 
length objects. Our algorithm, described and analyzed 
in Section 4, is based on a careful rounding of a linear 
programming relaxation of the problem. Our rounding 
scheme builds on techniques developed recently for the 
k-median problem [11] and consists of a series of trans- 
formations to the problem instance and the fractional 
LP solution. A major technical challenge in the round- 
ing process is to preserve the individual node capac- 
ity constraints in the final integral solution, while only 
giving up a constant factor in the approximation. The 
problem transformations that we perform during round- 
ing lead to a fractional solution in which the assignment 
of individual node demands to fractional object copies 
forms a flow. This enables the formulation of an ap- 
propriate minimum cost flow problem that captures the 
capacity constraints. We finally invoke the flow integral- 
ity theorem to derive an integral solution. We also show 
that the placement problem is MAXSNP-hard (see Sec- 
tion 3), thus indicating that our approximation result is 
asymptotically the best possible. 

We extend our approximation results in two direc- 
tions in Section 5. First, we derive a constant-factor ap- 
proximation for a generalization of the placement prob- 
lem that also models the cost of realizing the place- 
ment. Second, we give a polynomial-time algorithm for 
the placement problem with non-uniform object lengths. 
This algorithm yields a solution with cost within a con- 
stant factor of the optimal cost, assuming a slight in- 
crease in the capacity of each node. It can be easily 
shown that when object lengths are non-uniform, it is 
NP-hard to obtain any polynomial-time approximation 
algorithm without resource augmentation. 

Re la t ed  work. The data placement problem, even 
though formulated in the specialized context of access- 
ing a distributed data repository, can be viewed as a 
generalization of the facility location problem with mul- 
tiple types of facilities and constraints on the number 
of facilities located at a point. Indeed, as mentioned 
above, our approximation algorithms draw on several 

techniques developed for the k-median and facility lo- 
cation problems in recent years. For a survey of results 
related to facility location see [13, 32]. 

Dowdy and Foster [15] initiated the study of co- 
operative caching in the context of allocating files in 
a distributed network. A sequence of results [3, 7, 25] 
describe improved algorithms for centralized as well as 
distributed file allocation. These results, however, do 
not consider cache capacities at the individual nodes. 
Awerbuch, Bartal, and Fiat [4] provide a polylog(n)- 
competitive on-line algorithm for the general placement 
problem under the assumption that the size of each 
cache in the on-line algorithm is polylog(n) times more 
than the size in the optimal algorithm. In contrast, we 
obtain a constant-factor approximation algorithm for 
the off-line version of the problem on arbitrary networks 
without any blowup in the cache sizes. 

Left, Wolf, and Yu [24] study the placement prob- 
lem for a network of workstations, which they model 
as a single-level hierarchy. In addition to providing an 
optimal centralized algorithm, they give heuristics for a 
distributed solution. These results have been improved 
upon in [23], where exact and approximation algorithms 
are given for the placement problem in hierarchical net- 
works. In a recent experimental study [22], Korupolu 
and Dahlin evaluate the practical performance of sev- 
eral placement and replacement algorithms including 
the ones developed in [23] for cooperative caching in 
hierarchical networks. 

By adopting a fixed cost function as our communi- 
cation model, we endeavor to separate the concerns of 
caching (a higher-level operation) from routing (a lower- 
level operation). In contrast, several previous studies 
have incorporated network topology and routing infor- 
mation into the caching problem. For example, the al- 
gorithms developed in [19, 30, 35] tend to cache copies 
of an object in nodes that are close to the path along 
which the object is being transferred. Routing informa- 
tion is also used in the placement algorithms developed 
in [26, 28], where the primary goal is to minimize net- 
work congestion that may occur when access requests 
and objects are routed within the network. 

2 P r o b l e m  def in i t ion  

Let Af be a network of n nodes and let • be a collection 
of m objects. For each pair of nodes i and j ,  let 
cost(i, j) denote the cost of transmitting a unit-length 
message between these two nodes. We assume that 
the cost function defines a metric space; that is, it 
is nonnegative, symmetric and satisfies the triangle 
inequality. Each node i, which may act as both a client 
and a server, has capacity Size(i) of space devoted to 
the storage of the objects in ~. The n nodes periodically 
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issue access requests for the m objects, the rate of which 
is given by the demand function d. For each node j 
and object a,  el(j, a) represents the frequency of node i 
accessing object a. 

A placement P is a function Af --~ 2 ~ that  yields 
for each node the set of objects stored in that  node. 
For a placement to be valid, the sum of the lengths of 
the objects stored at any node must be at most the 
capacity of the node. For any node j and object a,  
the demand-weighted cost access(j,a) of accessing a 
at j equals d(j,  a) • cos t ( i , j ) ,  length(a), where i is the 
node nearest to j that  has a copy of a in the placement 
and length(a) is the length of object a. The cost of a 
placement is given by the sum, taken over all nodes j 
and all objects a,  of access(j, a). 

