
Parameterized Complexity of

Cardinality Constrained Optimization Problems

CAI Leizhen∗

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, Hong Kong SAR, China

lcai@cse.cuhk.edu.hk

April 30, 2007

Abstract

We study the parameterized complexity of cardinality constrained optimization
problems, i.e., optimization problems that require their solutions to contain specified
numbers of elements to optimize solution values. For this purpose, we consider
around twenty such optimization problems, as well as their parametric duals, that
deal with various fundamental relations among vertices and edges in graphs. We
have almost completely settled their parameterized complexity by giving either FPT
algorithms or W[1]-hardness proofs. Furthermore, we obtain faster exact algorithms
for several cardinality constrained optimization problems by transforming them into
problems of finding maximum (minimum) weight triangles in weighted graphs.

Keywords: Cardinality constrained optimization problem, exact algorithm, fixed-
cardinality optimization problem, graph problem, parameterized complexity, FPT
algorithm, W[1]-hardness.

∗Partially supported by grant CUHK4410/99E from the Reseach Grants Council of Hong Kong SAR.

1

Cardinality Constrained Optimization 2

Contents

1 Introduction 3

1.1 Motivations . 3

1.2 Definitions and notation . 4

1.3 Problems and related work . 5

1.4 Outline of the paper . 9

2 Fixed-Parameter Intractability 10

2.1 Cliques and induced matchings . 10

2.2 Vertex covers and induced subgraphs . 12

2.3 Cuts and domination . 13

2.4 Edge induced subgraphs . 15

2.5 Multicomponent Cuts . 17

3 FPT Algorithms 19

3.1 Disconnected graphs . 20

3.2 Polynomial-time algorithms . 23

3.2.1 Multicomponent cuts . 24

3.2.2 Maximum edge covers . 24

3.3 FPT by kernelization . 25

3.3.1 Maximum (n − k)-vertex domination 26

3.3.2 Maximum (m − k)-edge domination 26

3.3.3 Maximum (m − k)-edge subgraph 27

3.4 FPT by random separation . 28

3.4.1 Minimum (m − k)-edge domination 29

4 Exact Algorithms 30

4.1 Maximum and minimum triangles . 31

4.2 Optimal k-vertex covers . 32

4.3 Optimal k-vertex subgraphs and cuts . 34

5 Concluding Remarks 36

Acknowledgements 37

References 37

Cardinality Constrained Optimization 3

1 Introduction

1.1 Motivations

A cardinality constrained optimization problem requires its solutions to contain exactly a
specified number k of elements to optimize solution values, and most combinatorial opti-
mization problems have their natural cardinality constrained counterparts. For instance,
the classical vertex cover problem asks for a minimum-size set of vertices in an n-vertex
graph to cover all edges, and a cardinality constrained counterpart of it is the maximum
k-vertex cover problem that requires us to find k vertices to cover as many edges as
possible. We may also consider the minimum k-vertex cover problem that needs us to
find k vertices to cover as few edges as possible. We note that cardinality constrained
optimization has a long history, and a recent survey article of Bruglieri et al. [4] gives
an annotated bibliography of the subject, which has more than a hundred references to
various cardinality constrained optimization problems.

Normally a cardinality constrained optimization problem is not easier than its corre-
sponding optimization problem, and usually NP-hard when k is a part of input. On the
other hand, it can usually be solved by exhaustive search in polynomial time for each
fixed value of k, but the degree of the polynomial grows with k, which makes such algo-
rithms neither useful in practice nor really meaningful in theory. This perhaps explains
why most of the work in the literature on cardinality constrained optimization problems
has been concentrated on approximation algorithms.

In this paper, we use the framework of Downey and Fellows [12] on parameterized
complexity to study cardinality constrained optimization problems. For this purpose, we
regard such problems as parameterized problems by taking the cardinality of a solution
(or a number related to it) as a fixed parameter k and refer to them as fixed-cardinality
optimization problems to distinguish them from ordinary cardinality constrained opti-
mization problems. Our main purpose is to design FPT algorithms, i.e., f(k)|I|O(1) time
algorithms, where f(k) is a computable function of k and |I| the size of input, to solve
fixed-cardinality optimization problems, and, when such algorithms are unlikely to exist,
establish the fixed-parameter intractability of the problems. In spite of extensive work on
the parameterized complexity of numerous fixed-parameter problems and a long history
of cardinality constrained optimization, the line of research in this paper is basically
an unexplored area.1 We note that, motivated by the work in this paper, Cai, Chan
and Chan [7] have recently developed a powerful random separation method for solving
fixed-cardinality optimization problems.

We will focus on fixed-cardinality optimization problems on graphs, especially funda-
mental problems that deal with various relations among vertices and edges. For around
twenty graph problems, as well as their parametric duals (see the definition in Sec-
tion 1.2), we almost completely settle their parameterized complexity by giving either
FPT algorithms or proofs of fixed-parameter intractability. We also give faster exact

1The author raised the issue of studying cardinality constrained optimization problems from the
parameterized complexity point of view at the 1st Workshop on Parameterized Complexity held in
Chennai, India 2000, where he presented a W[1]-hardness proof for the maximum k-vertex cover problem.
However, only a couple of isolated results [11, 18] have been reported since then.

Cardinality Constrained Optimization 4

algorithms for several fixed-parameter intractable ones by transforming them into prob-
lems of finding maximum (minimum) weight triangles in weighted graphs.

It is hoped that the work in this paper will show the usefulness and fruitfulness of
parameterized complexity theory in studying cardinality constrained optimization prob-
lems, and also stir the reader’s interest in pursuing further research in both parameterized
complexity and cardinality constrained optimization.

1.2 Definitions and notation

Formally, a cardinality constrained optimization problem is a 4-tuple (B, φ, k, opt), where
B is a finite set called solution base, φ : 2B → {0, 1, 2, . . .} ∪ {−∞,+∞} an objective
function, k a nonnegative integer, and opt ∈ {min,max}. Our task is to find a k-
solution, i.e., a subset S ⊆ B consisting of exactly k elements, to maximize (or minimize)
the value φ(S). Note that, instead of specifying a set of feasible solutions, here we
specify a feasible solution by its value, i.e., S is a feasible solution if φ(S) 6= −∞ for
a maximization problem and φ(S) 6= +∞ for a minimization problem. If we require
φ(S) to equal exactly a given number, then we have a cardinality constrained exact-value
problem.

An instance of a parameterized problem consists of a pair (I, k) with I being the input
and k the parameter. A k-cardinality optimization problem is a parameterized problem
obtained from a cardinality constrained optimization problem by taking the solution size
k as the parameter. The parametric dual of a k-cardinality optimization problem is a
cardinality constrained optimization problem that requires us to find a solution S ⊆ B
with exactly |B| − k elements, where k is the parameter, to maximize (or minimize)
the value φ(S). For convenience, we sometimes use k for |B| − k. Both k-cardinality
optimization problems and their parametric duals are referred to as fixed-cardinality
optimization problems. We can also define a k-cardinality exact-value problem and its
parametric dual in a similar manner.

A parameterized problem (I, k) is fixed-parameter tractable (FPT in short) if it admits
an FPT algorithm, i.e., an algorithm that runs in f(k)|I|O(1) time for some computable
function f(k) independent of the input size |I|. The class of fixed-parameter tractable
problems is denoted by FPT.

Downey and Fellows [12] have also introduced a W-hierarchy

W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[XP]

to capture fixed-parameter intractability, where class W[1] contains class FPT and can be
regarded as a parameterized version of the classical complexity class NP. A parameterized
problem that is W[t]-hard for any W[t] in the hierarchy is unlikely to be fixed-parameter
tractable and is thus fixed-parameter intractable.

The basic tool for establishing fixed-parameter intractability is the following type
of reductions between parameterized problems, which are formulated as decision prob-
lems. A parametric reduction from a parameterized problem Π to another parameterized
problem Π′ is an FPT algorithm that computes for each instance (I, k) of Π an instance
(I ′, k′) of Π′ such that

Cardinality Constrained Optimization 5

1. k′ ≤ g(k) for some computable function g(k), and

2. (I, k) is a “Yes”-instance of Π iff (I ′, k′) is a “Yes”-instance of Π′.

A parametric reduction from Π to Π′ ensures that Π ∈ FPT whenever Π′ ∈ FPT, and Π′

is W[t]-hard whenever Π is W[t]-hard. We refer the reader to the monograph of Downey
and Fellows [12] and a recent book of Flum and Grohe [15] for a comprehensive treatment
on parameterized complexity.

All graphs in this paper are undirected simple graphs and we assume that the reader
is familiar with the basic terms in graph theory. We follow standard notation in graph
theory (see the textbook of West [24], for instance) with the convention that m and n,
respectively, denote the numbers of edges and vertices of the input graph G = (V,E).
We may also use V (G) and E(G), respectively, to denote the vertex and edge sets of G,
and we use G for the complement of G.

A vertex covers edges incident with it and dominates vertices adjacent to it. Similarly,
an edge covers its two ends, and dominates edges adjacent to it. For a vertex v, dG(v)
denotes the degree of v, and NG(v) the neighbourhood of v, i.e., the set of vertices adjacent
to v. For a subset V ′ vertices, eG(V ′) denotes the number of edges covered by vertices in
V ′, G[V ′] the subgraph induced by V ′. The open neighbourhood NG(V ′) of V ′ is the set
of vertices in V −V ′ that are adjacent to vertices in V ′, and NG(V ′)∪V ′ forms the closed
neighbourhood NG[V ′] of V ′. For a subset E ′ of edges, V (E ′) denotes the set of vertices
incident with edges in E ′, G[E′] the partial subgraph consisting of vertices V (E ′) and
edges E′. The open edge-neighbourhood NG(E′) of E′ is the set of edges in E − E ′ that
are adjacent to edges in E ′, and NG(E′)∪E′ forms the closed edge-neighbourhood NG[E′]
of E′. We will drop subscripts in our notation when there is no confusion.

For any two disjoint sets X and Y of vertices in G, [X,Y] denotes the edge set {xy :
x ∈ X and y ∈ Y } and e(X,Y) the number of edges in [X,Y]. When Y = V −X, [X,Y]
forms a cut. A set V ′ of vertices is a clique if G[V ′] is a complete graph, an independent
set if G[V ′] has no edge, a vertex cover if V ′ covers all edges, and a dominating set if
V ′ dominates all vertices in V − V ′. A set E′ of edges is a matching if edges in E ′ are
mutually nonadjacent, and an induced matching if G[V (E ′]) consists of a matching.

For a graph G = (V,E), its incidence graph G′ is the bipartite graph obtained from
G by subdividing each edge e by a new vertex ve. For vertices in G′, each vertex of G is
a V-vertex and each inserted vertex ve is an E-vertex.

We also need the following notion of universal sets for the random separation method
in Section 3.4. A list of binary vectors of length n is (n, t)-universal if for every subset
of size t of the indices, all 2t configurations appear in the list. Finally, we use Õ(f(n))
as a shorthand of O(f(n) logc n), where c is a constant.

1.3 Problems and related work

We will consider around twenty graph problems and their parametric duals in this paper.
Following the convention in complexity theory, we specify each problem as a decision
problem. First, let us recall the definitions of parameterized versions of three classical
NP-complete graph problems.

Cardinality Constrained Optimization 6

k-Clique
Instance: Graph G = (V,E) and nonnegative integer k.
Parameter: k.
Question: Does G contain a clique of size at least k?

Independent k-Set
Instance: Graph G = (V,E) and nonnegative integer k.
Parameter: k.
Question: Does G contain an independent set of size at least k?

k-Vertex Cover
Instance: Graph G = (V,E) and nonnegative integer k.
Parameter: k.
Question: Does G have a vertex cover of size at most k?

Both k-Clique and Independent k-Set are W[1]-complete as proved by Downey
and Fellows [12, 13], but k-Vertex Cover is solvable in O(kn + 1.2738k) time by an
algorithm of Chen, Kanj and Xia [9].

We now define various k-cardinality optimization problems in connection with some
fundamental relations among vertices and edges. For simplicity, we will only define
maximization versions of these problems. Their minimization and exact-value versions
can be easily obtained by changing “at least” in the Question part to “at most” and
“exactly” respectively. Furthermore, the parametric dual of a problem Π can be obtained
by replacing k in the Question part of Π by n − k or m − k depending on whether a
solution for Π consists of k vertices or k edges.

