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Abstract

This paper concerns the optimal partition of a graph into p connected clusters of vertices,
with various constraints on their topology and weight. We consider di0erent objectives, depending
on the cost of the trees spanning the clusters. This rich family of problems mainly applies to
telecommunication network design, but it can be useful in other 3elds. We achieve a complete
characterization of its computational complexity, previously studied only for special cases: a
polynomial algorithm based on a new matroid solves the easy cases; the others are strongly
NP-hard by direct reduction from SAT. Finally, we give results on special graphs.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The general Graph Tree Partition Problem (GTPP) may be de3ned as follows.
Let G(V; E) be an undirected graph, consisting of n= |V | vertices and m= |E| edges.
A cost function c :E → N is de3ned on the edges of the graph. Without any loss of
generality, we assume G to be connected; otherwise, 3ctitious edges of suitable cost
can be added to it. The aim of the problem is to partition the vertex set V into a given
number p of suitable disjoint clusters Ur , and to build on each of them a spanning
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tree Tr . Notice that the clusters Ur are never empty, but they can reduce to a single
element: an isolated vertex is considered as a tree with an empty edge set. The feasi-
ble solutions F(V; X ) are all the spanning forests which consist of p trees Tr(Ur; Xr)
and satisfy suitable side constraints. We take into account three families of such
constraints:

1. Root constraints: given a collection R of p root sets Rr ⊆ V , each tree Tr must
contain at least one of the vertices in the corresponding root set Rr ,

Ur ∩ Rr �= ∅ (r = 1; : : : ; p): (1)

2. Inclusion constraints: given a collection B of p boundary sets Br ⊆ V , each tree
Tr must be completely included into the corresponding boundary set Br ,

Ur ⊆ Br (r = 1; : : : ; p): (2)

Each Br should induce a connected subgraph on G, lest the problem is unfeasible.
3. Weight constraints: given a weight function w : V → N de3ned on the vertices of

the graph, the total weight of each tree w(Ur) =
∑

v∈Ur
wv must belong to a given

interval [W−
r ;W+

r ],

W−
r 6w(Ur)6W+

r (r = 1; : : : ; p): (3)

Roughly speaking, the weight constraints limit the size of the trees, while the root
and inclusion constraints limit their spatial distribution in the graph. In particular, the
root constraints require the trees to touch given regions, the inclusion constraints forbid
it.
As for the objective functions, we are concerned with those which depend on the

costs of the single trees c(Xr)=
∑

e∈Xr
ce, since they take into account the structure of

the solutions. In particular, we focus on four classical cases: min–sum and max–sum
problems (respectively, minimize and maximize the total cost of the forest), min–
max problems (minimize the cost of the most expensive tree) and max–min problems
(maximize the cost of the cheapest tree).
The GTPP, though a general model, is a fairly good approximation of practical

cases in various application 3elds. This is especially true for local telecommunication
networks (servers, cable TV companies, and so on) where connection costs, the need
for a balance between subnetworks and requirements on their location must all be
taken into account. Electric or radio broadcasting networks present similar cost-balance
trade-o0s, while electoral districting concerns the partition of a given geographical
area into connected and balanced regions centred on a chief town. In the end, various
classical algorithms for Cluster Analysis provide solutions with a forest structure (see,
for instance, the single-linkage algorithm [8]).
In this paper, we completely characterize the computational complexity of the GTPPs.

Of course, if no side constraint exists, one obtains the Minimum (or Maximum) Span-
ning Forest Problem, which is solved exactly by the Greedy Algorithm [13]. We gen-
eralize this algorithm to the root constrained case by re3ning its independence test in
order to take into account the additional constraints. This provides a matroid which, to
our knowledge, is unknown in the literature. By contrast, the inclusion constrained, the
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weight constrained and all min–max and max–min problems, however constrained, are
strongly NP-hard. We prove this by reduction from the Satis3ability Problem (SAT).
The paper is organized as follows. First, we review the literature on related subjects.