The data  placement problem can be written as an 
integer linear program (ILP) as follows. For each object 
a in ~, let binary variable y( i ,a) ,  i E A f, indicate if 
node i is selected to store a copy of object k, and binary 
variable x ( i , j , a ) , i , j  EAf,  indicate if node j is assigned 
to access the copy of object a stored at node i. 

min E E d( j ,a )  . cost(i , j)  . length(c~) . x ( i , j , a )  
aEO i,jE N 

subject to 

(2.1) Z x ( i , j ,  a) = 1 
iEN 

x ( i , j , a )  _< y( i ,a)  

length(a), y(i, a) < Size(i) 

x ( i , j , a )  E {0,1} 

y(i, a) E {0, 1} 

j E A f ,  a E ~  

i , j  E Af, a e 

i e A f  

i , j E A f ,  a E ¢  

i E A f ,  a E @ .  

3 Hardness of  approximability 

This section establishes two results on the hardness 
of approximating the optimal data  placement. Our 
first result concerns the data  placement problem with 
uniform-length objects. By means of an approximation- 
preserving reduction from a special case of the unca- 
pacitated facility location problem, we show that  the 
problem is MAXSNP-hard. 

THEOREM 1. The data placement problem with 
uniform-length objects is MAXSNP-hard.  

Proof: We use a reduction from the metric uncapac- 
itated facility location problem, henceforth referred to 
as UFL.  In UFL,  we are given a set N = {1 , . . .  ,n} of 
n locations and a subset F C N of locations at which 
we may open a facility. For each location i in F ,  there 
is a cost f i  for opening a facility at i. Each location 
j in N has demand dj. Given a set S of open facility 

locations, the demand at any location j in N is served 
by the location in S nearest to j .  For any two locations 
i and j ,  we have a cost c/j of shipping a unit of demand 
from i to j .  These costs form a metric. The objective 
in U F L  is to determine a set of open facilities such that  
the total facility and shipping cost is minimized. 

Our reduction is from a special case of U F L  in 
which the facility cost at each node in F is identical. It 
has been shown in [17] that  U F L  with uniform facility 
costs is MAXSNP-hard. Given such an instance of 
UFL,  we construct the following instance of the metric 
data  placement problem. The set of nodes is the set 
N of n locations in U F L  and a special node F. The 
communication cost function among the nodes in N 
is the same as the shipping cost in UFL,  while the 
communication cost between any node i in N and F 
is given by a large number M which is set to be the 
maximum among all the distances in the U F L  instance. 
We have [F I + 1 objects, an object labeled 0, and an 
object having a label for every node in F.  For each j 
in { 1 , . . . , n } ,  if the demand at j in U F L  is dj, then in 
the metric data  placement instance, j has demand dj 
for object 0. In addition, each node j in F has demand 
f / M  for object j ,  where f is the facility cost in the UFL  
instance. Finally, each node in F has capacity 1, each 
node in N - F has capacity 0, and node F has capacity 
I F] + 1. This completes the construction of the instance 
of the data  placement problem. 

For any solution S for the given U F L  instance with 
cost C, we construct the following placement that  also 
has cost C. Each node i in S stores a copy of object 0, 
each node i in F - S  stores a copy of object i, while node 
F stores a copy of every object. The  total  access cost for 
object 0, taken over all nodes in N,  equals the shipping 
cost in the U F L  instance, while the total  access cost for 
the objects in F - S equals the facility cost. Hence the 
total  cost of the placement is C. 

Given any placement P for the data  placement 
instance with cost C, we now show that  if S is the set 
of nodes in F that  have a copy of the object 0 in P ,  
then the cost of the solution S for the U F L  instance is 
at most C. Clearly, the shipping cost of S equals the 
total  access cost for object 0 in P .  Of the objects in 
F ,  only IF - SI of them are stored in F;  thus, the total 
access cost associated with the objects in F is at least 
ISI • M .  ( f / M )  = [sir,  which is the facility cost of S. 

We now establish the MAXSNP-hardness of the 
data  placement problem. Let S* be an optimal solution, 
with cost C*, for a given instance of UFL.  It  follows 
that  there exists a placement for the corresponding 
data  placement instance with cost at most C*. Since 
any placement for the data  placement instance can be 
transformed into a solution to the U F L  instance with 
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no increase in cost, any p-approximation to the data 
placement problem implies a p-approximation to UFL, 
thus yielding a contradiction. • 

A reduction from the PARTITION problem estab- 
lishes the following theorem. We defer the proof to the 
full version of the paper. 

THEOREM 2. There is no polynomial-time approxima- 
tion for the data placement problem with non-uniform 
object lengths unless P = NP.  II 

4 A constant-factor approximation algorithm 
for uniform-length objec ts  

Our approximation algorithm for uniform-length ob- 
jects is obtained by rounding a linear programming re~ 
laxation of ILP (2.1) with length(a) = 1 for every ob- 
ject a. We relax the integrality constraints for the bi- 
naxy variables to obtain a linear program (LP) in which 
y(i ,a) e [0,1] and x ( i , j , a )  E [0,1] for all i , j ,a .  This 
LP, which can be solved efficiently, forms the basis for 
an approximation algorithm. Let (x*, y*) denote an op- 
timal solution to the LP relaxation and let C* denote 
its objective function value. By means of several trans- 
formations, we round (x*,y*) to a feasible solution to 
ILP (2.1) of cost at most 20.5C*. We begin with a brief 
outline of our rounding algorithm. 