We start with fixed-cardinality optimization problems dealing with edges incident
with k vertices.

Maximum k-Vertex Cover (MaxVC(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Does G have k vertices that cover at least l edges?

Maximum k-Vertex Subgraph (MaxVS(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Does G have k vertices V ′ such that the induced subgraph G[V ′]
contains at least l edges?

Maximum (k, n − k)-Cut (MaxCut(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Does G have k vertices V ′ such that the cut [V ′, V − V ′] contains
at least l edges?

Cardinality Constrained Optimization 7

Related work. MaxVS(k) and MinVS(k) (equivalently, MinVC(n−k) and MaxVC(n−
k)) contain k-Clique and Independent k-Set, respectively, as special cases, and are
thus W[1]-hard following the W[1]-completeness of k-Clique and Independent k-Set
by Downey and Fellows [13]. Downey et al. [11] have independently established the
W[1]-hardness of MaxCut(k), where they call the problem Cutting k Vertices From
A Graph. MaxVC(k) and MaxVS(k) have been well studied in the literature in terms
of approximation algorithms, where MaxVS(k) is also referred to as the dense subgraph
problem. Asahiro, Hassin and Iwama [1] have considered the complexity of MaxVS(k)
when k is a part of input and the number l of edges is some function of k. MaxCut(k)
is a fixed-cardinality maximization counterpart of NP-complete problems Max Cut
([ND16] in G&J [16]) and Bipartite Subgraph ([GT25] in G&J [16]), and approxima-
tion algorithms for MaxCut(k) have been studied in the literature. We refer the reader
to an article of Feige and Langberg [14] that contains a mini-survey on approximation
algorithms for MaxVC(k), MaxVS(k), and MaxCut(k).

The next two problems are concerned with vertices adjacent to k vertices.

Maximum k-Vertex Domination (MaxVD(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Are there k vertices V ′ in G whose open neighbourhood N(V ′)
has at least l vertices?

Maximum k-Vertex Joint (MaxVJ(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Are there k vertices V ′ in G that contains at least l vertices adja-
cent to vertices in V − V ′?

Related work. MaxVD(k) is equivalent to MaxVJ(n − k) and contains the parame-
terized version Dominating k-Set of the classical NP-complete problem Dominating
Set ([GT2] in G&J [16]) as a special case. Therefore both MaxVD(k) and MaxVJ(n−k)
are W[2]-hard following the W[2]-completeness of Dominating k-Set by Downey and
Fellows [12]. MinVD(k) is equivalent to MinVJ(n − k) and is related to the vertex
connectivity of G in the sense that it is also equivalent to the problem of removing at
most l vertices to cut off k vertices from G. In this connection, the W[1]-hardness of
MinVD(k) has been independently established by Marx [18], where he calls the problem
Separating k Vertices.

In the following four problems, we consider various ways edges are connected to
vertices and edges.

Maximum k-Edge Cover (MaxEC(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Are there k edges E ′ in G that cover at least l vertices, i.e., the
partial subgraph G[E ′] contains at least l vertices?

Cardinality Constrained Optimization 8

Maximum k-Edge Subgraph (MaxES(k))
Instance: Graph G = (V,E), nonnegative integers l and k.
Parameter: k.
Question: Does G have k edges E ′ such that the induced subgraph G[V (E ′)]
has at least l edges?

Maximum k-Edge Domination (MaxED(k))
Instance: Graph G = (V,E), nonnegative integer l and k.
Parameter: k.
Question: Does G have k edges E ′ that are adjacent to at least l edges in
E − E′?

Maximum k-Edge Link (MaxEL(k))
Instance: Graph G = (V,E), nonnegative integer l and k.
Parameter: k.
Question: Are there k edges E ′ in G such that at least l edges connect G[E ′]
to the outside, i.e., the cut [V (E ′), V − V (E′)] contains at least l edges?

Related work. Both MaxEC(k) and MaxED(k) can be regarded as fixed-cardinality
maximization counterparts of the classical maximum matching problem, which is well
known to be solvable in polynomial time. MaxED(k) is also a fixed-cardinality max-
imization version of Edge Dominating Set (see [GT2] in G&J [16]), and k-Edge
Domination on G is equivalent to k-Vertex Domination on the line graph of G.

In the last two problems, we deal with the number of components generated by
removing k vertices or k edges.

Maximum k-Vertex Multicomponent Cut (MaxVMC(k))
Instance: Graph G = (V,E), nonnegative integer l and k.
Parameter: k.
Question: Does G have k vertices V ′ such that G − V ′ has at least l compo-
nents?

Maximum k-Edge Multicomponent Cut (MaxEMC(k))
Instance: Graph G = (V,E), nonnegative integer l and k.
Parameter: k.
Question: Does G have k edges E ′ such that G−E ′ has at least l components?

Related work. MaxVMC(k) and MaxEMC(k) are fixed-cardinality counterparts of the
well studied multiway cut problems: remove the minimum number of edges (vertices) to
cut a graph into k components. Recently, Marx [18] has independently proved the W[1]-
hardness of MaxVMC(k) under the name of Separating Into l Components, and
Downey et al. [11] have proved the W[1]-hardness of the following Graph k-Cut problem
that is closely related to MaxEMC(k): remove as few edges as possible to create at least
k components.

Cardinality Constrained Optimization 9

1.4 Outline of the paper

For the fixed-cardinality optimization problems and their parametric duals defined in
Section 1.3, we prove in Section 2 that around half of these problems are W[1]-hard. In
contrast to the usual complication of parametric reductions, reductions in all our proofs
are short and simple though subtle sometimes. In Section 3, we give polynomial-time
and FPT algorithms for around ten problems. In Section 4, we present faster exact al-
gorithms for several W[1]-hard fixed-cardinality optimization problems concerning edges
incident with k vertices. For this purpose, we first give an algorithm for finding a mini-
mum (maximum) weight triangle in a weighted graph, and then transform our problems
to problems of finding (minimum) maximum weight triangles in auxiliary graphs. We
discuss further research directions in Section 5.

Our results on fixed-parameter tractability and intractability are summarized in Ta-
ble 1, and our results on exact algorithms are summarized in Table 2.

Problem Min Max
Vertex Cover(k) W[1]-hard (§ 2.2) W[1]-hard (§ 2.2)
Vertex Subgraph(n − k)
Vertex Cover(n − k) W[1]-hard [13] (§ 2.2) W[1]-hard [13] (§ 2.2)
Vertex Subgraph(k)
Cut(k), Cut(n − k) W[1]-harda (§ 2.3) W[1]-hard (§ 2.3)

Vertex Domination(k) W[1]-hardb (§ 2.3) W[2]-hard [13]
Vertex Joint(n − k)

Vertex Domination(n − k) W[1]-hard (§ 2.3) O(m + n + 4kk3/2) (§ 3.3.1)
Vertex Joint(k)
Edge Cover(k) W[1]-hard (§ 2.4) O(k(m + n)) (§ 3.2.2)
Edge Cover(m − k) FPT [7] O(m

√
n) (§ 3.2.2)

Edge Subgraph(k) ? W[1]-hard (§ 2.4)
Edge Subgraph(m − k) FPT [7] O(km + 9.5kk2n) (§ 3.3.3)
Edge Domination(k) W[1]-hard (§ 2.4) W[1]-hard (§ 2.4)

Edge Domination(m − k) 4kkO(log k)(m + kn) log n (§ 3.4.1) O(km + 4kk3/2n) (§ 3.3.2)
Edge Link(k) W[1]-hard (§ 2.4) W[1]-hard (§ 2.4)
Edge Link(m − k) FPT [7] FPT [7]
Vertex Multicomp Cut(k) O(m + n) (§ 3.2.1) W[1]-hardc (§ 2.5)
Vertex Multicomp Cut(n − k) O(m + n) (§ 3.2.1) W[1]-hard (§ 2.5)
Edge Multicomp Cut(k) O(m + n) (§ 3.2.1) ?
Edge Multicomp Cut(m − k) O(m + n) (§ 3.2.1) W[1]-hard (§ 2.5)

aProved independently by Downey et al. [11], where the problem is called Cutting k Vertices From
A Graph.

bProved independently by Marx [18], where the problem is called Separating k Vertices.
cProved independently by Marx [18], where the problem is called Separating Into l Components.

Table 1: Parameterized complexity of fixed-cardinality optimization problems defined in
Section 1.3, where a “?” indicates an open problem.

Cardinality Constrained Optimization 10

Problem Min Max Xct

VC(k) Õ(knωb k

3
c+1+k mod 3) Õ(knωb k

3
c+1+k mod 3) O(k2nωb k

3
c+2+k mod 3)

VS(n − k) (§ 4.2) (§ 4.2) (§ 4.2)

VC(n − k) Õ(k2nωb k

3
c+k mod 3) Õ(k2nωb k

3
c+k mod 3) O(k4nωb k

3
c+k mod 3)

VS(k) (§ 4.3) (§ 4.3) (§ 4.3)

CUT(k) Õ(knωb k

3
c+1+k mod 3) Õ(knωb k

3
c+1+k mod 3) O(k2nωb k

3
c+2+k mod 3)

CUT(n − k) (§ 4.3) (§ 4.3) (§ 4.3)

Table 2: Running time of faster exact algorithms for fixed-cardinality problems con-
cerning edges incident with k vertices, where ω < 2.376. The last column Xct refers to
fixed-cardinality exact-value problems.

2 Fixed-Parameter Intractability

In this section, we establish the fixed-parameter intractability of around half of the prob-
lems defined in Section 1.3 by proving their W[1]-hardness. We make a few comments be-
fore getting into our proofs. First, because our main concern here is the fixed-parameter
intractability, we will not deal with the W[1]-membership issue though most of our prob-
lems belong to W[1]. Secondly, it is easy to see that, under normal circumstance, a fixed-
cardinality exact-value problem is at least as hard as its corresponding fixed-cardinality
optimization problems. Therefore the W[1]-hardness of a fixed-cardinality maximization
(minimization) problem implies the W[1]-hardness of its corresponding fixed-cardinality
exact-value problem. Thirdly, all our reductions clearly take FPT time and we will omit
proofs for this fact. Fourthly, when k is a part of input, all our parametric reductions
become normal polynomial reductions and therefore all our W[1]-hard problems become
NP-hard. Finally, we note that k-Clique on regular graphs plays a central role as it is
a special case of many of our W[1]-hard problems.

We organize our proofs into the following five subsections:

§ 2.1. Cliques and induced matchings

§ 2.2. Vertex covers and induced subgraphs

§ 2.3. Cuts and domination

§ 2.4. Edge induced subgraphs

§ 2.5. Multicomponent cuts

2.1 Cliques and induced matchings

To lay the foundation of our W[1]-hardness results, we first establish the fixed-parameter
intractability on regular graphs for k-Clique, Independent k-Set and the following

Cardinality Constrained Optimization 11

Induced k-Matching problem.2

Induced k-Matching
Instance: Graph G = (V,E), and nonnegative integer k.
Parameter: k.
Question: Does G have an induced matching M ⊆ E with k edges, i.e., k
edges M such that G[V (M)] consists of k mutually nonadjacent edges?

We will see that almost all our parametric reductions are from these three problems.
Note that degree constraints on regular graphs are required for some of our parametric
reductions from k-Clique.

Theorem 2.1 For any fixed integers α, c ≥ 1, k-Clique is W[1]-complete for d-regular
graphs with d ≥ αkc.

Proof. We give a parametric reduction from k-Clique on general graphs. Let G be a
graph and ∆ its maximum degree. We construct a d-regular graph G′ with d ≥ αkc as
follows:

1. Let d = max{∆, αkc}.

2. Take d distinct copies G1, G2, . . . , Gd of G, and let vi denote the vertex in Gi that
corresponds to vertex v in G.

3. For every vertex v in G, create d − dG(v) distinct vertices Vv and for each vertex
vi, 1 ≤ i ≤ d, add edges between vi and every vertex in Vv.

Note that G′ has at most 2dn vertices and d2n edges, and can be constructed in
O(d2n) time, which is actually polynomial time. We also note that the graph in G′

formed by edges not in any Gi is a bipartite graph. Therefore G contains a k-clique iff
G′ contains a k-clique, which establishes the theorem.