Section 3 summarizes the new results on the computational complexity of the GTPP.
The following sections discuss them in detail: in particular, Section 4 deals with the
easy cases, Section 5 with the hard ones and with some remarks on their approxima-
bility. Section 6, in the end, tackles some special cases, namely bipartite graphs and
grid graphs.

2. Previously known facts

The literature has considered a number of problems dealing with trees and forests,
which have more or less tight relations to the GTPP. Most of the time, they refer to
weight constraints. To our knowledge, inclusion constraints have never been taken into
account, and root constraints usually reduce to 3xing a root for each tree in the forest
(|Rr|= 1 for all r). This is rather surprising, if one considers their simple and natural
meaning, both in physical applications and Cluster Analysis.
First, we mention some special cases of the GTPP. Guttmann-Beck and Hassin

propose approximation algorithms for the min–sum and the min–max problem with
very speci3c weight constraints, as well as a speci3c weight function: wv =1 for all v
in V , and W−

r =W+
r =n=p for r=1; : : : ; p, that is all of the trees should have the same

number of vertices [9,10]. These algorithms come within a factor of (2p − 1) to the
optimum, and their computational complexity is O(n2). The approximation algorithm
for the min–sum problem can be extended to deal with unequally sized trees, keeping
the (2p − 1) approximation ratio, but its complexity becomes exponential in p. The
method cannot be applied when the triangle inequality does not hold. In this case,
however, the problem is no longer approximable (see also Corollary 6).
Yamada et al. describe an exact algorithm for the min–max GTPP when the root

sets are singletons [17]. This is a depth-3rst branch-and-bound method, branching on
the edge variables: the upper bound derives from a heuristic based on the exchange
of subtrees among trees, and the reevaluation of the minimum tree spanning each
cluster [16].
Ali and Hwang tackle the min–sum GTPP with special weight constraints: wv = 1

for all v in V , W−
r = �n=p	 and W+

r = 
n=p� for r = 1; : : : ; p [2]. So the trees must
all have approximately the same number of vertices, one more one less. The authors
formulate the problem by clique inequalities, to impose the cardinality upper bound, and
augmented clique inequalities, to impose the lower bound. They relax the inequalities
in a lagrangean fashion and update the multipliers by dual ascent.
Other problems di0er from the GTPP in some fundamental feature. For instance,

ImieliLnska et al. consider a sort of min–sum GTPP with a uniform weight constraint
from below on all trees, but they do not 3x the number of trees in the partition [12].
They prove that this problem is NP-hard by reduction from the three-dimensional
matching problem and propose a simple greedy heuristic with an approximation ratio
of 2.
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Goemans and Williamson introduce a very general approximation algorithm to solve
min–sum spanning forest problems with various side constraints [7]. The algorithm
runs in O(n2 log n) time and comes within a factor of 2(1 − 1=n) from the optimum.
It is a greedy algorithm, employing auxiliary costs on the edges and updating them
step by step. The performance guarantee is based on the simultaneous construction of
a primal and a dual heuristic solution. Since these di0er at most by a factor of 2, the
same factor applies between the primal approximate solution and the optimum. If the
triangle inequality holds, the algorithm can be adapted to the GTPP with unit weights
(wv = 1 for all v in V ) and identical uniform lower and upper bounds on the weights
of the trees (W−

r =W+
r = n=p), that is to the problem in which the cardinality of the

trees is 3xed. The performance guarantee is 4(1− p=n)(1− 1=n).
In the end, the Capacitated Minimum Spanning Tree problem (CMST), which has

a wide variety of applications in the design of teleprocessing networks, deals with
a rooted spanning tree whose subtrees have a weight not exceeding a uniform up-
per bound W . The number of the subtrees is not speci3ed. This problem is strongly
NP-hard [14], but it admits approximate algorithms running in O(n2) time: if wv=1 for
all v in V , the guaranteed performance ratio is (3 − 2=W ); otherwise, it
is 4 [3].