1. We first simplify the given problem instance I by 
consolidating demands of nearby nodes (along the 
lines of [12] for the k-median problem). We show 
that any integral solution for the new instance I1 can 
be transformed into a solution for I at the expense of 
at most 4C* in total cost. 

2. We next modify the assignment of "demand nodes" 
(the nodes with positive demand) to object copies so 
that at least a (1/2)-fraction of any requested object 
is accessible within a "local neighborhood" of the 
requesting node. Furthermore, the remaining at most 
(1/2)-fraction is satisfied by fractional copies located 
in a local neighborhood around the nearest demand 
node. This transformation increases the cost by a 
factor of at most 3. 

3. We next change the fractional object locations and 
the fractional assignment such that for each demand 
node, either exactly a (1/2)-fraction or the entire 
object is satisfied by the fractional copies in the local 
neighborhood around the node. This is done without 
any increase in cost by solving an appropriately 
formulated minimum-cost flow problem involving all 
objects. We refer to the resulting solution as a hail- 
primary solution. 

4. For each object, we construct a directed graph, which 
we refer to as a demand graph, that has a vertex for 

each demand node and an arc from vertex j to vertex 
j '  if the fractional object copies in the local neigh- 
borhood of j '  together serve half an object to j.  We 
perform another set of demand consolidations that 
moves demand from certain nodes to their neighbors 
in the demand graphs, and splits the demand graphs 
into a collection of one-level trees. This leads to a new 
instance Z2 for which the current solution has cost no 
more than 15C*/4. Furthermore, any solution to the 
new instance can be transformed to a solution for I1 
for an additive cost of 3C*. 

5. On the basis of the one-level trees derived in Step 4, 
we perform a final set of demand and assignment con- 
solidations. In the resulting fractional solution each 
fractional object copy serves at most one demand 
node. This implies that the assignment of demand 
to fractional object copies in the new solution forms 
a flow for the new instance 2~3. The increase in cost 
as a result of this transformation is at most 51C*/4. 

6. Finally, we formulate instance I3 as a minimum- 
cost flow problem for which the fractional solution 
obtained after Step 5 is feasible. This flow problem 
involves all objects and captures the individual cache 
capacity constraints. Since the problem instance 
consists of integral edge capacities only, there is an 
optimal solution that is integral and can be computed 
in polynomial-time. 

Steps 1 through 6 yield an integral placement for Z3, 
which can then be converted to an integral placement 
for I via the reverse transformations arising out of 
Steps 5, 4, and 1. We obtain the following theorem. 

THEOREM 3. There exists a polynomial-time 20.5- 
approximation algorithm for the data placement problem 
with uniform-length objects. 

The following six subsections (Sections 4.1 
through 4.6) describe Steps 1 through 6, respectively. 
In the following, we will adopt the notation that (Xk, Yk) 
is the solution obtained after Step k. In Section 4.7, we 
put together the claims of Sections 4.1 through 4.6 to 
derive Theorem 3. 

4.1 Consolidating demands. We simplify the given 
problem instance Z by consolidating demands of nearby 
nodes. We do not change the LP solution (x*,y*) but 
modify the demands to obtain a new instance Z1. This 
transformation is separately applied for the individual 
objects. The demand consolidation we perform for 
a given object is identical to Step 1 of [12]. In the 
following, we briefly describe the consolidation step and 
state a lemma that bounds the resulting cost increase. 
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Let a be any object. Let the average access cost Cj~ 
denote the cost that  the optimal LP solution pays for 
assigning one unit of demand at node j for c~. Tha t  is, 
Cja equals ~ i e N  cost(i,j)x*(i,j,v~). Let Bja  denote 
the ball of radius 2Cja around j .  We set the new 
demands such that  for all pairs of nodes j ,  j ' ,  both with 
positive demand, cost(j,j ') > 2max(Cja,Cj,~). We 
go through the nodes in nondecreasing order of their 
average access cost for object a and move the demands 
at certain nodes to others. Without  loss of generality, 
let us renumber the nodes in nondecreasing order of 
their average access cost for a. While processing 
node j we perform the following operation: if there 
exists a node j '  < j with positive demand such that  
cost(j,j ') < 4Cj~, then we move the demand at j to 
j ' ,  and set the demand at j for c~ to be 0. It is easy 
to see that  at the end of this step, for all pairs j ,  j '  of 
nodes with positive demand, the condition cost(j, j ') > 
4max{Cjc~,Cj,~} implies that  the balls Bja  and Bj, a 
around j and j ' ,  respectively, do not overlap. Since the 
above transformation does not modify the solution, we 
have (xl,  yl)  = (x, y). The following lemma establishes 
an upper bound on the increase in cost due to Step 1. 

LEMMA 4.1. The cost of (xx,yl)  on instance 271 is 
at most C*. Furthermore, any integral solution for 
instance 271 can be transformed into an integral solution 
for instance 27 at an additional cost of at most 4C*. • 

In the remainder of Section 4, we use the term 
"demand node" for an object c~ to refer to any node 
that  has positive demand for a.  

