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Abstract. We consider a fault tolerant version of the metric facility
location problem in which every city, j, is required to be connected to
rj facilities. We give the first non-trivial approximation algorithm for
this problem, having an approximation guarantee of 3 · Hk, where k is
the maximum requirement and Hk is the k-th harmonic number. Our
algorithm is along the lines of [2] for the generalized Steiner network
problem. It runs in phases, and each phase, using a generalization of
the primal-dual algorithm of [4] for the metric facility location problem,
reduces the maximum residual requirement by 1.

1 Introduction

Given costs for opening facilities and costs for connecting cities to facilities,
the uncapacitated facility location problem seeks a minimum cost solution that
connects each city to a specified number of open facilities. In the fault tolerant
version, each city must be connected to a specified number of facilities. Formally,
we are given a set of cities and a set of facilities. For each city we are given its
connectivity requirement and for each facility we are given its opening cost. For
each city-facility pair, we are given the cost of connecting the city to the facility.
We assume that the connection costs satisfy the triangle inequality. We want to
open facilities and connect each city to as many open facilities as its connectivity
requirement such that the total cost of opening facilities and connecting cities is
minimized. This problem has potential industrial applications where the facilities
and the connections are susceptible to failure.

We give a 3 ·Hk factor approximation algorithm, where k is the maximum
requirement and Hk = 1 + 1/2 + 1/3 + · · · + 1/k. Our algorithm is along the
lines of [2] for the generalized Steiner network problem. It runs in phases, and
in each phase, reduces the maximum residual requirement by 1. In each phase
it considers only those cities which have the maximum residual requirement.
The procedure for a phase will give each of these cities one more connection to
open facilities. In contrast to the usual facility location problem, a facility may
not provide a new connection to every city. We show that a generalization of
primal-dual algorithm in [4] works for each phase with a performance factor of
3. In the case of the generalized Steiner network problem, adapting the primal-
dual algorithm for the Steiner forest problem to a phase of generalized Steiner
network problem took significant work [5]. In contrast, in the case of facility
location problem, this adaptation is straight forward, demonstrating a strength
of primal-dual schema in facility location problem [4].
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2 The Fault Tolerant Metric Uncapacitated Facility
Location Problem

The uncapacitated facility location problem seeks a minimum cost way of con-
necting cities to open facilities. It can be stated formally as follows: Let G be
a bipartite graph with bipartition (F,C), where F is the set of facilities and C
is the set of cities. Let fi be the cost of opening facility i, rj be the number of
facilities city j should be connected to, and cij be the cost of connecting city j to
(opened) facility i. The problem is to find a subset I ⊆ F of facilities that should
be opened, and a function φ :C→ 2I assigning cities to a set of open facilities in
such a that each city j is assigned to a set of cardinality rj and the total cost of
opening facilities and connecting cities to open facilities is minimized. We will
consider the metric version of this problem, i.e., the cij’s satisfy the triangle
inequality.

Consider the following integer program for this problem. In this program,
yi is an indicator variable denoting whether facility i is open, and xij is an
indicator variable denoting whether city j is connected to the facility i. The first
constraint ensures that each city,j, is connected to at least rj facilities and the
second ensures that each of these facilities must be open.

minimize
∑

i∈F,j∈C

cijxij +
∑

i∈F

fiyi (1)

subject to ∀j ∈ C :
∑

i∈F

xij ≥ rj

∀i ∈ F, j ∈ C : yi − xij ≥ 0
∀i ∈ F, j ∈ C : xij ∈ {0, 1}
∀i ∈ F : yi ∈ {0, 1}

An LP-relaxation of this program is:

minimize
∑

i∈F,j∈C

cijxij +
∑

i∈F

fiyi (2)

subject to ∀j ∈ C :
∑

i∈F

xij ≥ rj

∀i ∈ F, j ∈ C : yi − xij ≥ 0
∀i ∈ F, j ∈ C : xij ≥ 0
∀i ∈ F : 1 ≥ yi ≥ 0

The dual program is:

maximize
∑

j∈C

rjαj −
∑

i∈F

zi (3)

subject to ∀i ∈ F, j ∈ C : αj − βij ≤ cij
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∀i ∈ F :
∑

j∈C

βij ≤ fi + zi

∀j ∈ C : αj ≥ 0
∀i ∈ F, j ∈ C : βij ≥ 0

We will adopt the following notation: nc = |C | and nf = |F |. The total
number of vertices nc+nf = n and the total number of edges nc×nf = m. The
maximum of rj ’s is k. Optimum solution of the integer program is OPT and of
linear program is OPTf .