3. Summary of complexity results

In this section, we discuss the computational complexity of all GTPPs. It is easy
to prove that their recognition version is always in NP. Table 1 summarizes the new
results while the known ones are given as notes. As for the min–sum and max–sum
objective:

• The unconstrained problem is solved by the Greedy Algorithm, as it is the Minimum
(Maximum) Spanning Forest problem [13].

• The root constrained problem can be solved by the Greedy Algorithm in the special
case in which all root sets are singletons (Rr = {vr} for r = 1; : : : ; p), by adding a
dummy vertex to the graph and connecting all roots to it with very low (or high)
cost edges. We prove that the problem is always easy by generalizing the Greedy
Algorithm (Corollary 3).

• The weight constrained problems are known to be strongly NP-hard [10] when the
weight function is uniform (wv = 1 for all v in V ) and the lower weight bound on
each tree is equal to the corresponding upper bound (W−

r =W+
r for r=1; : : : ; p), that

is to say when the cardinality of each tree is 3xed [16]. We prove that the problem
is strongly NP-hard in general by reduction from the Satis3ability Problem (SAT)
(Theorem 5). We will also prove that this holds in special graphs (Propositions 7
and 9).

• We prove that all inclusion constrained problems are strongly NP-hard, even on
special graphs, by reduction from SAT (Theorem 8) and the Steiner Tree Problem
(Theorem 10).
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Table 1
The computational complexity of the GTPPs

Side Min–sum Min–max Max–min
constraints Max–sum

None Pa Strongly NP-hard Strongly NP-hard

Root Pb Strongly NP-hardc Strongly NP-hard
constraints

Inclusion Strongly NP-hard Strongly NP-hard Strongly NP-hard
constraints

Weight Strongly NP-hardd Strongly NP-hardd Strongly NP-hard

aMinimum Spanning Forest [13].
bIn P for |Rr |= 1 (a special case of the Minimum Spanning Forest) [13].
cSimply NP-hard for |Rr |= 1 [16].
dStrongly NP-hard for wv = 1 and W− =W+ =W=p [9,10].

As for min–max problems:

• When all root sets are singletons, the problem is known to be NP-hard [17]. We
prove that it is strongly NP-hard even if unconstrained.

• When all trees must have the same cardinality (wv=1 for all v in V and W−
r =W+

r
for r=1; : : : ; p), the problem is strongly NP-hard [9]. We prove that it is strongly
NP-hard in general, by reduction from SAT (Theorem 5), and NP-hard in special
graphs (Propositions 7 and 9).
As for max–min problems:

• We prove that these problems are all strongly NP-hard, by reduction from SAT
(Theorem 5), and NP-hard in special graphs (Propositions 7 and 9).

4. The root-constrained problem

The min–sum GTPP with no side constraints reduces to the Minimum Spanning
Forest problem. The Greedy Algorithm, terminated as soon as the current solution
consists of p trees, solves it exactly.
We generalize this algorithm to the root-constrained problem. A well-rooted forest

is a spanning forest with p̃¿p connected components (trees) Tr(Ur; Xr) (r=1; : : : ; p̃)
such that Ur ∩ Rr �= ∅ for r = 1; : : : ; p. We denote the 3rst p components as rooted
components, since one of the vertices in the intersection (Ur∩Rr) can be considered as
the root of the tree. The other components will be referred to as unrooted components.
If a well-rooted forest consists of exactly p trees, it is a feasible solution to the GTPP.
If it has more, we can obtain a feasible solution, provided the graph is connected,
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by adding suitable edges to the forest, so as to link the unrooted components to the
rooted ones.
We prove that the edge set E and the collection X of the edge sets of all well-rooted

forests form a matroid, whose bases are the feasible solutions to the root-constrained
GTPP. Thus, the Greedy Algorithm can be applied, as long as the independence test
takes into account both the prohibition of cycles and the prohibition of bad root loca-
tions. One needs a suitable test for the second condition, which the Greedy Algorithm
could apply step by step. This is easy, as it is a problem of matching trees to subsets
on an auxiliary bipartite graph G̃X . On one shore of the graph, p vertices represent the
root sets Rr , on the other shore q=n−|X | vertices represent the connected components
Us in the current spanning forest F(V; X ). The edges of graph G̃X connect the “root
set” vertices and the “component” vertices such that the corresponding subsets intersect
in graph G.