4.2 Consolidating assignments. The second step 
transforms the assignment xa to a new assignment x2. 
Fix object a and consider any demand node j for c~. 
We transform the fractional assignment x l ( - , j , a )  to 
x2(. , j ,  cr) as follows. We differentiate between three 
kinds of nodes that serve a fractional copy of a to 
node j .  We refer to a node i in B/a  serving object 
a to node j as a primary server of a for j .  We refer 
to a node i ¢ Bja  serving ct to j as a secondary 
server of a to j if j is the demand node for c~ that  
is nearest to i (breaking ties arbitrarily). We refer 
to any other node serving o~ to j as a tertiary server 
of c~ for j .  For each primary and secondary server 
i, we keep the assignment xl ( i , j ,  vO; that  is, we set 
x2 (i, j ,  a)  = xl (i, j ,  c~). For each tert iary server i, we set 
x2(i,j ,  a) to 0 and distribute the fractional assignment 
xl(i,j,c~) among the nodes in a ball Bj, a around j ' ,  
where j '  # j is the demand node for a tha t  is nearest 
to j .  The preceding transformation leads to a valid 
fractional solution since the sum of fractional object 
copies in the primary servers for any node is at least 

1/2, while the fractional demand of j served by tert iary 
servers is at most 1/2. 

We now place an upper bound on the increase in 
cost incurred as a result of the transformation in Step 2. 
Let P ,  S, and T denote the total cost of accessing the 
objects from primary, secondary, and tert iary servers, 
respectively, in the solution (xl ,yl)  for instance 51. 
Since the assignment to primary and secondary servers 
is unchanged, the cost of accessing the objects from the 
primary and secondary servers in (x2, Y2) is P and S, 
respectively. We note that  P + S + T equals C*. 

We now consider the cost of accessing objects from 
the tert iary servers. For any demand node j ,  the per- 
unit cost of accessing object c~ from a tert iary server 
is at most cost(j,j ') + 2Cfc,, where j '  is the demand 
node for a that  is nearest to j .  Since cost(j,j ') > 
4Cj, a, it follows that  the per-unit cost of accessing a 
from a tert iary server is at most 3cost(j, j l) /2.  While 
considering the cost of assigning to ter t iary servers, we 
charge 3cost(j, y ) / 2  per unit demand, and refer to the 
resulting cost as the auxiliary tertiary cost. We denote 
the auxiliary tert iary cost for a at node j by t(j, a). 
Throughout  the remainder of our analysis, we maintain 
the invariant that  the auxiliary tert iary cost is an upper 
bound on the total tert iary cost. Consider a tert iary 
server i of j for object a in xl .  We now show that  
the per-unit auxiliary tert iary cost for serving a to j in 
x2 is at most 3cost(i,j). Let j l  # J be the demand 
node for cr that  is nearest to i. Since cost(i,j) > 
cost(i,jl), it follows from the triangle inequality that  
cost(j,j ') <_ cost(j, jx) < cos t ( j , i )+ cost(i,jl) < 
2cost(i, j). Therefore, the auxiliary tert iary cost of 
(x2,y2) is at most thrice the tert iary cost of (xl ,yl) .  
We thus have the following lemma. 

LEMMA 4.2. The primary and secondary cost of 
(x2,y2) for Z1 equal P and S, respectively, while the 
auxiliary tertiary cost of (x2, Y2) is at most 3T. • 

4.3 A half-primary solution. The solution (x2, y~) 
satisfies the following properties for each object c~: (i) 
for each demand node j for object ~, at least a (1/2)- 
fraction of the demand at j is satisfied by primary 
servers; (ii) the remaining at most (1/2)-fraction is 
served by secondary arid ter t iary servers. In Step 3, we 
construct a solution (x3,Y3) in which for any demand 
node j of object a,  the primary servers together serve 
either exactly a (1/2)-fraction of a or the whole object 
c~ to j .  We refer to the solution thus obtained as a 
half-primary solution. 

To obtain a half-primary solution, we formulate a 
minimum cost flow problem on a network N that  is an 
extension of a bipartite graph G = (A, B, E) ,  where A 
and B form the bipartition of G and E is the set of 
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edges between them. The set A contains two copies 
of each pair ( j , a )  such that  a is an object and j is 
a demand node for a. We refer to the two copies as 
primary and nonprimary. The set B consists of all 
nodes, together with a special node labeled F. We 
have an edge between the primary copy of (j,a) in 
A to every node i in B that  is a primary server of 
object a for j in the solution (x2,y2). This edge has 
a lower capacity of 0 and an upper capacity of 2. (For 
an edge in a minimum-cost flow problem, we use the 
terms lower capacity and upper capacity to refer to the 
lower and upper bounds, respectively, on the amount 
of flow that  can pass through the edge.) The cost of 
the edge is dl(j,a)cost(i,j),  where dl is the demand 
function for instance 271. Similarly, we have an edge 
between the nonprimary copy of (j, a)  in A to every 
node i in B that  is a secondary server of object c~ to 
j in the solution (x2,y2). This edge too has a lower 
capacity of 0 and an upper capacity of 2. The cost of the 
edge is dx(j, a)cost(i,j). We also have an edge from the 
nonprimary copy of j to the special node F with lower 
capacity 0, upper capacity 2, and cost t(j, ~). (Recall 
tha t  t(j, a) is the auxiliary ter t iary cost of accessing 
object a at node j . )  