2.1 The High Level Algorithm

Our algorithm opens facilities and assign them to cities in k phases numbered
from k down to 1. Each phase decreases the maximum residual requirement,
which is the maximum number of further facilities needed by a city, by 1. Hence
at the beginning of the p-th phase maximum residual requirement is p and at
the end of it the maximum residual requirement is p − 1.

The algorithm starts with an empty solution (Ik,Ck). The p-th phase of the
algorithm takes the solution (Ip,Cp) and extend it to (Ip−1,Cp−1) such that the
maximum residual requirement is decreased by one, thereby maintaining the
loop invariant that the maximum residual requirement with respect to solution
(Ip,Cp) is p. Hence, (I0,C0) is a feasible solution. In the next section, we will
show the following theorem.

Theorem 1. Cost of (Ip−1,Cp−1) minus the cost of (Ip,Cp) is at most 3·OPT/p.

Corollary 1. Cost of (I0,C0) is at most 3 ·HkOPT .

3 The p-th Phase

This phase extends the solution (Ip,Cp) to (Ip−1,Cp−1) so that the each city, j,
with residual requirement of p with respect to the solution (Ip,Cp) gets connected
to at least one more open facility. This can happen in two ways, first a new facility
is opened in (Ip−1,Cp−1) and j is connected to that. Second, j is connected to
already open facility in (Ip,Cp) to which it was not connected. In the first case,
both the facility and the connection must be paid in this phase itself whereas in
the second case only the connection needs to be paid.

So in this phase, facilities are of two types, free and priced. The set of free
facilities is Ip. A priced facility if opened can be used by any city whereas a free
facility can be used by only those cities which are not already using it. So denote
the set of cities with residual requirement of p by Cp. The problem of this phase
can be written as the following integer program.

minimize
∑

i∈F,j∈Cp

cijxij +
∑

i∈F−Ip

fiyi (4)

subject to ∀j ∈ Cp :
∑

i∈F−Cp(j)

xij ≥ 1
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∀i ∈ F − Ip, j ∈ Cp : yi − xij ≥ 0
∀i ∈ F, j ∈ C : xij ∈ {0, 1}
∀i ∈ F − Ip : yi ∈ {0, 1}

An LP-relaxation of this program is:

minimize
∑

i∈F,j∈Cp

cijxij +
∑

i∈F−Ip

fiyi (5)

subject to ∀j ∈ Cp :
∑

i∈F−Cp(j)

xij ≥ 1

∀i ∈ F − Ip, j ∈ Cp : yi − xij ≥ 0
∀i ∈ F, j ∈ C : xij ≥ 0
∀i ∈ F : yi ≥ 0

The dual program is:

maximize
∑

j∈Cp

αj (6)

subject to ∀i ∈ F − Ip, j ∈ Cp : αj − βij ≤ cij

∀i ∈ Ip, j ∈ Cp : αj ≤ cij

∀i ∈ F − Ip :
∑

j∈C

βij ≤ fi

∀j ∈ C : αj ≥ 0
∀i ∈ F, j ∈ C : βij ≥ 0

Theorem 2. Optimum solution of LP 5 is at most OPTf /p.

Proof. Let optimum solution of LP 5 is OPTp. By strong duality theorem of
linear programming theory, there is a dual feasible solution for LP 6 of value
OPTp. Let (α, β) be one such solution satisfying LP 6. Following procedure
extends this solution to a feasible dual solution to LP 3 of value p ·OPTp, hence
proves the theorem.

1. ∀j ∈ C −Cp, αj ← 0.
2. ∀j ∈ C −Cp, i ∈ F , βij ← 0.
3. ∀j ∈ Cp, i ∈Cp(j), βij ← αj .
4. ∀i ∈ Ip, zi =

∑
j∈Cp

βij .

Denote this extended solution by (α, β, z). One can easily check that (α, β)
is a feasible solution to LP 3. Its value is

∑
j∈C rjαj −

∑
i∈F zi =

∑
j∈Cp

rjαj −∑
i∈F

∑
j∈Cp

βij =
∑

j∈Cp
rjαj −

∑
j∈Cp

∑
i∈Cp(j) βij =

∑
j∈Cp

rjαj −∑
j∈Cp

∑
i∈Cp(j) αj =

∑
j∈Cp

rjαj −
∑

j∈Cp
|Cp(j)|αj =

∑
j∈Cp

(rj − |Cp(j)|)αj

=
∑

j∈Cp
pαj = p

∑
j∈Cp

αj = p ·OPTp.
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In the next section we will adapt the primal-dual algorithm of [4] to show
the following theorem.