Theorem 1. Given a connected undirected graph G(V; E) and a collection R of root
sets, let X be the collection of the edge sets of all well-rooted spanning forests
F(V; X ). Either X is empty, or the system set (E;X) is a matroid, where X is its
family of independent sets.

Proof. In order to be a matroid, the system set (E;X) must satisfy the three following
conditions [15]:

1. ∅ ⊆ X,
2. if X ∈X and Y ⊂ X , then Y ∈X,
3. ∀X; Y ∈X such that |X |= |Y |+ 1, there exists e∈X \ Y such that Y ∪ {e}∈X.

The 3rst condition derives from the second one, if X is not empty. In fact, the
empty set is a proper subset of any other set of edges X .
The second condition states that if X induces a well-rooted spanning forest, any of

its subsets Y also does. Of course, if X induces no cycles, this holds also for Y . The
auxiliary graphs G̃X and G̃Y have the same root set vertices Rr on one side, whereas
each vertex UX on the other side corresponds to one or more vertices UY linked to the
same root set vertices as UX . Therefore, any p-cardinality matching on G̃X determines
a p-cardinality matching on G̃Y .
The third condition requires that, given two well-rooted forests induced by X and

Y , if X contains one more edge than Y , at least one of the edges in X can be added
to Y , yielding a well-rooted forest. First of all, let us observe that G̃Y has one more
component vertex than G̃X , and in particular one more unmatched component. Consider
an unmatched component UY in G̃Y : let UX

i be the components of G̃X intersecting it
(possibly, a single one), and let UXY be their union. Of course, UXY includes UY , so
that there are three possible cases:

1. UY ⊂ UXY ,
2. UY = UXY and all components UX

i are unmatched,
3. UY = UXY and at least one component UX

i is matched.
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In the 3rst case, at least one component UX
i includes vertices in UY and out of

UY . So, at least one edge e in X has a single extreme in UY . Adding e to Y , UY

merges with another component, and the original matching in G̃Y is untouched. Thus,
Y ∪ {e}∈X. We now prove that at least one of the unmatched components UY falls
under this case.
In the second case, in fact, we can remove UY from G̃Y and all components UX

i
from G̃X : both of the matchings are untouched, and the number of unmatched compo-
nents is still higher in G̃Y . Of course, this cannot hold for all unmatched components
UY .
Finally, in the third case, we modify the matching in G̃Y . Suppose that UX

i matches
with Rr in G̃X : then, we can match UY with Rr also in G̃Y , generating a new unmatched
component. As the number of unmatched components remains higher in G̃Y , this cannot
always hold.

So, the Greedy Algorithm exactly solves the min–sum (respectively, the max–sum)
root constrained problems. The following GreedyMatching algorithm describes its
adaptation to this particular case. First, it checks whether the problem is unfeasible. If
it is not, the algorithm sets the edges in non-decreasing (respectively, non increasing)
cost order, and 3xes them one by one, discarding those which generate cycles or bad
root locations. Notice that in the unconstrained case the second test is always satis3ed,
and we get back to the Greedy Algorithm.

Algorithm 2. Greedy Matching (G; c; p;R).

X := ∅;
Build the auxiliary graph G̃X ;
If G̃X does not admit a p-cardinality matching return Unfeasible;
Set the elements of E in non increasing cost order (cej−1 6 cej for j = 2; : : : ; |E|);
j := 1;
While |X |¡n− p do
If X ∪ {ej} is an acyclic graph and G̃X∪{ej} admits a p-cardinality matching
then X := X ∪ {ej}; {This also updates G̃X }

j := j + 1;
EndWhile;
Return X .