In addition to the nodes in G, the network N 
includes a set D of nodes and a distinguished source 
s and a distinguished sink t. The set D is another copy 
of the set of all node-object pairs. For every node-object 
pair (j, a) ,  there are two edges outgoing from its copy 
in D: (i) one to the primary copy of the pair in A with 
lower and upper capacities 1 and 2, respectively; and 
(ii) the other to the nonprimary copy of the pair in A 
with lower and upper capacities 0 and 1, respectively. 
The cost of both of these edges is 0. The source s has 
an edge to every node (j, a) in D with a lower capacity 
of 2, upper capacity of 2, and cost 0. Finally, we have 
a sink t which has an edge incoming from every vertex 
i in B with a lower capacity of 0, upper capacity of 
2Size(i), and cost 0, and an edge incoming from the 
special vertex F with a lower capacity of 0, an upper 
capacity of cx~, and cost 0. The minimum-cost flow 
formulation is illustrated in Figure 1. 

Lemmas 4.3 and 4.4 establish the correspondence 
between 271 and the minimum-cost flow problem. 

LEMMA 4.3. For any feasible flow f in N,  there is a 
fractional solution for instance 271 with cost at most half 
off the cost of f .  

P r o o f :  We construct a fractional solution (x l , y  I) 
for instance 271 as follows. We set yl( i ,a)  equal to 
half the total  flow coming into i from any primary or 
nonprimary node labeled (j, a) for any j .  Clearly, y l  
satisfies the capacity constraints. We now define the 

[2, 2, 0 ~ - ~ - - ~ ,  a) ~l~O~jfl, Size(i), oJ 

D A B 

Figure 1: The minimum-cost flow problem formulated in 
Step 3. Each edge is labeled with a triple [£,u,c], where ~, 
u, and c represent the lower capacity, upper capacity, and 
the cost of the edge, respectively. Labels have been shown 
for the edges from the source to vertices in D, from vertices 
in D to vertices in A, and from vertices in B to the sink. 
An edge from the vertex "primary (j, o~}" in A to the vertex 
i in B has the label [1,2,dl(j,v~)cost(i,j)], while an edge 
from the vertex "nonprimary (j, a)" to the vertex i in B 
has the label [0, 1,dl(j ,a)cost(i , j)] .  An edge from vertex 
"nonprimary (j, a)" to F has label [0, 1, t(j, a)]. 

assignment x f.  For each pair of nodes i and j and 
object a,  we set x]( i , j ,a)  equal to half the flow from 
a primary or nonprimary node (j, o~) to i. (Note that  
there is an edge from at most one of the primary or 
nonprimary copies of (j, a)  to any other node i.) As a 
result of the assignment, the fraction of the demand at 
any node for object a tha t  is satisfied by the primary 
servers is at least 1/2. Furthermore,  the cost incurred by 
the assignment thus far is exactly half the cost incurred 
along the edges to the nodes in the set B. 

It still remains to assign a fraction of the demand 
for object a at node j tha t  corresponds to half the flow 
from the nonprimary copy of (j, c~/ in A to the special 
node F. This can be distributed among the pr imary 
servers of a for a node jt  ~ j which is the demand node 
nearest to j .  Since there is at least half a copy of c~ 
located among the pr imary servers, the assignment is a 
valid one. Since t(j, a) is an upper bound on the per- 
unit cost of the assignment to ter t iary servers, the upper 
bound on the cost follows. • 

LEMMA 4.4. There is a flow in N with cost at most 
twice the cost of the solution (x2,Y2) for instance 271. 

P r o o f :  Consider the following flow along the edges 
from A to B. For an edge from a copy of ( j , a )  to 
i, we have a flow of 2x2 (i, j, a).  Since x2 (i, j ,  o~) < 1, 
the capacity constraints at these edges are satisfied. 
The flow from nonprimary vertices (j, a) to the special 
vertex F equals twice the fraction of the demand for 
object c~ at node j satisfied by ter t iary servers. 

We now define the flows from the vertices in D, the 
source, and the sink. The flow from a vertex (j, a)  in D 
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to a copy of (j, c~) in A is the sum of the flows going out 
of the copy in A. Since the fraction of the demand 
satisfied by the primary (resp., secondary) servers is 
at least 1/2 (resp., 0) and at most 1 (resp., 1/2), the 
capacity constraints on these edges are satisfied. The 
flow from the source s to (j, c~) in D is the sum of the 
flows going out of (j, c~) and the flow from vertex i in 
B to sink t is the sum of the flows coming into i. The 
capacity constraints at the edges coming out of s are also 
satisfied since the total fraction of the demand satisfied 
in solution (x2, Y2) is 1. Finally, the capacity constraints 
at the edges coming into t are satisfied since the capacity 
constraints at the nodes are satisfied in (x2, Y2). 