Since Independent k-Set for G is equivalent to k-Clique for the complement G
of G, we immediately have the following result.

Corollary 2.2 Independent k-Set is W[1]-complete for regular graphs.

Now we establish the fixed-parameter intractability of Induced k-Matching.

Theorem 2.3 Induced k-Matching is W[1]-hard on regular graphs.

Proof. We give a parametric reduction from Independent k-Set on regular graphs.
Let G = (V,E) be a regular graph. Construct a new regular graph H from G as follows:

2Marx [18] has also observed recently and independently that k-Clique is W[1]-hard on regular
graphs.

Cardinality Constrained Optimization 12

1. Take a copy G′ = (V ′, E′) of G.

2. For each vertex v in G, connect it with its corresponding vertex v ′ in G′ and every
vertex in NG′(v′).

Note that this construction automatically connects each vertex v ′ in G′ with its cor-
responding vertex v in G and every vertex in NG(v). Therefore H is a regular graph
since G is a regular graph. We claim that G contains an independent k-set iff H has an
induced k-matching, and therefore the theorem follows from Corollary 2.2.

Suppose that S is an independent k-set in G. Then the k edges in H connecting
vertices in S and their corresponding vertices in G′ form an induced k-matching.

Conversely, suppose that M is an induced k-matching in H. Let MG = M ∩ E,
MG′ = M∩E′, and M∗ be the edges in M across G and G′. Let M ′ be the corresponding
edges of MG′ in G. Then M ′ share no vertex with MG∪M∗. We claim that MG∪M ′∪M∗

is also an induced k-matching in H.

Clearly, no vertex of M ′ is adjacent to vertices of M ∗ since no vertex of MG′ is
adjacent to vertices of M ∗. Suppose that some vertex u of MG is adjacent to a vertex
v of M ′. Then by the construction of H, u is adjacent to the corresponding vertex v ′

of v in MG′ , contradicting MG ∪ MG′ being an induced matching in H. It follow that
MG ∪ M ′ ∪ M∗ is an induced k-matching in H, and vertices of MG ∪ M ′ contain an
independent set SG with |MG ∪ M ′| vertices. Let S∗ be the vertices of M ∗ in G. Then
S = SG ∪ S∗ consists of k vertices in G. Since MG ∪ M ′ ∪ M∗ is an induced matching,
vertices in S are mutually nonadjacent, and thus S is an independent k-set in G.

2.2 Vertex covers and induced subgraphs

We consider the eight fixed-cardinality optimization problems in connection with k-
Vertex Cover and k-Vertex Subgraph. As mentioned in Section 1.3, both MaxVS(k)
(equivalently MinVC(n−k)) and MinVS(k) (equivalently MaxVC(n−k)) are W[1]-hard
as k-Clique and Independent k-Set, respectively, are their special cases. Here, we
will show that for regular graphs, these eight problems are basically equivalent and are
all W[1]-hard.

Lemma 2.4 Let G be a regular graph and V ′ a subset of k vertices in G. Then the
following statements are equivalent.

1. V ′ is a maximum k-vertex cover in G.

2. G[V ′] is a minimum k-vertex subgraph in G.

3. V ′ is a minimum k-vertex cover in G.

4. G[V ′] is a maximum k-vertex subgraph in G.

Cardinality Constrained Optimization 13

Proof. Let d be the vertex degree of G, and m′ the number of edges in G[V ′]. Then
∑

v∈V ′ d(v) = dk, and V ′ covers

∑

v∈V ′

d(v) − m′ = dk − m′

edges. This clearly gives the equivalence between (1) and (2), and between (3) and (4).
Since the total number of edges in G[V ′] and G[V ′] is

(k
2

)

, (2) and (4) are equivalent.

Since MaxVC(k) is equivalent to MinVS(n−k), Lemma 2.4 indicates that for regular
graphs, all eight fixed-cardinality optimization problems concerning k-vertex covers and
k-vertex subgraphs are essentially the same problem. Combining Theorem 2.1 with
Lemma 2.4, we obtain the following theorem.

Theorem 2.5 The following eight problems are W[1]-hard on regular graphs:

1. Minimum k-Vertex Cover

2. Maximum k-Vertex Cover

3. Minimum (n − k)-Vertex Cover

4. Maximum (n − k)-Vertex Cover

5. Minimum k-Vertex Subgraph

6. Maximum k-Vertex Subgraph

7. Minimum (n − k)-Vertex Subgraph

8. Maximum (n − k)-Vertex Subgraph.

2.3 Cuts and domination

Here we consider (k, n − k)-Cut, k-Vertex Domination and k-Vertex Joint prob-
lems and their parametric duals. As mentioned in Section 1.3, MaxVD(k) is equivalent
to MaxVJ(n−k) and MinVD(k) is equivalent to MinVJ(n−k). Furthermore, MinVD(k)
and MinVJ(n− k) are equivalent to the problem of deleting at most l vertices to cut off
k vertices, which can be regarded as a vertex version of MinCut(k) where we wish to
delete at most l edges to cut off k vertices.

Let us start with (k, n−k)-Cut. Clearly, the problem is its own parametric dual, and
MinCut(k) for G is equivalent to MaxCut(k) for the complement G of G. It turns out
that for regular graphs, k-Clique and Independent k-Set, respectively, are special
cases of MinCut(k) and MaxCut(k).

Theorem 2.6 Both Minimum (k, n−k)-Cut and Maximum (k, n−k)-Cut are W[1]-
hard on regular graphs.

Cardinality Constrained Optimization 14

Proof. For a d-regular graph G, it is clear that G has a k-clique iff G has a (k, n−k)-cut
with ≤ kd−2

(k
2

)

edges, and G has an independent k-set iff G has a (k, n−k)-cut with ≥ kd
edges. The theorem follows from the W[1]-hardness of k-Clique and Independent k-
Set on regular graphs.

We now establish the W[1]-hardness of MinVD(k) and MinVJ(n − k).

Theorem 2.7 Minimum k-Vertex Domination (equivalently, Minimum (n − k)-
Vertex Joint) is W[1]-hard.

Proof. We give a parametric reduction from Minimum k-Vertex Cover on regu-
lar graphs. For an arbitrary instance (G, l, k) of MinVC(k), we construct an instance
(G′, l, k) of MinVD(k) as follows:

1. Construct the incidence graph of G by subdividing each edge e of G by a vertex
ve.

2. Add a complete graph K on l + 2 vertices.

3. Connect every vertex in K to every E-vertex ve by an edge.

We claim that G has k vertices covering at most l edges iff G′ has k vertices whose open
neighbourhood has at most l vertices.

Suppose that G has k vertices V ′ covering at most l edges. Since each vertex in the
open neighbourhood NG′(V ′) of V ′ is an E-vertex ve for some edge e of G that is covered
by vertices in V ′, we have |NG′(V ′)| ≤ l. Conversely, suppose that G′ has k vertices V ′

with |NG′(V ′)| ≤ l. Since in G′, each E-vertex or vertex in K has degree more than l, V ′

consists of V-vertices only. Note that if an edge e in G is covered by some vertex in V ′,
then in graph G′, the corresponding E-vertex ve of e is a vertex in NG′(V ′). Therefore
V ′ covers at most l edges in G.

Theorem 2.8 Minimum k-Vertex Joint (equivalently, Minimum (n − k)-Vertex
Domination) is W[1]-hard.

Proof. We give a parametric reduction from k-Clique on d-regular graphs with d ≥ k2.
Let G be a d-regular graph satisfying d ≥ k2. Construct the incidence graph G′ from G
by subdividing each edge e of G by a vertex ve. Set k′ = k +

(k
2

)

, and l = k. We claim
that G has a k-clique iff G′ has k′ vertices that contain at most l vertices connected to
the outside.

Suppose that V ′ is a k-clique in G. Let U = {ve : e is an edge of G[V ′]}. Then
V ′ ∪ U is a set of k +

(k
2

)

= k′ vertices in G′. Note that the degree of each vertex of
V ′ in G′ is d ≥ k2 ≥ k′. Therefore in V ′ ∪ U , every vertex in V ′ is connected to the
outside, but no vertex in U is connected to the outside. It follows that V ′ ∪U is a set of
k′ vertices in G′ that contains at most l = k vertices connected to the outside.

Conversely, suppose that V ∗ is a set of k′ vertices in G′ that has at most l = k
vertices connected to the outside. Let X be the set of V -vertices in V ∗ and Y the set

Cardinality Constrained Optimization 15

of E-vertices in V ∗. Since every vertex in X has degree at least k ′, every vertex in X
is connected to some vertices outside V ∗. It follows that |X| ≤ k and Y contains at
most k − |X| vertices connected to some vertices outside V ∗. Note that every E-vertex
is adjacent to exactly two V -vertices. Therefore a vertex ve in Y is connected to some
vertices outside V ∗ iff at least one of its two adjacent V -vertices are not in X, i.e., e is
not an edge of G[X]. Since Y has k′ − |X| vertices, it follows that Y has at least

k′ − |X| − (k − |X|) =

(

k

2

)

vertices ve such that e is an edge of G[X]. Therefore G[X] has at least
(k
2

)

edges and
thus X is a k-clique in G as it has at most k vertices.

We note that, as mentioned in Section 1.3, MaxVD(k) and MaxVJ(n − k) are W[2]-
hard as they contain the W[2]-complete problem Dominating k-Set as a special case.
On the other hand, MaxVD(n − k) and its equivalent problem MaxVJ(k) are FPT as
we will see in Section 3.3.1.

2.4 Edge induced subgraphs

Let E′ be a set of k or m − k edges. We consider problems in connection with the
number of vertices in G[E ′], the number of edges in G[V (E ′)], the number of other edges
adjacent to E ′, and the number of edges connecting G[E ′] with vertices outside G[E ′].
Among the sixteen problems related to the above four quantities defined by E ′, six are
W[1]-hard, nine are FPT, but Minimum k-Edge Subgraph is open.

Let us start with the number of vertices in G[E ′]. We establish the W[1]-hardness of
Minimum k-Edge Cover by showing that k-Clique is a special case of the problem.
On the other hand, we will see in Section 3.2.2 that both Maximum k-Edge Cover and
Maximum (m−k)-Edge Cover are FPT by the matching technique. We also note that
Cai, Chan and Chan [7] have obtained an FPT algorithm for Minimum (m − k)-Edge
Cover by using their newly developed random separation method.

Theorem 2.9 Minimum k-Edge Cover is W[1]-hard on regular graphs.

Proof. Let E ′ be a set of
(k
2

)

edges in a graph G, and l the number of vertices in G[E ′].

Then the maximum number of edges in G[E ′] in terms of l equals
(l
2

)

. Therefore

(

l

2

)

≥
(

k

2

)

,

which yields l ≥ k. Furthermore, l = k iff G[E ′] is a complete graph. Therefore, G
has a k-clique iff G[E ′] contains at most k vertices, and the theorem follows from the
W[1]-hardness of k-Clique on regular graphs.

Next, we consider the number of edges in G[V (E ′)]. We prove that Maximum k-
Edge Subgraph is W[1]-hard by a reduction from k-Clique. On the other hand, we

Cardinality Constrained Optimization 16

will see in Section 3.3.3 that Maximum (m− k)-Edge Subgraph is FPT by kerneliza-
tion. Furthermore Minimum (m− k)-Edge Subgraph is recently shown to be FPT by
Cai, Chan and Chan [7] using their random separation method, but Minimum k-Edge
Subgraph is open.

Theorem 2.10 Maximum k-Edge Subgraph is W[1]-hard on regular graphs.

Proof. Let G be a regular graph. We construct a graph H from G by taking a
copy G′ of G and adding all possible edges between vertices of G and vertices of G′. It
is clear that H is also a regular graph, and that G contains a k-clique iff H contains
a 2k-clique. Furthermore, H contains a 2k-clique iff it contains k edges E ′ such that
H[V (E′)] contains at least

(2k
2

)

edges. Therefore G contains a k-clique iff H contains k

edges E′ such that H[V (E ′)] has at least l =
(2k

2

)

edges. The theorem follows from the
W[1]-hardness of k-Clique on regular graphs.