Corollary 3. Algorithm GreedyMatching exactly solves the root constrained Graph
Tree Partition Problem, or it proves that no solution exists.

The complexity of GreedyMatching is O(m(logm+ #(m; n) + $(m; n))) overall. The
3rst term, m logm, derives from the ordering initial phase. The second one from the
test on the existence of cycles: function #(m; n) is de3ned as min{i: A(i; m=n)¿ log2 n}
and it is almost constant, since the Ackermann function A(i; j) increases with ex-
tremely high speed [1]. The dominating term is the last one, $(m; n), which is the
complexity of solving a Maximum Bipartite Matching Problem, presently O(m

√
n) [11].
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Actually, the matching need not be recomputed from scratch at each step: it can be
updated.

Proposition 4. The worst-case time complexity of Algorithm GreedyMatching is
O(mnp).

Proof. Let a p-cardinality matching be determined on the auxiliary graph, and suppose
to add a new edge to the forest in the original graph. If the edge links two unrooted
components, or a rooted and an unrooted one, the current matching is still valid. If both
of the components are rooted, on the contrary, two edges of the matching conPict. We
remove one of them, obtaining a matching of cardinality p− 1. It is well known that
a larger matching exists if and only if an augmenting path can be found [4]. This is
a path starting from an unmatched vertex, ending into another unmatched vertex, and
made up of an odd number of edges, alternatively in and out of the matching. There
is a single unmatched root set vertex from which an augmenting path could possibly
start. A simple labelling algorithm permits to determine whether it exists, taking into
account each edge in G̃ at most once. Finally, G̃ has at most np edges.

5. NP-hard problems

The inclusion constrained, the weight constrained and all min–max and max–min
problems, however constrained, are strongly NP-hard. We prove this by reduction
from the Satis3ability Problem (SAT) [6].
We 3rst take into account the weight constraints, and the min–max and max–min

objective functions. We prove that the three problems have a common special case,
and then reduce SAT to that special case [6]. The proof is still valid if wv=1 for all v,
p=2, and the triangle inequality holds. We neglect the inclusion constrained problems
since Section 6 will prove that they are strongly NP-hard even on special graphs.
However, the same graph construction employed for weight constrained, min–max and
max–min GTPPs can be used for inclusion constrained GTPPs.

Theorem 5. The weight constrained, the min–max and the max–min GTPPs are
strongly NP-hard, even if all vertices have the same weight, p = 2, and the tri-
angle inequality holds.

Proof. Given any instance of the SAT problem, it is possible to build an auxiliary
graph G(V; E), such that the answer to the former (Is there a truth assignment to the
boolean variables ui such that all clauses Cj be satis>ed?) is positive if and only if G
can be partitioned into two trees satisfying suitable weight and cost conditions. Thus,
any instance of SAT is equivalent to a particular instance of the GTPP. The vertex
set V is composed of:

• a subset U containing a pair of vertices for each boolean variable, labelled as ui
and Qu i,
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du1 u2 u3

c1 c2

c3

u1 u2 u3

r1

r2

Fig. 1. Graph construction to prove the NP-hardness of the weight constrained, the min–max and the
max–min GTPP.

• a subset Cj for each clause, containing n vertices, one of which is labelled as cj,
• a subset D containing mn vertices, one of which is labelled as d,
• two subsets R1 and R2 containing n + mn + 1 vertices each; one of the vertices in
R1 is labelled as r1, one of the vertices in R2 as r2.