Theorem 3. Cost of (Ip−1,Cp−1) minus the cost of (Ip,Cp) is at most 3 ·OPTp.

Corollary 2. Cost of (Ip−1,Cp−1) minus the cost of (Ip,Cp) is at most 3 ·
OPT/p.

4 Primal-Dual Algorithm for the p-th Phase

Our algorithm is essentially the same as the primal-dual algorithm in [4] except
for the following differences.

1. Duals of only those cities which have residual requirement of p will be raised.
2. Facilities in Ip are free, others carry there original costs.
3. Connection already used in (Ip,Cp) are of infinite costs. Cost of other con-
nections remain the same.

For completeness, we are reproducing the primal-dual algorithm of [4] with
the above mentioned changes. The algorithm runs in two phases. The first phase
runs in a primal-dual fashion to find a tentative solution and the second modifies
it so that the primal becomes at most the thrice of the dual. The algorithm has a
notion of time. It begins at time zero with a zero primal and a zero dual solution.
At time zero, all cities in Cp are unconnected, all facilities except free facilities
are closed. Free facilities are open.

As the time passes the algorithm raises the dual variable αj for each uncon-
nected city uniformly at rate one. Now the following two kinds of events can
happen:

1. Dual constraint corresponding to a connection, ij, goes tight i.e., αj − βij =
cij. Such a connection is declared tight. The algorithm performs one of the
following step according to the state of facility i.
(a) If facility i is (tentatively) open then city j is declared (tentatively)

connected to facility i. Dual variable for this city will not be raised any
further.

(b) If facility i is closed then βij will begin responding to the raise of αj i.e.,
whenever αj will be raised βij will also be raised by the same amount
to maintain the feasibility of αj − βij ≤ cij.

2. Dual constraint corresponding to a facility i goes tight i.e.,
∑

j∈C βij = fi.
This facility is declared tentatively opened. Every unconnected city have a
tight edge to this facility is declared tentatively connected to this facility.

The first phase of the algorithm ends when there is no more unconnected
city. A city j is said to be overpaying if there are at least two tentatively open
facilities i1 and i2 such that both βi1j and βi2j are positive. The second phase
picks a maximal set of tentatively open facilities such that no city is overpaying.
All facilities in this maximal set are opened and all other tentatively opened
facilities are closed. Any city having a tight edge to an open facility is declared
connected to it. The next lemma follows by this construction.
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Lemma 1.
∑

i∈F,j∈Cp and j is connected
cijxij +

∑

i∈F−Ip

fi =
∑

j∈Cp and j is connected
αj .

The performance gap of factor 3 comes from the tentatively connected cities.
Consider a tentatively connected city j. Suppose it was tentatively connected to
facility i, which got closed. Since we picked a maximal set of tentatively opened
facility such that no city is overpaying, there must be a city j ′ which was paying
to this facility i and an opened facility say i′. City j is connected to the facility
i′. The next lemma establishes the performance guarantee of 3.

Lemma 2. For any tentatively connected city, connection cost is at most the
three times the dual raised by it.

Proof.
� �

� �

❏
❏
❏
❏
❏❏✡

✡
✡
✡

✡✡❏
❏
❏

❏
❏❏

j ′ j

i′ i

Let ti and ti′ respectively be the times at which the facilities i and i′ are
declared tight. The proof follows from the following three observations and the
triangle inequality. Note that the facility i′ �∈ Ip, hence the triangle inequality is
maintained for this situation.

1. Since j is declared tentatively connected to i, αj ≥ ti and αj ≥ cij.
2. Since connection ij ′ and i′j ′ both are tight, αj′ ≥ cij′ and αj′ ≥ ci′j′ .
3. Since, during the first phase, αj′ is stopped being raised as soon as one of
the facilities j ′ has a tight edge to is tentatively opened, αj′ ≤ min(ti, ti′).
Using first and the last we have αj′ ≤ αj, which together with the second

gives, cij + cij′ + ci′j′ ≤ 3 · αj. Hence by triangle inequality we get ci′j ≤ 3 · αj .
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