We now turn to the size of the open edge-neighbourhood of k or m − k edges, and
establish the W[1]-hardness of Maximum k-Edge Domination and Minimum k-Edge
Domination by showing that they contain Induced k-Matching and k-Clique, re-
spectively, as special cases. On the other hand, Maximum (m− k)-Edge Domination
is FPT by kernelization (see Section 3.3.2), and Minimum (m− k)-Edge Domination
is FPT by the random separation method (see Section 3.4.1).

Theorem 2.11 Maximum k-Edge Domination is W[1]-hard on regular graphs.

Proof. For a d-regular graph G, k edges are adjacent to at least 2(d − 1)k other edges
iff G has an induced k-matching. The theorem directly follows from Theorem 2.3, the
W[1]-hardness of Induced k-Matching on regular graphs.

Theorem 2.12 Minimum k-Edge Domination is W[1]-hard on regular graphs.

Proof. Let G be a d-regular graph satisfying d ≥ k2. We show that G has a k-clique
iff G has

(k
2

)

edges E′ such that |N(E ′)| ≤ dk− 2
(k
2

)

. The theorem then follows from the
W[1]-hardness of k-Clique on such regular graphs.

Let V ′ be a k-clique of G. By taking edges in G[V ′] as E′, we see that E ′ are adjacent
to at most dk − 2

(k
2

)

other edges. Conversely, the number l of edges in the open edge-

neighbourhood N(E ′) of E′ satisfies l = dn′−m′−(k2
)

, where n′ is the number of vertices

in G[E′] and m′ the number of edges in G[V (E ′)]. Since m′ ≤ (n′

2

)

, we have

l ≥ dn′ −
(

n′

2

)

−
(

k

2

)

.

Note that k ≤ n′ ≤ k(k − 1) as E ′ has
(k
2

)

edges. Therefore by the assumption that
d ≥ k2, we have k ≤ n′ < d.

Since

f(t) = dt −
(

t

2

)

=
t(2d + 1 − t)

2

Cardinality Constrained Optimization 17

monotonically increases for 1 ≤ t ≤ d + 1/2, dn′ − (n′

2

)

attains its minimum for n′ = k.

Therefore l ≥ dk − 2
(k
2

)

and l = dk − 2
(k
2

)

iff n′ = k. By the assumption that |N(E ′)| ≤
dk − 2

(k
2

)

, we see that G[E ′] has exactly k vertices and
(k
2

)

edges and thus V (E ′) is a
k-clique in G.

For the problems concerning edges connecting G[E ′] with outside vertices, it turns out
that k-Clique and Induced k-Matching, respectively, are special cases of Minimum
k-Edge Link and Maximum k-Edge Link. On the other hand, both Minimum (m−k)-
Edge Link and Maximum (m − k)-Edge Link are FPT by the random separation
method [7].

Theorem 2.13 Minimum k-Edge Link is W[1]-hard on regular graphs.

Proof. Let G be a d-regular graphs satisfying d ≥ 2k2. We prove that G has a k-clique
iff it has

(k
2

)

edges E′ such that at most dk − 2
(k
2

)

edges connect G[E ′] with vertices not
in G[E′]. The theorem then follows from the W[1]-hardness of k-Clique on such regular
graphs.

By taking all edges in a complete subgraph on k vertices, we have
(k
2

)

edges E′ such

that at most dk − 2
(k
2

)

edges connect G[E ′] with vertices not in G[E ′].

Conversely, consider the number l of edges connecting G[E ′] with vertices not in
G[E′]. Let n′ be the number of vertices in G[E ′] and m′ the number of edges in G[V (E ′)].
Then

l = dn′ − 2m′ ≥ dn′ − 2

(

n′

2

)

as m′ ≤ (n′

2

)

.

Similar to the proof of Theorem 2.12, we see that k ≤ n′ < d/2, and dn′ − 2
(n′

2

)

monotonically increases for 1 ≤ t ≤ (d+1)/2. Therefore dn′−2
(n′

2

)

attains its minimum

for n′ = k, i.e., l ≥ dk − 2
(k
2

)

and l = dk − 2
(k
2

)

iff n′ = k. Therefore l ≤ dk − 2
(k
2

)

iff

G[E′] has exactly k vertices and
(k
2

)

edges, i.e., G has a k-clique.

Theorem 2.14 Maximum k-Edge Link is W[1]-hard on regular graphs.

Proof. It is easy to see that a d-regular graph G contains an induced k-matching iff it
contains k edges E ′ such that there are 2(d − 1)k edges connecting G[E ′] with vertices
outside G[E ′]. The theorem follows from the W[1]-hardness of Induced k-Matching
on regular graphs.

2.5 Multicomponent Cuts

There are eight fixed-cardinality optimization problems concerning the number of com-
ponents generated by removing k vertices or k edges, and we prove that the following
three are W[1]-hard:

1. Maximum k-Vertex Multicomponent Cut,

Cardinality Constrained Optimization 18

2. Maximum (n − k)-Vertex Multicomponent Cut, and

3. Maximum (m − k)-Edge Multicomponent Cut.

Among the remaining five problems, Maximum k-Edge Multicomponent Cut is
the only open problem and the other four can be easily solved in O(m + n) time (Sec-
tion 3.2.1).

We start with MaxVMC(n−k), which is easily seen to contain Independent k-Set
as a special case.

Theorem 2.15 Maximum (n − k)-Vertex Multicomponent Cut is W[1]-hard on
regular graphs.

Proof. For every graph G, it is clear that G has an independent k-set iff it contains
n − k vertices whose removal results in k isolated vertices, which form k components.
The theorem follows from the W[1]-hardness of Independent k-Set on regular graphs.

On the other hand, the W[1]-hardness of MaxVMC(k) is less obvious.

Theorem 2.16 Maximum k-Vertex Multicomponent Cut is W[1]-hard.

Proof. We give a parametric reduction from k-Clique. Let (G, k) be an instance of
k-Clique. Without loss of generality, we may assume that G is a connected graph with
at least k vertices. Construct an instance (G′, l, k) of MaxVMC(k) from G as follows:

1. Subdivide each edge e of G by a vertex ve.

2. Add a complete graph K on k + 1 new vertices and for each vertex of K connect
it to every vertex of G by an edge.

3. Set l to
(k
2

)

+ 1.

We prove that G contains a k-clique iff G′ has k vertices whose removal results in a graph
with at least l components, which will establish the theorem.

Suppose that V ′ is a k-clique in G. Then in graph G′ − V ′, every E-vertex that
corresponds to an edge of G[V ′] is an isolated vertex. These

(k
2

)

isolated vertices together
with the component containing K form l components in G′ − V ′.

Conversely, suppose that V ′ is a set of k vertices in G′ such that G′ − V ′ contains
at least l components. Let V ∗ be V-vertices in V ′. Note that the complete graph K
contains at least one vertex of G′ − V ′, which is connected to all V-vertices not in V ∗.
Therefore the deletion of vertices in V ′−V ∗, which are either E-vertices or vertices in K,
from G−V ∗ does not increase the number of components, and hence G−V ∗ and G−V ′

have the same number of components. In graph G − V ∗, one component contains the
complete graph K and each of the remaining l − 1 components is formed by an isolated
E-vertex ve that corresponds to edge e in G[V ∗]. Since G′ − V ∗ has at least l − 1 =

(k
2

)

Cardinality Constrained Optimization 19

such isolated vertices, G[V ∗] contains at least
(k
2

)

edges, which implies that V ∗ contains

at least k vertices. Therefore V ∗ has exactly k vertices and G[V ∗] contains exactly
(k
2

)

edges, implying that V ∗ is a k-clique in G.

As the final W[1]-hardness result in this paper, we prove that MaxEMC(m − k) is
W[1]-hard by showing that MaxEMC(m − (k2

)

) is actually equivalent to k-Clique.

Theorem 2.17 Maximum (m − k)-Edge Multicomponent Cut is W[1]-hard on
regular graphs.

Proof. We claim that for every graph G, G has a k-clique iff G contains m− (k2
)

edges
E′ whose deletion from G results in at least n − k + 1 components. The theorem then
follows from the W[1]-hardness of k-Clique on regular graphs.

Let K be a k-clique in G and let E ′ be the edges of G not in G[K]. Then E ′ has
m− (k2

)

edges and G−E ′ consists of G[K] and n− k isolated vertices. Therefore G−E ′

contains n − k + 1 components.

Conversely, suppose that G contains no k-clique. Let E ′ be an arbitrary set of m−(k2
)

edges in G and G′ = G−E′. If G′ has only one nontrivial component, then the component
has at least k + 1 vertices as it has

(k
2

)

edges but is not a k-clique. Therefore G′ has
at most n − (k + 1) isolated vertices and thus at most n − k components. Otherwise,
let H1, . . . ,Ht, t ≥ 2, be nontrivial components of G′. Construct a new graph G∗ from
G′ as follows: arbitrarily choose one vertex vi from each Hi and, for each vi with i ≥ 2
replace every edge viu by a new edge v1u. Therefore G∗ consists of isolated vertices vi,
2 ≤ i ≤ t, and a single nontrivial component H∗ which has

(k
2

)

edges and is not a k-
clique. Furthermore, G′ and G∗ have the same number of components. By the previous
argument, we see that G∗ has at most n−k components and hence G′ has at most n−k
components.

3 FPT Algorithms

In this section we consider fixed-parameter tractability of cardinality constrained opti-
mization problems. We start with a general result in Section 3.1 that basically says we
can focus on connected graphs for most fixed-cardinality optimization problems. Then
we give polynomial-time algorithms or FPT algorithms for around ten fixed-cardinality
optimization problems listed in Table 1 of Section 1.3.

In Section 3.2, we give simple polynomial-time algorithms for minimum vertex/edge
multicomponent cut problems and maximum edge cover problems. We use kernelization
in Section 3.3 to solve Maximum (n − k)-Vertex Domination, Maximum (m − k)-
Edge Domination, and Maximum (m−k)-Edge Subgraph, and we use the random
separation method in Section 3.4 to solve Minimum (m − k)-Edge Domination.

Cardinality Constrained Optimization 20

3.1 Disconnected graphs

To solve a problem on a disconnected graph G, we can usually solve the problem for each
component of G individually and independently. Unfortunately, it is not the case for car-
dinality constrained optimization problems, and it is not obvious that an algorithm for a
problem on connected graphs can be used directly to solve the problem for disconnected
graphs. For instance, consider the problem of finding k induced copies of K1 ∪ K2 to
cover as many edges as possible. Nevertheless, for most cardinality constrained opti-
mization problems, optimal solutions of G can be obtained from optimal solutions of
its components. For such problems, we will show that, as far as the fixed-parameter
tractability is concerned, we need only consider connected graphs.

Definition 3.1 A cardinality constrained optimization problem Π is additive for com-
ponents if for any two vertex-disjoint graphs G1 and G2, the following two conditions
hold:

1. For every feasible k1-solution S1 of G1 and every feasible k2-solution S2 of G2,
S1 ∪S2 is a feasible (k1 + k2)-solution of G1 ∪G2 and φ(S1 ∪ S2) = φ(S1) + φ(S2).

2. Every optimal k-solution of G1 ∪ G2 is the union of an optimal k′-solution of G1

and an optimal (k − k′)-solution of G2 for some 0 ≤ k′ ≤ k.

Most graph problems are additive for components, and we now prove that for any
graph problem Π that is additive for components, Π is FPT for disconnected graphs
whenever it is FPT for connected graphs.

Theorem 3.2 Let Π be a k-cardinality optimization problem that is additive for compo-
nents, and T (m,n, k) the time to find an optimal k-solution and its value in a connected
graph with m edges and n vertices. Let α ≥ 1 be a constant, f(k) a computable function
satisfying the property that f(1) > 0 and there is a constant c > 1 such that for all k ≥ 2,
f(k) ≥ cf(k − 1). Then the time to find an optimal k-solution of Π in a disconnected
graph is

(1). O(f(k)(m + n)α) for T (m,n, k) = O(f(k)(m + n)α),

(2). O(k(m + n)α + f(k)n) for T (m,n, k) = O((m + n)α + f(k)), and

(3). O(knT (m,n, k)+k2n) for any monotonically nondecreasing function T (m,n, k) of
m,n and k.3

Proof. We will only give a proof for maximization problems, which is easily adapted for
minimization problems. Let Π be a k-cardinality maximization problem that is additive
for components, A an algorithm for finding an optimal k-solution and its value for Π
on connected graphs, and G a disconnected graph with components H1, . . . ,Ht. To find
an optimal k-solution of G, we first use A to compute, for every component Hi, an

3For most common functions T (m, n, k), the time is actually O(kT (m,n, k) + k2n).