All the vertices in the graph have the same weight: wv=1 for all v in V . As for the
edges, r1 is connected to all of the other vertices in R1, r2 to all of the other vertices
in R2, d to all of the other vertices in D and each vertex cj is connected to all of the
other vertices in the corresponding subset Cj. In addition, r1 and r2 are connected to
u1 and Qu 1. The vertices associated to each boolean variable, ui and Qu i, are linked with
those associated to the following one, ui+1 and Qu i+1. Vertices un and Qun are connected
to d. Finally, each vertex cj is connected either to ui or to Qu i, according to which of
the two corresponding literals appears in clause Cj. All of these edges have cost ce=1.
The graph is completed by adding edges of cost $. The triangle inequality holds as
long as 1=26 $6 2. See Fig. 1 for the graph corresponding to the boolean formula
(u1 + u2)( Qu 1 + u2 + u3)( Qu 2 + Qu 3).
We now discuss separately the three partition problems, imposing conditions on the

cost and weight of the trees such that they all reduce to the same special case: The
edges of cost $ are not reported for the sake of clarity.

1. Min–sum weight constrained problem: we impose $=2, an upper or a lower bound
(or both) W = 2n + 2mn + 1 on the weight of each tree, and an upper bound
K = 4n+ 4mn on the total cost.

2. Max–sum weight constrained problem: we impose $ = 1=2, an upper or a lower
bound (or both) W = 2n+ 2mn+ 1 on the weight of each tree, and a lower bound
K = 4n+ 4mn on the total cost.
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3. Min–max problem: we impose $=2 and an upper bound K =2n+2mn on the cost
of each tree.

4. Max–min problem: we impose $ = 1=2 and a lower bound K = 2n + 2mn on the
cost of each tree.

Since |V |=4n+4mn+2, any spanning forest of two trees is composed of 4n+4mn
edges. Thus, the cost bound prevents the use of the edges costing $, which can be
removed. Moreover, in the min–max and the max–min problem each of the two trees
must contain exactly 2n + 2mn edges. As well, in the weight constrained problem,
whether the bound is imposed from below or from above or both, the two trees are
composed of exactly 2n + 2mn + 1 vertices and 2n + 2mn edges. So we are actually
looking for two trees of the same cardinality, and employing only the edges of cost 1.
Now, we show that this problem is equivalent to SAT.
Subsets R1, R2 and D, as well as each subset Cj, are fully included into one of

the two trees. The cardinality constraint forces R1 and R2 to reside in di0erent trees,
respectively, T1 and T2. Suppose, with no loss of generality, that D belong to T2: the
only way to connect D to R2 is through a path traversing exactly one vertex in each
pair (ui; Qu i), as the cardinality constraint forbids to use vertices in C and to touch more
than n vertices in U . The rest of U , and the whole of C, belong to T1. A feasible
solution to the GTPP determines a satisfying truth assignment, and viceversa. The
theorem follows.

5.1. Non approximability results

Among the NP-hard GTPPs, two very special cases are known to be approximable,
under the triangle inequality assumption: the min–sum and the min–max problems
where the cardinality of the trees is 3xed [9,10]. If the triangle inequality does not
hold, it can be proved that no constant approximation ratio is possible, unless P=NP.
We extend this proof to other min–sum and min–max versions of the GTPP, while
the max–sum and max–min versions remain open.

Corollary 6. If the triangle inequality does not hold, the inclusion-constrained and the
weight-constrained min–sum GTPP, as well as the min–max GTPP admit no polyno-
mial approximation algorithm with bounded error guarantee, even if all vertices have
the same weight and p= 2, unless P=NP.

Proof. Suppose, to the contrary, that there exists a polynomial approximation algorithm
and a constant # such that, for every instance of one of these problems, the algorithm
3nds a solution F̃ satisfying c(F̃)6 #c(F∗), where F∗ is an optimal solution. Consider
an instance of SAT and the corresponding construction used in Theorem 5. Set $ =
#(4n + 4mn). Any feasible non-optimal solution employs at least one of the edges
costing $. Therefore, it is much more expensive. Thanks to its guaranteed performance
ratio, an #-approximation algorithm would avoid these solutions, and determine an
optimal one. Thus, it would solve SAT in polynomial time. To be concise, we do
not provide the proof for the inclusion constrained case, which employs a very similar
graph construction.
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Table 2
The computational complexity of the GTPPs on bipartite and grid graphs