Since the flows are twice the assignment values, the 
upper bound on cost immediately follows from the flow 
definitions. • 

Lemma 4.3 and 4.4 lead to the following claim. 

LEMMA 4.5. There exists a half-primary solution 
(x3,Y3) for 271 with cost at most the cost of (x2,y2). 

Proof: By the integrality theorem, we can determine 
in polynomial time an integral flow f* in N of minimum 
cost that  satisfies all of the capacity constraints. From 
the integral flow f*,  we derive a new solution (x3,Y3) 
using the correspondence defined in Lemma 4.3. Since 
ff* is integral, we see that  the fraction of demand served 
by the primary servers of each node is either exactly 
1/2, or exactly 1. Moreover, the cost of (x3,y3) is at 
most the cost of (x2, y2). • 

At the end of Step 3, we have a half-primary 
solution (x3,y3) with total cost at most P + S + 3T. 

4.4 Constructing demand graphs and consoli- 
dating demands. For each object c~, we construct de- 
mand graphs, the edges of which indicate the assignment 
of demand at the demand nodes for a to ter t iary servers. 
We construct a directed graph D~(N', A') in which N '  
is the set of demand nodes for object a. We have an 
arc from node j E N '  to node j '  E N '  if the primary 
servers in the ball Bj, c~ around j '  are tert iary servers for 
j with respect to object c~ in the solution (x3, Y3). Since 
each node has out-degree at most 1 and there is an edge 
from a demand node j to another demand node j '  only 
if j '  is the closest demand node to j ,  it follows that  any 
cycle in each connected component of the graph Da is 
of length at most 2. Furthermore, there is at most one 
such cycle in any component of Da. 

For each component of Da, we select a root. If the 
component is a tree, then the root is simply the root 
of the tree. Otherwise, we break the unique 2-cycle in 
the component as follows. We move the demand from 
the node in the cycle with smaller demand to the node 
with larger demand. We then select the node with zero 

demand as the root. We define the level of each node 
as the distance to the root, in terms of the number of 
edges in Dot. By definition, each node j that  is not a root 
has exactly (1/2)-fraction of its demand for a served by 
its primary and secondary servers, and exactly (1/2)- 
fraction served by the servers located in the ball Bj, a, 
where j '  is the parent of j in Da.  

We now consolidate the demand to obtain a new 
instance I2. If the total auxiliary tert iary cost of odd- 
level nodes is at most half the total auxiliary tert iary 
cost of all nodes, then we move the demand at every 
odd-level node of the demand graph (except the root) 
to its parent; otherwise, we move the demand at every 
even-level node (except the root) to its parent. Note 
that  the solution (x3, Y3) is a valid solution for Z2. 

We now place upper bounds on the cost of (x3,y3) 
and the increase in cost when a solution for Z2 is 
transformed to a solution for Z1 by simply moving the 
relevant demands back. Let M denote the set of nodes 
the demands of which are moved in this consolidation. 

LEMMA 4.6. The total primary and secondary cost of 
(x3,Y3) for 172 is at most P + S + 3T/4. The total 
auxiliary tertiary cost of (x3,y3) for 172 is at most 3T. 

Proof." The cost of (xa,y3) for 172 can be expressed 
in terms of the cost of the same solution for 171 as 
follows. For any node j in M, the per-unit auxiliary 
tert iary cost in 17~ is at most the per-unit auxiliary 
tert iary cost in 171 since the distances along the arcs 
are nondecreasing with increasing level. Therefore, the 
total auxiliary tert iary cost of (xa, Y3), when applied to 
172, is at most 3T. Furthermore, the per-unit primary 
and secondary cost at j for 172 is at most half the per- 
unit auxiliary tert iary cost at j for 171. Since the total 
auxiliary tertiary cost associated with the nodes in M 
is at most 3T/2, it follows that  the total primary and 
secondary cost of the solution (x3, Y3), when applied to 
instance 272, is at most P + S + 3T/4. • 

LEMMA 4.7. Any integral solution for 272 can be trans- 
formed to an integral solution for 171 at the cost of an 
additional 3T in total cost. 

Proof: We transform any solution for 172 into a 
solution for 171 as follows. We maintain the object copy 
locations as in the given solution. For a demand node 
j in instance 171 that  is also a demand node in 172, we 
maintain the same assignment. Finally, for a demand 
node j of 271 that  is not a demand node in 172, the 
assignment is the same as for that  node j '  to which the 
demand at j is moved as a result of the transformation. 
The per-unit cost increase at j equals the per-unit 
auxiliary tert iary cost at j of solution (x3, Y3) for 271. 
Since half of the demand at j is satisfied by tert iary 
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servers in the solution (xa,y3), and the total auxiliary 
tert iary cost of the nodes in M is at most 3T/2, the 
increase in total cost is at most 3T. [] 

We note that  Step 4 transforms instance/71 to 52 
but does not modify the fractional solution. Thus, 
(x4,y4) equals (x3,y3). 