Cardinality Constrained Optimization 21

optimal j-solution Sj(Hi) and its value φ(Sj(Hi)) for each j, 1 ≤ j ≤ k. Once we have
obtained Sj(Hi) and φ(Sj(Hi)) for all components and all values of j, we use dynamic
programming to compute an optimal k-solution of G. For this purpose, we use two tables
S(i, j) and F (i, j), 1 ≤ i ≤ t, 0 ≤ j ≤ k, where S(i, j) contains an optimal j-solution in
graph H1∪ . . .∪Hi and F (i, j) stores the value φ(S(i, j)) of S(i, j). Note that S(t, k) and
F (t, k), respectively, hold an optimal k-solution of G and its value. We use the following
recurrences to compute the entries of the two tables S(i, j) and F (i, j) row-by-row.

For each i, 1 ≤ i ≤ t, S(i, 0) = ∅ and F (i, 0) = 0.

For each j, 1 ≤ j ≤ k, S(1, j) = Sj(H1) and F (1, j) = φ(S(1, j)).

For each i, 2 ≤ i ≤ t and each j, 1 ≤ j ≤ k,

F (i, j) = max
0≤j′≤j

{F (i − 1, j ′) + φ(Sj−j′(Hi)},

and
S(i, j) = S(i − 1, j∗) ∪ Sj−j∗(Hi),

where j∗ is a value of j ′, 0 ≤ j′ ≤ j, that maximizes F (i − 1, j ′) + φ(Sj−j′(Hi)).

In summary, we solve Π for disconnected graphs by the following algorithm.

Step 1. For each component Hi, 1 ≤ i ≤ t, and each j, 1 ≤ j ≤ k, find an optimal
j-solution Sj(Hi) of Hi and compute its value φ(Sj(Hi)).

Step 2. Use the above recurrences to fill the entries of the two tables S(i, j) and F (i, j)
row-by-row by dynamic programming.

We prove that the above algorithm correctly finds an optimal k-solution of G. For
this purpose, we use induction on i to prove that for every 0 ≤ j ≤ k, S(i, j) is an
optimal j-solution of H ′

i, where H ′
i denotes the graph H1 ∪ · · · ∪ Hi, and F (i, j) the

value of S(i, j). Let S be an optimal j-solution of H ′
i. It suffices to show that S(i, j)

is a feasible j-solution of H ′
i and F (i, j) = φ(S(i, j)) ≥ φ(S). By the recurrences for

computing S(i, j), we have

S(i, j) = S(i − 1, j∗) ∪ Sj−j∗(Hi)

for j∗ being a value of j ′, 0 ≤ j′ ≤ j, that maximizes

F (i − 1, j′) + φ(Sj−j′(Hi)).

Since Sj−j∗(Hi) is an optimal (j − j∗)-solution of Hi and S(i − 1, j∗) is an optimal
j∗-solution of H ′

i−1 by the induction hypothesis, it follows from the 1st condition of
Definition 3.1 that S(i, j) is a feasible j-solution of H ′

i.

Now by the 2nd condition of Definition 3.1, S must be the union of an optimal j ′-
solution S1 of H ′

i−1 for some 0 ≤ j ′ ≤ j and an optimal (j − j ′)-solution S2 of Hi. By

Cardinality Constrained Optimization 22

the induction hypothesis, F (i− 1, j ′) = φ(S(i− 1, j ′)) = φ(S1); and by the 1st condition
of Definition 3.1, we have φ(S) = φ(S1) + φ(S2). It follows that

φ(S) = F (i − 1, j ′) + φ(Sj−j′(Hi)) ≤ F (i − 1, j∗) + φ(Sj−j∗(Hi)) = φ(S(i, j))

and F (i, j) = φ(S(i, j)), implying that indeed S(i, j) is an optimal j-solution of H ′
i and

F (i, j) contains the value of S(i, j). This establishes the correctness of our algorithm.

We now consider the running time of our algorithm.

(1). Since
∑t

i=1(mi + ni) = m + n and α ≥ 1, we have

t
∑

i=1

(mi + ni)
α ≤ (m + n)α.

Also, we have
∑k

j=1 f(j) < f(k)
∑∞

j=0 c−j = c
c−1f(k).

Therefore, the time taken by Step 1 is

t
∑

i=1

k
∑

j=1

T (mi, ni, j) = O(
t
∑

i=1

k
∑

j=1

f(j)(mi + ni)
α)

= O(
k
∑

j=1

f(j)
t
∑

i=1

(mi + ni)
α)

= O(f(k)(m + n)α).

Step 2 takes O(k2t) = O(k2n) time. Since f(k) ≥ ck and α ≥ 1, we see that k2n =
O(f(k)(m + n)α). Therefore the whole algorithm takes O(f(k)(m + n)α) time.

(2). The time taken by Step 1 is

t
∑

i=1

k
∑

j=1

T (mi, ni, j) = O(
t
∑

i=1

k
∑

j=1

[(mi + ni)
α + f(j)])

= O(
k
∑

j=1

t
∑

i=1

(mi + ni)
α +

t
∑

i=1

k
∑

j=1

f(j))

= O(k(m + n)α + f(k)n).

Time for Step 2 is O(k2n), which is dominated by the time for Step 1, and thus the
whole algorithm takes O(k(m + n)α + f(k)n) time.

(3). The time taken by Step 1 is

t
∑

i=1

k
∑

j=1

T (mi, ni, j) ≤
t
∑

i=1

kT (mi, ni, k) ≤ O(knT (m,n, k))

as T (m,n, k) is a monotonically nondecreasing function of m,n and k, and therefore the
whole algorithm takes O(knT (m,n, k) + k2n) time.

For the parametric dual Π′ of a k-cardinality constrained optimization problem Π, it
is not clear in general whether the “additive for components” property of Π is sufficient

Cardinality Constrained Optimization 23

for Π′ to be FPT for disconnected graphs when Π′ is FPT for connected graphs. However,
if for any two vertex-disjoint graphs G1 and G2, the size of the solution base of G1 ∪G2

equals the sum of the sizes of the solution bases of G1 and G2, then we obtain the same
results as those in Theorem 3.2. Recall that for a k-cardinality optimization problem Π
on G, k denotes |B(G)| − k.

Theorem 3.3 Let Π be a k-cardinality optimization problem that is additive for com-
ponents, and T (m,n, k) the time to find an optimal k-solution and its value for Π in
a connected graph with m edges and n vertices. Let α ≥ 1 be a constant, f(k) a com-
putable function satisfying the property that f(1) > 0 and there is a constant c > 1 such
that for all k ≥ 2, f(k) ≥ cf(k − 1). If for any two vertex-disjoint graphs G1 and G2,
|B(G1 ∪ G2)| = |B(G1)| + |B(G2)|, then the time to find an optimal k-solution of Π in a
disconnected graph is

(1). O(f(k)(m + n)α) for T (m,n, k) = O(f(k)(m + n)α),

(2). O(k(m + n)α + f(k)n) for T (m,n, k) = O((m + n)α + f(k)), and

(3). O(knT (m,n, k)+k2n) for any monotonically nondecreasing function T (m,n, k) of
m,n and k.

Proof. Let A′ be an algorithm that runs in T (m,n, k) time and finds an optimal
k-solution and its value for Π on a connected graph G with m edges and n vertices. We
use the the algorithm in the proof of Theorem 3.2 with the following changes to find an
optimal k-solution of G:

• Sj(Hi) is an optimal j-solution, instead of an optimal j-solution, of Hi.

• S(i, j) contains an optimal j-solution of H1,∪ · · · ∪ Hi.

By the assumption, we have |B(G1 ∪ G2)| = |B(G1)| + |B(G2)| for any two vertex-
disjoint graphs G1 and G2. The key point to note is that this ensures the following
property: the union of a feasible k′-solution of G1 and a feasible k − k′-solution of G2 is
a feasible k-solution of G1 ∪ G2 as

(|B(G1)| − k′) + (|B(G2)| − (k − k′)) = |B(G1)| + |B(G2)| − k = |B(G1 ∪ G2)| − k.

With this observation, we can prove the correctness of the algorithm using the same
argument in the proof of Theorem 3.2.

For the running time of the algorithm, the proof is exactly the same as that for
Theorem 3.2 except that the time T (m,n, k) refers to the time of finding an optimal
k-solution.

3.2 Polynomial-time algorithms

In this subsection, we give simple polynomial-time algorithms for Minimum Vertex
Multicomponent Cut problems, Minimum Edge Multicomponent Cut problems,
and Maximum Edge Cover problems.

Cardinality Constrained Optimization 24

3.2.1 Multicomponent cuts

First we consider the problem of deleting t vertices in a graph, where t is a part of input,
to minimize the number of components in the resulting graph. Without loss of generality,
we may assume that m,n ≥ t. The problem can be easily solved in O(m + n) time by
the following greedy algorithm, which never increases the number of components in the
graph.

Sort the components H1, . . . ,Hs of G in nondecreasing order with respect to their
numbers of vertices. Let ni be the number of vertices in Hi. Let j be the largest index
such that

∑j
i=1 ni ≤ t. Delete all vertices in H1, . . . ,Hj. For component Hj+1, construct

a spanning tree T , repeatedly delete leaves of T until we have deleted exactly t vertices.

For the problem of deleting t edges in a graph, where t is a part of input, to minimize
the number of components in the resulting graph, we have the following algorithm. For
each component Hi, construct a spanning tree Ti and let Ei be nontree edges in Hi. Let
E∗ =

⋃s
i=1 Ei. If E∗ has at least t edges, arbitrarily choose t edges from E∗ and delete

them. Otherwise, delete all edge in E∗ and arbitrarily delete t − |E∗| tree edges.

The above algorithm clearly runs in O(m + n) time. It is also easy to verify the
correctness of the algorithm, though not as obvious as the greedy algorithm for deleting
t vertices, by noticing the following three facts.

1. Edge deletion cannot reduce the number of components in a graph.

2. If G has s components, then n − s is the minimum number of edges required to
maintain s components. In such a case, each component is a tree.

3. For a tree, the deletion of any edge breaks up the tree into two components.

Theorem 3.4 For every integer t, it takes O(m+n) time to delete t vertices (or t edges)
in a graph to minimize the number of components in the resulting graph.

The above theorem clearly implies the linear-time solvability of the four fixed-cardinality
minimization problems concerning the number of components by vertex or edge deletion.

Corollary 3.5 It takes O(m + n) time to solve Minimum k-Vertex Multicompo-
nent Cut, Minimum (n − k)-Vertex Multicomponent Cut, Minimum k-Edge
Multicomponent Cut, and Minimum (m − k)-Edge Multicomponent Cut.

3.2.2 Maximum edge covers

We consider the two problems MaxEC(k) and MaxEC(m− k) that ask us to find k and
m − k edges, respectively, to cover the maximum number of vertices. We will use the
matching technique to obtain an efficient polynomial-time algorithm for solving both
problems.

Cardinality Constrained Optimization 25

Lemma 3.6 Let G be a graph with at least k edges and no isolated vertices. Let M be a
maximum matching of G. Then the maximum number of vertices that k edges can cover
equals 2k if k ≤ |M |, k + |M | if k ≤ n − |M |, and n otherwise.

Proof. Obviously, k edges cover at most 2k vertices. If k ≤ |M |, then any k edges
from M cover 2k vertices. Otherwise, let E ′ be a set of k edges, and M ′ a maximum
matching in G[E ′]. Then the number of vertices covered by E ′ is at most

2|M ′| + (k − |M ′|) = k + |M ′| ≤ k + |M |.

Note that there are n − 2|M | M -unsaturated vertices in G. If k ≤ n − |M |, then
k − |M | ≤ n − 2|M | and thus |M | edges in M together with k − |M | edges incident
with k − |M | distinct M -unsaturated vertices cover exactly k + |M | vertices. Otherwise
k > n − |M | and thus there are less than k − |M | M -unsaturated vertices in G. Edges
in M together with any k − |M | edges that are incident with all M -unsaturated vertices
cover all vertices in the graph.