Objective No side Root Inclusion Weight
function constraints constraints constraints constraints

Min–sum P P Strongly NP-hard
Max–sum NP-hard

Min–max NP-hard NP-hard Strongly NP-hard
NP-hard

Max–min NP-hard NP-hard Strongly NP-hard NP-hard
(bipartite graphs)
NP-hard (grid graphs)

a

b

v1

v2

v3

v4

v5

2

2

3

3

2

2

4

4
5

5

a

b

v1

v2

v3

v4

v5

2

3

2

4

5

Fig. 2. The equivalence between graph partition and partition on bipartite graphs, with min–max or max–min
objective (on the left) or with weight constraints (on the right).

6. Special cases

We briePy discuss in the following the computational complexity of the GTPPs on
special graphs, namely bipartite graphs and grid graphs. Table 2 sums up the results.

Proposition 7. Any min–max or max–min GTPP, as well as any weight-constrained
GTPP is NP-hard on bipartite graphs, even if p= 2.

Proof. The proof extends one by Yamada et al. [16] for the min–max GTPP with
singleton root sets (that is, 3xed roots). Given a generic instance of the Partition
Problem, in which a set S={si} of integers must be divided into two subsets of equal
sum, build a complete bipartite graph Ĝ(V̂ ; Ê), with V̂ = {a; b} ∪ V .
For the min–max and the max–min problems, set cavi = cbvi = si (see the left side

of Fig. 2). If these problems were easy, one could tell in polynomial time whether
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u1

u1

u2

u2

u3

u3

c1

c2

c3

B1

B2

B3

B4

B5

B6

Fig. 3. The equivalence between inclusion constrained graph partition and SAT on bipartite graphs.

V̂ can be partitioned into S1 and S2, so that the cost of both trees is not higher than
S∗=1=2

∑
si∈S si (in the min–max case) or not lower than S∗ (in the max–min case).

Should vertices a and b belong to the same tree, this would cost
∑

si∈S si=2S∗ and the
other one would reduce to a single vertex (with zero cost). This is unfeasible. Then,
the two trees are stars centred in a and b and they both cost S∗, yielding a solution
to the Partition Problem. Conversely, any solution to that problem also solves the
GTPP.
For the weight constrained GTPP, set wvi = si for i= 1; : : : ; n (see the right side of

Fig. 2). Impose an upper bound (or a lower bound, or both) equal to S∗=1=2
∑

i∈S si
on the weight of both trees. If the GTPP were easy, we could determine in polynomial
time whether it is possible to partition V̂ into two subsets whose weight would respect
the S∗ threshold. By construction, both of the trees would weigh S∗ and the Partition
Problem would be solved.

Determining a feasible solution to an inclusion constrained GTPP, with any cost
function, is strongly NP-hard by reduction from SAT. Fig. 3 reports the graph cor-
responding to the boolean formula (u1 + u2)( Qu 1 + u2 + u3)( Qu 2 + Qu 3).

Theorem 8. All inclusion constrained GTPPs are strongly NP-hard on bipartite
graphs.

Proof. Let Ĝ(V̂ ; Ê) be a bipartite graph, with 2n vertices on one shore (representing
the literals u1; Qu 1; : : : ; un; Qun) and m vertices on the other shore (representing the logical
clauses C1; : : : ; Cm). Each clause vertex is linked to the literal vertices satisfying the
clause. The 3rst n boundary sets include each couple of literal vertices: Bi = {ui; Qu i}
for i = 1; : : : ; n. The last n boundary sets include two literal vertices and all of the
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Fig. 4. The equivalence between graph partition and partition on grid graphs with min–max or max–min
objective function (on the left) or with weight constraints (on the left).

clause vertices: Bi+n=C ∪{ui; Qu i} for i=1; : : : ; n. The problem consists in determining
a feasible partition of Ĝ into 2n trees.
Since the graph is bipartite, the 3rst n trees reduce to single literal vertices. The

other n literal vertices are disjoint from one another, and they can be considered
as roots of the remaining n trees. If it is possible to connect the clause vertices to
them in order to obtain a feasible solution, then each clause admits a satisfying lit-
eral assignment. Conversely, if such an assignment exists, the GTPP admits a feasible
solution.