4.5 A f inal  c o n s o l i d a t i o n  o f  demands and as- 
signments.  Step 4 effectively decomposes each demand 
graph into several two-level trees, that  is, a star config- 
uration with a root at level 0 and leaves at level 1. In 
each such tree, the root has no demand. We make two 
transformations in Step 5. We first transform the solu- 
tion (x4, Y4) to a new solution (xs, y5) as follows. In each 
star, we arrange the leaves in left-to-right order accord- 
ing to decreasing demand. Consider any non-leaf node 
j with root r. In the assignment x4, j is served half a 
copy of a by ter t iary servers located in the ball Br~. In 
the new assignment Xs, we set the tert iary servers of 
for j to be the servers located in the ball Bj,~, where j '  
is the leaf node immediately to the left of j .  The  object 
copy locations remain as in y4; therefore, Y5 = Y4- By 
triangle inequality, the auxiliary tert iary cost of the new 
solution is at most twice that  of the old one, while the 
total primary and secondary cost remains unchanged. 
Therefore, the total  primary and secondary cost is at 
most P + S + 3T/4, while the total  auxiliary tert iary 
cost is at most 6T. 

We now compute a new instance/73 by consolidating 
assignments. Let the leaves of each star be numbered 
left to right, starting from 1. We move the demand from 
every even leaf node to its immediate left neighbor. We 
now place an upper bound on the cost of the solution 
(xs,ys)  for the new instance/73. 

LEMMA 4.8. There exists a real number C such that 
the cost of (xs,ys)  for instance Z3 is at most 2P + 
2S + 3T/2 + C and any integral solution for/73 can 
be transformed into an integral solution for Z2 with an 
increase in cost of at most 12T - C. 

Proof." Since the leaves are arranged left to right in 
increasing order of demand, the increase in the total 
primary and secondary cost due to the movement of 
the demand is at most the total primary and secondary 
cost of (x~, Y5) in/72, which is at most P + S + 3 T / 4 .  For 
the same reason, the new auxiliary tertiary cost can be 
upper bounded by twice the total auxiliary tert iary cost 
of the demand nodes in 172 with odd labels. Therefore, 
if C/2 is the total  auxiliary tert iary cost of the demand 
nodes in/72 that  have odd labels, the total pr imary and 
secondary cost (resp., auxiliary tert iary cost) of (x4, Y4) 
for instance/73 is at most 2P  + 2S + 3T/2 (resp., C). 
We thus obtain that  the cost of (x4, Y4) for instance/73 

is at most 2P  + 2S + 3T/2 + C. 
What  remains to be calculated is an upper bound 

on the increase in cost, when an integral solution for/73 
is transformed into an integral solution for I2.  Since the 
fraction of demand satisfied by ter t iary servers is 1/2, 
this transformation can be done at an additional cost 
of at most twice the auxiliary ter t iary cost of (x4, Y4) 
incurred by the evenly labeled demand nodes in instance 
/72, which is at most 2(6T - C/2) = 12T - C. [] 

4.6 C o m b i n i n g  solutions for all objects.  After 
Steps 1 to 5, we obtain a solution (xs,ys)  in which 
each fractional copy, whether primary, secondary, or 
secondary, serves at most one demand node. The last 
step of our algorithm finds an integral solution to the 
problem. We define a minimum cost flow problem in 
which we have a biparti te graph G = (A, B, E).  The 
set A is the set of all node-object pairs with positive 
demand, while the set B is the set of all nodes. The 
flow network also includes a source s and sink t. There 
is an edge between each node-object pair (j,c~) and 
node i with lower capacity 0, upper capacity 1, and 
cost d3 (j, o~) cost (i, j) ,  where d 3 (j, o~) is the demand for 
a at j in/73- There is an edge from s to each node- 
object pair in A with lower capacity 1, upper capacity 
1, and cost 0. Finally, there is an edge between each 
node j in B to t with lower capacity 0, upper capacity 
Size(j) and cost 0. Clearly, the assignment x5 defines 
a (fractional) flow through the network with cost equal 
to the total  cost of the solution (x5,y5). Note that  we 
crucially use the fact that  for each object ~, each node 
in B receives flow from at most one node-object pair 
of the type (.,c~). Since all of the capacities in this 
minimum-cost flow problem are integral, we obtain an 
optimal integral solution (x0, Y6) to the flow problem [1] 
in polynomial time. This solution yields the integral 
location of the copies as well as the assignment, thus 
giving an integral solution for/73. 

4.7 Putt ing  it all together.  The solution (x6,y6) 
is an integral solution for instance I3 with cost 2P  + 
2S + 3T/2 + 2C. We now obtain an integral solution 
to the original instance /7 by performing the reverse 
transformations mentioned in Steps 5, 4, and 1. By 
Lemmas 4.8, 4.7, and 4.1, the additional cost equals 
12T - 2C + 3T + 4 P  + 4S + 4T = 4 P  + 4S + 19T - 2C. 
Thus, the total cost is at most 6P+6S+41T]2 ,  which is 
at most 20.5C*. This completes the proof of Theorem 3. 