Based on the proof of the above lemma, we have the following efficient algorithm to
find k edges E ′, where k is a part of input, to cover the maximum number of vertices in
a graph G.

1. Delete all isolated vertices from G.

2. If G has a matching M of size at least k, then arbitrarily take k edges from M as
E′ and stop.

3. Find a maximum matching M of G and put all edge in M into E ′.

4. For each distinct M -unsaturated vertex v, arbitrarily put an edge incident with v
into E′ until either E ′ has k edges or there is no more M -unsaturated vertices.

5. Arbitrarily add k − |E ′| edges into E ′.

Note that Steps 2 and 3 take O(k(m + n)) and O(m
√

n) time respectively by using
the maximum matching algorithm of Micali and Vazirani [20]. Since all other steps takes
linear time, we have the following theorem.

Theorem 3.7 Maximum k-Edge Cover can be solved in O(k(m+n)) time and Max-
imum (m − k)-Edge Cover can be solved in O(m

√
n) time.

3.3 FPT by kernelization

The main idea of the kernelization method is to reduce a problem instance I in poly-
nomial time to an “equivalent” instance I ′ whose size is bounded by a function of the
parameter k, and then solve I ′ by exhaustive search or other methods. Here we will use
the kernelization method to solve Maximum (n− k)-Vertex Domination, Maximum
(m − k)-Edge Domination, and Maximum (m − k)-Edge Subgraph.

Cardinality Constrained Optimization 26

3.3.1 Maximum (n − k)-vertex domination

We start with Maximum (n − k)-Vertex Domination, the problem of finding n − k
vertices V ′ that maximize the number of vertices in the open neighbourhood N(V ′) of
V ′. The problem is equivalent to Maximum k-Vertex Joint, the problem of finding
k vertices V ∗ to maximize the number of vertices in V ∗ adjacent to vertices outside V ∗.

Recall that a set of vertices V ′ is a dominating set if V −V ′ ⊆ N(V ′). The following
upper bound on the number of vertices in a dominating set will enable us to reduce our
problem to a kernel of size ≤ 2k.

Lemma 3.8 (Ore [22]) Every graph G without isolated vertices has a dominating set of
size at most bn/2c.

By the above lemma, we see that if k < n/2, then we can always find a set of n − k
vertices V ′ in G that form a dominating set, i.e., N(V ′) contains all remaining k vertices.
Otherwise G contains at most 2k vertices which is regard as a kernel, and we can use
exhaustive search to find a set of n − k ≤ k vertices V ′ in G to maximize |N(V ′)|.

We can easily find a dominating set of size bn/2c in O(m + n) time as follows:
construct a spanning tree T of G and then take the smaller one of the two colour classes
in the 2-colouring of T as the dominating set. For n ≤ 2k, we note that

(n
k

) ≤ (2k
k

)

=

O(4k/
√

k) and the time for determining the size of the open neighbourhood of k vertices
is O(k2). Therefore the time for exhaustive search is O(

(2k
k

)

k2) = O(4kk3/2), and the

total time for the algorithm is O(m + n + 4kk3/2).

Theorem 3.9 Maximum (n − k)-Vertex Domination (equivalently Maximum k-
Vertex Joint) can be solved in O(m + n + 4kk3/2) time.

3.3.2 Maximum (m − k)-edge domination

To obtain an FPT algorithm for Maximum (m − k)-Edge Domination, the problem
of finding m− k edges E ′ that are adjacent to the maximum number of edges in E −E ′,
we first establish a relation with a maximal matching in a connected graph and use the
relation to reduce the problem for a connected graph to a kernel of size ≤ 2k.

Lemma 3.10 Let G be a connected graph, and M a maximal matching of G. If |M | >
m − k, then G has ≤ 2k vertices and ≤ 2k − 1 edges.

Proof. Since G is connected, we have m ≥ n−1. By the assumption that |M | ≥ m−k+1
and the fact that |M | ≤ bn/2c, we have

bn

2
c ≥ m − k + 1 ≥ n − k,

which yields n ≤ 2k. It follows that

m ≤ |M | + k − 1 ≤ bn/2c + k − 1 ≤ 2k − 1.

Cardinality Constrained Optimization 27

Based on the above lemma, we have the following algorithm for finding a set E ′

of m − k edges in a connected graph G to maximize the number of edges in the open
edge-neighbourhood N(E ′) of E′.

Find a maximal matching M in G. If m − k ≥ |M | then take all edges in M and
arbitrarily select m− k− |M | edges in E −M as E ′. Otherwise G has ≤ 2k vertices and
≤ 2k − 1 edges which is regarded as a kernel, and we use exhaustive search to find a set
of required m − k edges in G.

The correctness of the algorithm follows from the simple fact that edges in every
maximal matching are adjacent to all edges not in the matching. Since a maximal
matching in a graph can be found in O(m + n) time, the algorithm takes O(m + n)
time when m − k ≥ |M |. For the exhaustive search part, by Lemma 3.10, G has at
most 2k vertices and 2k − 1 edges and thus m− k < k. Note that it takes O(k2) time to
determine the number of edges in the open edge-neighbourhood of k edges. Therefore the
exhaustive search takes O(

(2k
k

)

k2) = O(4kk3/2) time, and the total time for the algorithm

is O(m + n + 4kk3/2).

Theorem 3.11 It takes O(m + n + 4kk3/2) time to solve Maximum (m − k)-Edge
Domination on connected graphs.

To solve Maximum (m−k)-Edge Domination for general graphs we use the results
in Section 3.1 for disconnected graphs. It is clear that the problem is additive for
components and satisfies the conditions of Theorem 3.3. Since f(k) = 4kk3/2 satisfies
f(k) > 4f(k − 1), it follows from Theorem 3.3 that the algorithm takes O(k(m + n) +
4kk3/2n) = O(km + 4kk3/2n) time for disconnected graphs.

Corollary 3.12 It takes O(km+4kk3/2n) time to solve Maximum (m−k)-Edge Dom-
ination.

3.3.3 Maximum (m − k)-edge subgraph

We now consider the problem of finding m−k edges whose ends induce a subgraph with
the maximum number of edges. First we consider the problem for a connected graph
G. Let E∗ be a set of k edges in G. An edge e ∈ E∗ is an inside edge if both ends of e
are incident with edges in E − E∗. We call E∗ a maximum k-set if it has the maximum
number of inside edges among all k-sets of edges. For m − k edges E − E∗, it is clear
that G[V (E − E∗)] contains the maximum number of edges iff E∗ is a maximum k-set,
and MaxES(m − k) is equivalent to the problem of finding a maximum k-set E∗ of G.
Furthermore, the maximum number of inside edges in E∗ is k iff G contains a spanning
subgraph with m− k edges. This connection with spanning subgraphs enables us to use
the following result to reduce our problem to a kernel with at most 4k vertices and 4k−1
edges.

Cardinality Constrained Optimization 28

Lemma 3.13 Let G be a connected graph, and G′ the graph obtained from G by deleting
all leaves. If every spanning subgraph of G has more than m − k edges, then G′ has at
most 2k vertices and 2k − 1 edges.

Proof. Let m′ and n′, respectively, be the numbers of edges and vertices of G′.
Construct a graph G∗ from G′ by adding a new vertex and connecting it with every odd-
degree vertex of G′. Then G∗ contains an Eulerian circuit C = e1, e2, . . . , em′+t, e1, where
t is the number of odd-degree vertices in G′. Let C ′ = E(G′) ∩ {e1, e3, . . . , e2i+1, . . .},
and L the set of leaf-edges of G. Then G[C ′ ∪ L] is a spanning subgraph of G with

dm′ + t

2
e − t

2
+ (m − m′) = m − bm′

2
c

edges. By the assumption that m−bm′

2 c > m− k, we deduce that m′ ≤ 2k − 1 and thus
n′ ≤ m′ + 1 ≤ 2k as G′ is connected.

The proof of the above theorem implies that if the leaf-deleted graph G′ of G has
more than 2k vertices or 2k − 1 edges, then we can find in O(m + n) time a spanning
subgraph of G with m − k edges, which yields a solution to MaxES(m − k). Therefore
we need only consider the case that G′ has at most 2k vertices and 2k − 1 edges.

Construct a graph H from G as follows: for every non-leaf vertex v of G, delete all
but one leaf adjacent to v. Let L be the set of deleted leaf-edges in forming H. Since
G′ has at most 2k vertices and 2k − 1 edges, H contains at most 4k vertices and 4k − 1
edges, and is taken as a kernel for our problem. Note that a maximum k-set E ∗ of G
consists of k′ edges inside G′ for some 0 ≤ k′ ≤ k and k − k′ leaf-edges of G.

Note that no leaf-edge of G can be an inside edge. Furthermore, if |L| ≥ k − k ′ then
E∗ can be obtained from a maximum k′-set of G′ and arbitrary k − k′ edges from L;
otherwise, E∗ can be obtained by taking L, some k′ edges inside G′, and some k−k′−|L|
leaf-edges of H. In the former case, we consider all k ′-subsets of edges in G′, which takes
at most O(22kk2) time. In the latter case, we consider all possible (k − |L|)-subsets of
edges in H, which takes at most

(4k
k

)

k2 = O(9.5kk2) time. Therefore our algorithm takes
O(m + n + 9.5kk2) time.

Theorem 3.14 It takes O(m + n + 9.5kk2) time to solve Maximum (m − k)-Edge
Subgraph for connected graphs.

To solve our problem for general graphs, we use the results in Section 3.1 for dis-
connected graphs. Since f(k) = 9.5kk2 satisfies f(k) > 9.5f(k − 1), the following result
follows from Theorem 3.3.

Corollary 3.15 It takes O(km+9.5kk2n) time to solve Maximum (m−k)-Edge Sub-
graph.

3.4 FPT by random separation

In this subsection, we use the newly developed random separation method of Cai, Chan
and Chan [7] to obtain an FPT algorithm for Minimum (m − k)-Edge Domination.

Cardinality Constrained Optimization 29

The main idea of the random separation method is to use a random partition of V to
separate a solution from the rest of the graph into connected components and then select
appropriate components to form a solution. We can use universal sets to derandomize
algorithms obtained from random separation. Recall that a list of binary vectors of
length n is (n, t)-universal if for every subset of size t of the indices, all 2t configurations
appear in the list.

We note that Cai, Chan and Chan [7] have also used random separation to obtain
FPT algorithms for the following four problems in Table 1 of Section 1.3: Minimum
(m− k)-Edge Cover, Minimum (m− k)-Edge Subgraph, Minimum (m− k)-Edge
Link and Maximum (m − k)-Edge Link.

3.4.1 Minimum (m − k)-edge domination

We now use the random separation method to solve Minimum (m− k)-Edge Domina-
tion. In order for m − k edges E ′ to be adjacent to the minimum number of edges in
E − E′, we need only maximize the number of edges in E − E ′ that are not adjacent to
E′. Recall that for a set V ′ of vertices, e(V ′) denotes the number of edges covered by
vertices in V ′. Without loss of generality, we may assume that the input graph G has
no isolated vertices.

Lemma 3.16 Let V ∗ be a set of vertices that maximizes the number of edges in G[V ∗]
subject to e(V ∗) ≤ k. Then every subset of m−k edges in G−V ∗ is an optimal solution
of G for MinED(m − k).

Proof. Let m∗ be the number of edges in G[V ∗], E′ an arbitrary subset of m−k edges in
G. Since e(V −V (E ′)) ≤ k, G−V (E ′) has at most m∗ edges and thus |N(E ′)| ≥ k−m∗.

On the other hand, |N [E(G − V ∗)]| ≤ m − m∗. Therefore for an arbitrary subset
Ẽ of m − k edges from G − V ∗, we have |N [Ẽ]| ≤ m − m∗ as Ẽ ⊆ E(G − V ∗). Since
|N(Ẽ)| = |N [Ẽ]| − (m − k), we have |N(Ẽ)| ≤ k − m∗, and therefore Ẽ is an optimal
solution.

Therefore, to solve MinED(m− k), we need only find a V ∗ in Lemma 3.16, and then
arbitrarily return m−k edges in G−V ∗ as an optimal solution. Since V ∗ covers at most
k edges, V ∗ ∪ NG(V ∗) contains at most 2k vertices. This property of V ∗ enables us to
find it and thus solve MinED(m−k) in FPT time using the random separation method.