Proposition 9. The min–max and the max–min GTPP, as well as the weight-
constrained GTPP are NP-hard on grid graphs, even if p= 2.

Proof. Consider a grid graph consisting of three columns of n vertices: U = {ui},
V = {vi} and Z = {zi}.
For the min–max (max–min) problem (see Fig. 4 on the left), let the edges between

the vertices in U and those between the vertices in Z have zero cost; let the edges
between the vertices in V have a very high cost M¿

∑
i si (or a very low cost

M6−∑
i si). In the end, let cuivi=cvizi=si. Let us impose an upper bound S∗=1=2

∑
i si

on the cost of each tree. This forbids the use of the edges costing M . As p=2, either
none of the vertices in V is isolated or a single one is. In the former case, at least
n edges are incident in V and they saturate the cost bound. Each tree costs exactly
S∗ and is connected through the zero cost path along U and Z . In the latter case, let
vertex vi∗ be isolated: all of the other vertices are connected, and the corresponding
shortest spanning tree contains one edge for each vertex in V \ {vi∗} and both edges
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for one of them. Its cost is
∑

i si − si∗ + minisi and it cannot be feasible, unless in
trivial cases.
Conversely, if the Partition Problem admits a solution, one can build a feasible graph

partition by considering a subset of (ui; vi) edges having total cost equal to S∗ and the
path linking all of the vertices in U . The complementary (vi; zi) edges and the path
linking all of the vertices in Z determine the second feasible tree.
The reduction to the max–min problem can be proved in a similar way, after adding

a large constant M to the cost of all edges apart those between the vertices in V ,
in order to prevent their use. Of course, the cost bound should be correspondingly
increased.
For the weight constrained problem (see Fig. 4 on the right), set to zero the weight

of the vertices in U and Z (wui =wzi =0), while those in V have given integer weights
wvi = si. Impose an upper bound (or a lower bound, or both) equal to S∗ on the weight
of each tree. Finding a feasible partition is equivalent to solving the Partition Problem.
In fact, if the latter admits a solution, the vertices in the central column can be divided
into two clusters of equal weight S∗. The 3rst cluster can be connected through the
path linking the vertices in U , the second cluster through the path linking the vertices
in Z .
Conversely, if there exists a feasible partition of the graph into two trees, both of

them must weigh exactly S∗ and the weighted vertices in each tree identify a feasible
solution to the Partition Problem.

As for inclusion constraints, we can prove strong NP-hardness for the min–max
and the min–sum problems by reduction from the Steiner Tree Problem. It is still open
whether the max–min and max–sum problems are simply NP-hard, as proved above,
or strongly NP-hard.

Theorem 10. The min–sum and the min–max inclusion constrained GTPPs are
strongly NP-hard on grid graphs.

Proof. The Steiner Tree Problem requires to determine a minimum cost tree which
include a given set of mandatory vertices Z . It is strongly NP-hard on grid graphs
[5]. Let us consider a generic instance of the Steiner Tree Problem on a grid graph.
If one could solve any min–sum or min–max inclusion constrained GTPP on a grid
graph, one could also determine whether there exists a tree including all of the vertices
in Z and costing less than a given threshold K .
In fact, let us set B1 = V and Br = V \ Z for r = 2; : : : ; p. Only the 3rst tree can

include the vertices in Z ; therefore, it must. Let us search for a feasible tree partition
of this graph into p trees such that its total cost, or the cost of its most expensive tree,
is lower than K . If for any p between 2 and n − |Z | such a solution exists, then the
3rst tree of the partition costs less than K . Otherwise, no tree solves the Steiner Tree
Problem, since a forest made up of that tree and a number of isolated vertices would
also solve the GTPP (Fig. 5).
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Problem.
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