5 Generalizations 

This section extends the approximation result of Sec- 
tion 4 in two directions, one modeling additional costs, 
and the other involving non-uniform object lengths. 
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5.1 Model ing  addi t iona l  costs. In the data place- 
ment problem studied thus far, we have assumed that 
the access pattern is static; that is, the demand for each 
object at each node remains fixed. In practice, however, 
the demand function is likely to change with time. If 
the demands are not volatile and change at a moderate 
rate over time, then the data placement can be periodi- 
cally recomputed to address the changes in the demand 
function. Realizing a new placement from an existing 
placement, however, may incur new costs since the ob- 
jects need to be copied over to new locations. 

Additional costs, such as transmissions required to 
obtain a new placement from an existing placement, can 
be easily modeled by adding a new cost component to 
the objective function. For each node i and object a, 
let p(i, a) denote the cost of placing object a at node i. 
(This cost is analogous to the facility cost in the facility 
location problem.) The cost of any placement equals 
the total demand-weighted access cost of all objects and 
nodes and the total cost of placing the object copies at 
the nodes according to the placement. The objective 
function in ILP (2.1) is redefined as 

min Z Z d(j,a) . cost(i,j) . x ( i , j ,a )  . length(a) + 
a E ~  i,jE.hf 

Z P ( i , a ) Y ( i , a ) .  
aE~ iEH 

The additional cost of placing objects only affects those 
steps of our rounding scheme where the placement 
is modified. The transformation of the placement 
obtained after solving the linear program only occurs 
in the two minimum-cost flow calculations in Steps 3 
and 6. In the full paper, we show that the flow problems 
can be reformulated such that the same approximation 
factor (20.5) is achieved for the new problem. 

5.2 Non-uni form object lengths. This section con- 
siders the data placement problem with non-uniform 
object lengths. Theorem 2 of Section 3 states that no 
nontrivial approximation can be obtained for the prob- 
lem in polynomial time, unless P = NP.  We now show 
that a constant-factor approximation can be obtained in 
polynomial-time with "resource augmentation". More 
precisely, we show how to modify the algorithm of Sec- 
tion 4 so as to achieve the same approximation for the 
case of non-uniform object lengths, under the assump- 
tion that the capacity for each node in the approximate 
solution exceeds that in the optimal solution by the 
length of the largest object. 

Steps 1, 2, 4, and 5 of the rounding algorithm in Sec- 
tion 4 change the demands and fractional assignments 
only. These steps continue to hold the same effect in the 
case where objects have non-uniform lengths. In Steps 3 

and 6, minimum-cost flow computations are performed 
that capture the capacity constraints. In the scenario 
where objects have non-uniform lengths, we instead for- 
mulate appropriate instances of the generalized assign- 
ment problem [31]. 

We first consider Step 3. Let (x2,y2) denote the 
fractional solution obtained after Step 2, and let C be 
the total cost of the solution. As before, (x2, y2) satisfies 
the following properties for each object a: (i) for each 
demand node j for a, at least a (1/2)-fraction of a is sat- 
isfied by the primary servers of j;  (ii) the remaining at 
most (1/2)-fraction is served by secondary and tertiary 
fractional servers. We formulate an instance II1 of the 
generalized assignment problem in which we have two 
clients, primary and nonprimary, for each demand node 
of the data placement problem, and we have a server for 
each node in the data placement problem. The primary 
and nonprimary clients corresponding to demand node j 
and object a each have a demand of length(a)/2. Each 
server node has a capacity equal to its cache capacity. 
There is also a special node F with infinite capacity. 
The cost of an edge between a client and a server is 
length(a) times the cost of the edge in the original data 
placement problem. The cost of an edge between the 
vertex F and a client associated with the demand node 
j and object a equals length(a) times the per-unit aux- 
iliary tertiary cost t(j ,a).  The given solution (x~,y2) 
yields a feasible fractional solution to II1 with total cost 
C. By [31], there is an integral solution to II1 with total 
cost C, which, though infeasible, requires at each server 
an additional capacity of at most the length of the max- 
imum demand. Since the maximum demand equals half 
the length of the largest object, this implies that the 
capacity used up at any node i in the integral solution 
is at most S/2  more than Size(i), where S equals the 
length of the largest object. 

A similar formulation for Step 6 incurs another 
additive penalty of S/2  in the capacity of each node, 
without incurring any penalty in the cost of the solution. 
Thus, we have the following theorem. 

THEOREM 4. For the metric data placement prob- 
lem with non-uniform object lengths, there exists a 
polynomial-time computable placement with cost at most 
20.5 times the optimal cost, in which the capacity of each 
node exceeds the capacity of the node in the optimal so- 
lution by at most the length of the largest object. • 

6 Concluding remarks 
The approximation algorithms of Sections 4 and 5 rely 
on solving large linear programs and minimum-cost flow 
problems, which are computationally intensive and may 
not be amenable to efficient distributed implementa- 
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tions. An interesting direction for future research is 
to identify simple combinatorial algorithms that use 
greedy or local search approaches. Recent results in 
facility location using greedy and primal-dual tech- 
niques [20, 27] may offer some insight in this regard. 
Also of practical interest is a capacitated version of the 
data placement problem, in which the number of re- 
quests that any node can serve is bounded. 
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