First we colour each vertex of G randomly and independently by either green or red
(each with probability 1/2) to form a random partition of V into green vertices Vg and
red vertices Vr, which forms the green subgraph Gg = G[Vg], whose components are called
green components.

A partition of V is a “good partition” if there is a V ∗ in Lemma 3.16 such that all
vertices in V ∗ are green and all vertices in the open neighborhood NG(V ∗) are red. Since
V ∗ ∪ NG(V ∗) contains at most 2k vertices, the probability that a random partition is
a good partition is at least 2−2k = 4−k, and thus with probability at least 4−k, G[V ∗]
consists of a collection green components of Gg.

Cardinality Constrained Optimization 30

To find an optimal solution from a good partition, we first compute, for each green
component Hi, the number mi of edges in Hi and the number ei of edges covered by
vertices in Hi. This can be easily done in O(m + n) time. Note that for any two green
components Hi and Hj, the number of edges in Hi ∪Hj equals mi +mj and the number
of edges covered by vertices in Hi ∪ Hj equals ei + ej . Therefore V ∗ is a collection H of
green components that maximizes

∑

Hi∈H

mi

subject to
∑

Hi∈H ei ≤ k. This is a 0-1 knapsack problem and can be solved in O(kn)
time by dynamic programming (see [17]). Therefore, with probability at least 4−k we
can find a V ∗ in O(m + kn) time.

To derandomize the algorithm, we can use a family of partitions such that for every
partition P of any 2k vertices, there is a partition in the family that is consistent with
P . Clearly, such a family is just a family of (n, 2k)-universal sets. Naor, Schulman
and Srinivasan [21] have a deterministic construction for (n, t)-universal sets of size
2ttO(log t) log n which can be listed in linear time. Therefore we obtain a deterministic
algorithm that runs in 4kkO(log k)(m + kn) log n time.

Theorem 3.17 It takes 4kkO(log k)(m + kn) log n time to find a set V ∗ of vertices in a
graph G that maximizes the number of edges in G[V ∗] subject to the constraint that V ∗

covers at most k edges.

Corollary 3.18 It takes 4kkO(log k)(m+kn) log n time to solve Minimum (m−k)-Edge
Domination.

4 Exact Algorithms

In this section, we present new exact algorithms for W[1]-hard fixed-cardinality opti-
mization problems in connection with the number of edges incident with k vertices, i.e.,
k-Vertex Cover, k-Vertex Subgraph and (k, n−k)-Cut problems. Our algorithms
use matrix multiplication and run in about O(n0.8k) time, improving Ω(nk)-time exhaus-
tive search algorithms. Note that it takes O(nω) time, where ω < 2.376, to compute the
product of two n by n matrices [10].

The main idea of our algorithms is a generalization of the following O(nωt) algorithm
of Nešetřil and Poljak [19] for finding a 3t-clique in a graph: construct an auxiliary graph
G′ = (V ′, E′) such that each vertex in V ′ is a t-clique in G and two vertices X,Y ∈ V ′

are adjacent in G′ iff X ∪ Y is a 2t-clique in G, and then use matrix multiplication to
find a triangle in G′, which corresponds to a 3t-clique in G. To solve our problems, we
transform them into problems of finding appropriate triangles in weighted graphs.

We will start with a discussion on algorithms for finding a triangle of maximum
(minimum) weight or exact weight in Section 4.1. Then we give algorithms for k-Vertex
Cover problems in Section 4.2, and present similar algorithms for k-Vertex Subgraph
and (k, n − k)-Cut problems in Section 4.3. We note that our method in this section

Cardinality Constrained Optimization 31

can also be used to solve Weight-k 2-Satisfiability problems [6] and we expect it to
be useful for other problems as well.

4.1 Maximum and minimum triangles

Let G = (V,E;w) be a weighted graph with w : V ∪ E → Z. The weight of a triangle
equals the sum of weights of all vertices and edges in the triangle, and a maximum
triangle (respectively, minimum triangle) in G is a triangle of maximum weight (minimum
weight). Recall that Õ(f(n)) is a shorthand of O(f(n) logc n), where c is a constant.

Theorem 4.1 A maximum (minimum) triangle in a weighted graph G = (V,E;w) with
w : V ∪ E → {−W, . . . , 0, . . . ,W} can be found in Õ(Wnω) time.

Proof. Since T is a maximum triangle in G iff T is a minimum triangle when the
weight of each edge and vertex is changed to its negation, we need only consider the
problem of finding a minimum triangle.

First, we shift all vertex weights to edges. Define a new weighted graph G′ =
(V,E;w′) with w′ : E → Z by setting w′(uv) = 2w(uv) +w(u) +w(v) for every edge uv.
The weight of a triangle in G′ is the sum of weights of all edges in the triangle. Then
for any triangle T we have w′(T) = 2w(T), and therefore T is a minimum triangle in G
iff it is a minimum triangle in G′.

To find a minimum triangle in G′, we relate our problem to the distance product of
matrices. Let A and B be two n × n matrices. The distance product (a.k.a. min/plus
product) of A and B, denoted A?B, is the n×n matrix C = [cij] with ci,j = minn

s=1{ais+
bsj}. Let V = {1, . . . , n} and define an n × n matrix D as follows:

D[i, j] =

{

w′(i, j) if (i, j) ∈ E
+∞ otherwise.

Note that D[i, i] = +∞ for each i.

To find the weight of a minimum triangle in G, we compute T = D ? D + D. It is
clear that entry tij of T equals the minimum weight of triangles containing edge (i, j),
and a minimum entry ti′j′ of T equals the weight of a minimum triangle of G. By a
result of Alon, Galil and Margalit [2], we can compute D ? D and hence T in Õ(Wnω)
time (note that edge weights of G′ are in {−4W, . . . , 0, . . . , 4W}). To find a minimum
triangle, we compute in O(n) time a minimum weight 2-path between vertices i ′ and j′,
which forms a minimum triangle with edge i′j′. Therefore the overall time is Õ(Wnω).

We also have the following result for finding a triangle of exact weight.

Theorem 4.2 A triangle of weight exactly l in a weighted graph G = (V,E;w) with
w : V ∪ E → {−W, . . . , 0, . . . ,W} can be found in O(W 2nω) time.

Proof. By the argument in the proof of Theorem 4.1, we need only consider edge-
weighted graphs with edge weights in {−4W, . . . , 0, . . . , 4W}. Let V = {1, . . . , n}. A

Cardinality Constrained Optimization 32

triple (w1, w2, w3), where each wi ∈ {−4W, . . . , 0, . . . , 4W}, is an l-triple if

w1 + w2 + w3 = l.

Note that integers in the triple need not be distinct.

Clearly, G has a triangle of weight l iff there is an l-triple (w1, w2, w3) such that G has
a triangle whose three edges have weights w1, w2 and w3 respectively. To find a triangle
T of weight l in G for a given l-triple (w1, w2, w3), we construct three unweighted graphs
Gi, 1 ≤ i ≤ 3, from G as follows: every vertex of G is a vertex of each Gi, an edge uv of
G is an edge of graph Gi iff w(uv) = wi. Let Ai be the adjacency matrix of Gi, and let
B = A1A2. Then G contains a triangle of weight exactly l iff there is an edge uv of G3

for which B[u, v] = 1.

Since w3 = l − w1 − w2 for any l-triple (w1, w2, w3), there are at most (8W + 1)2

l-triples, which can be listed in O(W 2) time. We note that each adjacency matrix Ai can
be obtained in O(n2) time, and matrix B can be computed in O(nω) time. Furthermore,
once we know that B[u, v] = 1 for some edge uv of G3, we can easily find a triangle of
weight exactly l in O(n) time by locating a vertex w that is adjacent to u in G1 and v
in G2. Therefore, it takes O(W 2nω) time to find a triangle of weight exactly l.

4.2 Optimal k-vertex covers

We now use the results in the previous subsection to solve the W[1]-hard problem

MaxVC(k) of finding a maximum k-vertex cover in Õ(knωb k

3
c+1+k mod 3) time. The

idea is to transform MaxVC(k) into the problem of finding a maximum triangle in an
auxiliary graph. We will also use this idea to solve other k-vertex cover problems in a
similar amount of time.

Recall that for a set X of vertices, e(X) denotes the number of edges covered by
vertices in X; and for two disjoint sets X,Y of vertices, e[X,Y] denotes the number of
edges with one end in X and the other end in Y .

First, let us assume that k = 3t for some integer t. To find a maximum k-vertex
cover in G, we transform the problem to the problem of finding a maximum triangle in
the following t-subset auxiliary graph G′ = (V ′, E′;w): every subset X of t vertices in G
is a vertex in G′, and two vertices X,Y ∈ V ′ are adjacent in G′ iff X and Y are disjoint.
The weight function w : V ′ ∪E′ → Z is defined by w(X) = e(X) for each vertex X ∈ V ′

and w(XY) = −e[X,Y] for each edge XY ∈ E ′.

Lemma 4.3 Graph G has 3t vertices covering l edges iff its t-subset auxiliary graph G ′

has a triangle with weight l.

Proof. Let X,Y,Z be three mutually disjoint t-subsets of vertices in G, and let
S = X ∪ Y ∪ Z. Then X,Y,Z ∈ V ′ and they form a triangle T in G′. In graph G, the
number of edges covered by S equals

e(X) + e(Y) + e(Z) − e[X,Y] − e[Y,Z] − e[Z,X],

Cardinality Constrained Optimization 33

which exactly equals w(T), the sum of weights of vertices and edges in T .

Now for a general k, let t = b k
3c and r = k mod 3. To find a maximum k-vertex cover

in G, we find, for every r-subset V ′ of vertices, a maximum 3t-vertex cover in G − V ′.
Combining with Lemma 4.3, we obtain the following algorithm for finding a maximum
k-vertex cover in a graph G.

Algorithm MaxVC(k)

Input: Graph G with at least k vertices.

t := bk
3 c and r := k mod 3;

S := ∅ and l := 0;
for every r-subset V ′ of vertices in G do

{Find a maximum 3t-vertex cover S ′ in G − V ′. }
Construct the t-subset auxiliary graph G′ of G − V ′;
Find a maximum triangle T in G′;
Let S′ be vertices in G − V ′ that correspond to vertices in T ;

(∗) if l < w(T) + e(V ′) then l := w(T) + e(V ′) and S := V ′ ∪ S′;
end for;
output S.

Theorem 4.4 Algorithm MaxVC(k) takes Õ(knωb k

3
c+1+k mod 3) time to solve MaxVC(k).

Proof. Clearly, every maximum k-vertex cover of G consists of an r-subset V ′ of vertices
and a maximum 3t-vertex cover of G−V ′. By Lemma 4.3, the algorithm correctly finds
a maximum 3t-vertex cover S ′ in G − V ′. Since the algorithm considers all possible
r-subsets V ′ and returns a set S = V ′ ∪ S′ that maximizes the number of edges covered
by the set, S is indeed a maximum k-vertex cover of G.

For the complexity of the algorithm, we first determine the running time for each
iteration of the “for” loop. It is easy to see that the construction of G′ takes O(t2n2t)
time, as G′ has O(nt) vertices and the weight of each vertex or edge in G′ can be computed
in O(t2) time. Since the maximum absolute value of weights of vertices or edges in G ′ is
at most tn, it follows from Theorem 4.1 that a maximum triangle in G′ can be found in
Õ(tnnωt) time. Therefore each iteration of the “for” loop takes Õ(tnωt+1) time. Since
the “for” loop is executed O(nr) times and t = bk/3c, we have the claimed complexity
for the algorithm.

Corollary 4.5 It takes Õ(knωb k

3
c+1+k mod 3) time to solve MinVC(k), MinVS(n−k) and

MaxVS(n − k).

Proof. MinVC(k) for G is equivalent to MaxVC(k) for the complement of G, MinVS(n−
k) is equivalent to MaxVC(k), and MaxVS(n − k) is equivalent to MinVC(k).

Similarly, we can use Lemma 4.3 to obtain the following algorithm that finds k
vertices in G, if G has such k vertices, that cover exactly a given number l of edges.

Cardinality Constrained Optimization 34

Algorithm XctVC(k)

Input: Graph G with at least k vertices, and positive integer l.

t := bk
3 c and r := k mod 3;

S := ∅;
for every r-subset V ′ of vertices in G do

{Find 3t vertices S ′ in G − V ′ that cover exactly l − e(V ′) edges. }
Construct the t-subset auxiliary graph G′ of G − V ′;
if G′ contains a triangle T of weight l − e(V ′)

then let S ′ be vertices in G − V ′ that correspond to vertices in T ;
output V ′ ∪ S′ and stop

end if
end for;
output “No such k-vertex cover”.

Theorem 4.6 Algorithm XctVC(k) takes O(k2nωb k

3
c+2+k mod 3) time to solve Exact

k-Vertex Cover.

Proof. The correctness of the algorithm follows from Lemma 4.3. The complexity

analysis is the same as Theorem 4.4 except that, by Theorem 4.2, it takes O(k2nωb k

3
c+2)

time to find a triangle of weight exactly l − e(V ′).

Since a graph has k vertices V ′ that cover exactly l edges iff G[V − V ′] contains
exactly m − l edges, the following result follows directly from the above theorem.

Corollary 4.7 It takes O(k2nωb k

3
c+2+k mod 3) time to solve Exact (n − k)-Vertex

Subgraph.

4.3 Optimal k-vertex subgraphs and cuts

We now use the ideas in the previous subsection to solve k-Vertex Subgraph and
(k, n − k)-Cut problems. To solve MaxVS(k), we use algorithm MaxVC(k) with the
following two changes:

1. For the t-subset auxiliary graph G′ of graph G − V ′, set vertex weight

w(X) = e[X,V ′] + |E(G[X])|,

and edge weight w(XY) = e[X,Y].

2. In line (∗), replace w(T) + e(V ′) by w(T) + |E(G[V ′])|.

Theorem 4.8 It takes Õ(k2nωb k

3
c+k mod 3) time to solve MaxVS(k).

Proof. Let S be a set of k vertices in G. Then S can be written as X ∪ Y ∪ Z ∪ V ′,
where X, Y and Z are mutually disjoint t-subsets of vertices and V ′ = S − (X ∪ Y ∪Z)

Cardinality Constrained Optimization 35

which has r vertices. Therefore X,Y,Z form a triangle T in G′ and the number of edges
in G[S] equals

(e[X,V ′] + |E(G[X])|) + (e[Y, V ′] + |E(G[Y])|) + (e[Z, V ′] + |E(G[Z])|)
+e[X,Y] + e[Y,Z] + e[Z,X] + |E(G[V ′])|

= w(X) + w(Y) + w(Z)

+w(XY) + w(Y Z) + w(ZX) + |E(G[V ′])|
= w(T) + |E(G[V ′])|.

This proves the correctness of the algorithm.

For the running time of the algorithm, we note that an induced subgraph on k vertices
contains at most

(k
2

)

edges and thus the maximum absolute value W of vertex or edge
weights in G′ is O(k2). By an argument similar to that for Theorem 4.4, we have the
claimed time bound.

Corollary 4.9 It takes Õ(k2nωb k

3
c+k mod 3) time to solve MinVS(k), MinVC(n− k) and

MaxVC(n − k).

Proof. MinVS(k) for G is equivalent to MaxVS(k) for the complement of G, MinVC(n−
k) is equivalent to MaxVS(k), and MaxVC(n − k) is equivalent to MinVS(k).

We can make similar modifications to Algorithm XctVC(k) to find k vertices to
induce a subgraph with exactly a given number of edges (equivalently, n − k vertices to
cover exactly a given number of edges).

Theorem 4.10 It takes O(k4nωb k

3
c+k mod 3) time to solve Exact k-Vertex Subgraph

and Exact (n − k)-Vertex Cover.

To solve MaxCut(k), we use algorithm MaxVC(k) with the following two changes:

1. For the t-subset auxiliary graph G′ of G− V ′, set vertex weight w(X) = e[X,V −
X] − 2e[X,V ′] and edge weight w(XY) = −2e[X,Y].

2. In line (∗), replace w(T) + e(V ′) by w(T) + e[V ′, V − V ′].

Theorem 4.11 It takes Õ(knωb k

3
c+1+k mod 3) time to solve MaxCut(k).

Proof. A set S of k vertices in G can be written as X ∪Y ∪Z ∪V ′, where X, Y and Z
are mutually disjoint t-subsets of vertices and V ′ = S− (X ∪Y ∪Z) which has r vertices.
Therefore X,Y,Z form a triangle T in G′ and the number of edges in the cut [S, V − S]
can be expressed as

(e[X,V − X] − e[X,V ′] − e[X,Y] − e[X,Z])

+(e[Y, V − Y] − e[Y, V ′] − e[Y,Z] − e[Y,X])

+(e[Z, V − Z] − e[Z, V ′] − e[Z,X] − e[Z, Y])

+(e[V ′, V − V ′] − e[X,V ′] − e[Y, V ′] − e[Z, V ′])

= w(X) + w(Y) + w(Z) + w(XY) + w(Y Z) + w(ZX) + e[V ′, V − V ′]

= w(T) + e[V ′, V − V ′].

Cardinality Constrained Optimization 36

This proves the correctness of the algorithm.

For the running time of the algorithm, we note that there are at most kn edges
incident with k vertices and thus the maximum absolute value W of vertex or edge
weights in G′ is O(kn). By an argument similar to that for Theorem 4.4, we obtain the
claimed complexity.

Since MinCut(k) for G is equivalent to MaxCut(k) for the complement of G, the
above theorem implies the following result.

Corollary 4.12 It takes Õ(knωb k

3
c+1+k mod 3) time to solve MinCut(k).

Again we can make similar modifications to algorithm XctVc(k) to find a (k, n−k)-
cut with exactly a given number of edges.

Theorem 4.13 It takes Õ(k2nωb k

3
c+2+k mod 3) time to solve Exact (k, n − k)-Cut.

5 Concluding Remarks

We have demonstrated through a large number of graph problems that parameterized
complexity analysis is a useful, fruitful and also natural framework for studying car-
dinality constrained optimization problems. This framework not only complements the
classical complexity theory, but may also provide us with new insight into such problems.

As expected, we have seen that many fixed-cardinality optimization problems remain
hard under the framework of parameterized complexity. Nevertheless, it is rather surpris-
ing that many different graph problems are closely related through their fixed-cardinality
optimization problems, and such connections are revealed only through parametric re-
ductions among these problems. Close connections are also evidenced by the central role
of k-Clique on regular graphs in our W[1]-hardness proofs, and the simplicity of most
of our parametric reductions.

In terms of fixed-parameter tractability, we have used various techniques to obtain
FPT algorithms. This is certainly encouraging as fixed-cardinality optimization problems
are usually very difficult to solve. On the other hand, we need new tools to deal with
fixed-cardinality optimization problems more effectively. In this direction, we note that
the newly developed random separation method of Cai, Chan and Chan [7] is quite
useful and its power seems yet to be fully explored. Furthermore, Cai and Leung [8]
have recently developed an extension method to solve Maximum k-Vertex Cover on
planar graphs. Their basis idea is to extend iteratively a maximum i-vertex cover to a
maximum (i + 1)-vertex cover, but bound the search space to a small graph. It will be
also quite interesting to see how the colour coding method of Alon, Yuester and Zwick [3],
and the iterative compression method of Reed, Smith and Vetta [23] can be applied to
solve fixed-cardinality optimization problems.

We have illustrated through several W[1]-hard fixed-cardinality graph problems that
we can reduce the main cost of their exact algorithms from O(nk) to around O(n0.8k)
by transforming them into problems of finding appropriate triangles in auxiliary graphs.

Cardinality Constrained Optimization 37

It will be interesting to come up with some sufficient conditions or necessary conditions
for problems that can be solved by this approach. Of course, it is also interesting to
determine whether it is possible to find a maximum weight triangle in O(nω) time.

For the future directions, we can certainly investigate the parameterized complexity of
other cardinality constrained optimization problems. In particular, problems for digraphs
seem to be very good candidates. Another important and interesting direction is to study
connections between fixed-parameter tractability and various approximation schemes for
cardinality constrained optimization problems. My recent work [5] has indeed revealed
some close connections, and I believe that there are deep connections yet to be discovered.

As for the two open problems Minimum k-Edge Subgraph and Maximum k-Edge
Multicomponent Cut in Table 1, we note that MinES(k) is closely related to the
problem of finding a subset of vertices that induces a subgraph with exactly k edges,
and remind the reader that MaxEMC(k) is connected to the well studied multiway cut
problem. I conjecture that MinES(k) is FPT but I am uncertain about MaxEMC(k).

It seems that if we confine ourselves to the P versus NPc question, we actually con-
ceal, rather than reveal, the intricate complexity of cardinality constrained optimization
problems. Through the lens of parameterized complexity, we see a colourful world of
the complexity of cardinality constrained optimization problems. In my view, parame-
terized complexity analysis is a natural and integrated part in the study of cardinality
constrained optimization problems, and I am looking forward to seeing more exciting
results.

Acknowledgements

The author is grateful to Mike Fellows, Jianer Chan, Venkatesh Raman, Marcos Ce-
sati, and many other participants in the 1st Workshop on Parameterized Complexity
held in Chennai, India 2000 for fruitful discussions on the parameterized complexity
of cardinality constrained optimization problems, and also to a referee for constructive
suggestions.

References

[1] Y. Asahiro, R. Hassin and K. Iwama, Complexity of finding dense subgraphs, Disc.
Appl. Math. 121 (2002) 15-26.

[2] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path
problem, J. Comput. Syst. Sci. 54 (1997) 255-262.

[3] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM 42(4) (1995) 844-856.

[4] M. Bruglieri, M. Ehrgott, H.W. Hamacher, and F. Maffioli, An annotated bibli-
ography of combinatorial optimization problems with fixed cardinality constraints,
Discrete Appl. Math. 154 (2006) 1344-1357.

Cardinality Constrained Optimization 38

[5] L. Cai, Fixed-parameter tractability and approximation schemes for cardinality con-
strained optimization problems, manuscript, 2007.

[6] L. Cai, Exact and FPT algorithms for weight-k 2-satisfiability problems, manuscript,
2007.

[7] L. Cai, S.M. Chan and S.O. Chan, Random separation, manuscript, 2007 (Extended
abstract in IWPEC 2006, LNCS 4169 (2006) pp. 239-250 with title “Random sepa-
ration: a new method for solving fixed-cardinality optimization problems”).

[8] L. Cai and C.W. Leung, The maximum k-vertex cover problem for planar graphs,
manuscript, 2007.

[9] J. Chen, I. Kanj, and G. Xia, Improved parameterized upper bounds for vertex
cover, LNCS 4162, 238-249, 2006.

[10] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
J. Symbolic Computation 9 (1990) 251-280.

[11] R.G. Downey, V. Estivill-Castro, M.R. Fellows, E. Prieto and F.A. Rosamund,
Cutting up is hard to do, Electronic Notes in Theoretical Computer Science 78
(2003)

[12] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer, 1999.

[13] R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness II:
On completeness for W [1], Theoret. Comput. Sci. 141 (1995) 109-131.

[14] U. Feige and M. Langberg, Approximation algorithms for maximization problems
arising in graph partition, J. of Algorithms 41 (2001) 174-211.

[15] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[16] M.R. Garey and D.S. Johnson, Computers and Intractability : A Guide to the
Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.

[17] J. Kleinberg and E. Tardos, Algorithm Design, Pearson, 2005.

[18] D. Marx, Parameterized graph separation problems, IWPEC 2004, Lecture Notes
in Computer Science 3162 (2004) 71-82.

[19] J. Nešetřil and S. Poljak, On the complexity of the subgraph problem, Comment.
Math. Univ. Carolinae 14 (1985) 415-419.

[20] S. Micali and V.V. Vazirani, An O(
√

V ·E) algorithm for finding maximum matching
in general graphs, Proc. 21st Ann. IEEE Symp. Foundations of Computer Science,
Syracuse (1980) 17-27.

[21] M. Naor, L.J. Schulman, and A. Srinivasan, Splitters and near-optimal derandom-
ization, Proc. 36th Annual Symp Foundations of Computer Science, pp. 182-191,
1995.

Cardinality Constrained Optimization 39

[22] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc.,
Providence, RI), 1962.

[23] B. Reed, K. Smith and A. Vetta, Finding odd cycle transversals, Operations Re-
search Letters 32 (2004) 299-301.

[24] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.

