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ABSTRACT
We present a simple and natural greedy algorithm for the
metric uncapacitated facility location problem achieving an
approximation guarantee of 1.61. We use this algorithm to
�nd better approximation algorithms for the capacitated fa-
cility location problem with soft capacities and for a common
generalization of the k-median and facility location prob-
lems. We also prove a lower bound of 1+2=e on the approx-
imability of the k-median problem. At the end, we present
a discussion about the techniques we have used in the anal-
ysis of our algorithm, including a computer-aided method
for proving bounds on the approximation factor.

1. INTRODUCTION
In the (uncapacitated) facility location problem, we have

a set F of nf facilities and a set C of nc cities. For every fa-
cility i 2 F , a nonnegative number fi is given as the opening
cost of facility i. Furthermore, for every facility i 2 F and
city j 2 C, we have a connection cost (a.k.a. service cost)
cij between facility i and city j. The objective is to open a
subset of the facilities in F , and connect each city to an open
facility so that the total cost is minimized. We will consider
the metric version of this problem, i.e., the connection costs
satisfy the triangle inequality.
This problem has many applications in operations research

[9, 21], and recently in network design problems such as
placement of routers and caches [14, 22], agglomeration of
traÆc or data [1, 15], and web server replications in a con-
tent distribution network (CDN) [19, 26]. In the last decade
this problem was studied extensively from the perspective
of approximation algorithms [2, 4, 6, 7, 8, 13, 18, 20, 28, 30].
Di�erent approaches such as LP rounding, primal-dual

method, local search, and combinations of these methods
with cost scaling and greedy postprocessing are used to solve
the facility location problem and its variants. At the time of
submission of the present paper, the best known approxima-
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tion algorithm for this problem was a 1.728-approximation
algorithm due to Charikar and Guha [4]. This algorithm
marginally improves an LP-rounding-based algorithm of Chu-
dak and Shmoys [7, 8] using the ideas of cost scaling, greedy
augmentations, and a primal-dual algorithm of Jain and
Vazirani [18]. The drawback of LP-rounding-based algo-
rithms is that they need to solve large linear programs and
therefore have a high running time. Charikar and Guha [4]
also present an O(n3) algorithm with approximation ratio
1.853. Mahdian et al. [23] show that a simple greedy algo-
rithm (similar to the greedy set-cover algorithm of Hochbaum
[16]) achieves an approximation ratio of 1.861 in O(n2 log n)
time. For the case of sparse graphs, Thorup [30] gives a
faster (3+ o(1))-approximation algorithm. Regarding hard-
ness results, Guha and Khuller [13] proved that it is impossi-
ble to get an approximation guarantee of 1.463 for the metric
facility location problem, unlessNP � DTIME[nO(log logn)].
Shmoys [27] provides a survey of the problem.
In this paper, we present a simple and natural heuris-

tic algorithm for the facility location problem achieving an
approximation factor of 1.61 with the running time O(n3).
This algorithm is an improvement of the greedy algorithm
of Mahdian et al [23]. We use the method of dual �tting
for the analysis of this algorithm. In this method, the al-
gorithm computes a solution to the problem together with
an infeasible dual-solution with the same value. The ap-
proximation factor of the algorithm can be computed as the
factor by which we need to shrink the dual solution to make
it feasible. In order to compute this factor, we express the
constraints imposed by the problem statement and our al-
gorithm as linear inequalities. This allows us to bound the
factor by solving a particular series of linear programs, which
we call factor-revealing LPs. A more detailed treatment of
these techniques will appear in Jain et al [17].
The technique of factor-revealing LPs is similar to the

idea of LP bounds in coding theory. LP bounds give the
best known bounds on the minimum distance of a code with
a given rate by bounding the solution of a linear program.
(cf. McEliece et al. [25]). In the context of approxima-
tion algorithms, Goemans and Kleinberg [11] use a similar
method in the analysis of their algorithm for the minimum
latency problem.
The factor-revealing LP enables us to compute the ap-

proximation ratio of the algorithm empirically, and provides
a straightforward way to prove a bound on the approxima-
tion ratio. In the case of our algorithm, this technique also
enables us to compute the tradeo� between the approxima-
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tion ratio of the facility costs versus the approximation ratio
of the connection costs. The algorithm, its analysis, and a
discussion about this tradeo� are presented in Sections 2, 3,
and 4, respectively.
Among all known algorithms for the facility location prob-

lem, the primal-dual algorithm of Jain and Vazirani [18] is
perhaps the most versatile one in that it can be used to
obtain algorithms for other variants of the problem. This
versatility is partly because of a property of the algorithm
which makes it possible to apply the Lagrangian relaxation
technique. We call this property the Lagrangian multiplier
preserving property. We will prove in Section 5 that our al-
gorithm also has this property with an approximation factor
better than the primal-dual algorithm. This enables us to
obtain algorithms for some variants of the facility location
problem, such as the k-facility location problem and the ca-
pacitated facility location problem with soft capacities. In
the k-facility location problem an instance of the facility lo-
cation problem and an integer k are given and the objective
is to �nd the cheapest solution that opens at most k facili-
ties. This problem is a common generalization of the facility
location and k-median problems. The k-median problem is
studied extensively [2, 4, 5, 18] and the best known approx-
imation algorithm for this problem, due to Arya et al. [2],
achieves a factor of 3+�. The k-facility location problem has
also been studied in operations research [9], and the best pre-
viously known approximation factor for this problem was 6
[18]. In this paper, we present a 4-approximation algorithm
for this problem. We will also give a 3-approximation algo-
rithm for a capacitated version of the facility location prob-
lem, in which we are allowed to open more than one facility
at any location. We will refer to this problem as the capaci-
tated facility location problem with soft capacities. The best
previously known approximation algorithm for this problem
has a factor of 3.46, and is based on the facility location al-
gorithm of Charikar and Guha [4] together with the observa-
tion that any �-approximation algorithm for the uncapac-
itated facility location problem yields a 2�-approximation
algorithm for the capacitated facility location problem with
soft capacities.
In Section 6, we will state some lower bound results. We

prove that the k-median problem cannot be approximated
within a factor strictly less than 1 + 2=e, unless NP �

DTIME[nO(log log n)]. This is an improvement over a lower
bound of 1 + 1=e due to Guha [12]. This result shows that
k-median is a strictly harder problem to approximate than
the facility location problem. We will also see a lower bound
on the best tradeo� we can hope to achieve between the ap-
proximation factors for the facility cost and the connection
cost in the facility location problem.
In Section 7 we will see a general discussion about the

method used to analyze the algorithms in this paper. The
important feature of this technique is that the most diÆcult
part of the analysis, which is proving a bound on the solution
of the factor-revealing LP, can be done almost automatically
using a computer. We will use the set cover problem as an
example to illustrate the technique of using factor-revealing
LPs.
Since the submission of the present paper, two new al-

gorithms have been proposed for the facility location prob-
lem. The �rst algorithm, due to Sviridenko [29], uses the
LP-rounding method to achieve an approximation factor of
1.58. The second algorithm, due to Mahdian, Ye, and Zhang

[24], combines our algorithm with the idea of cost scaling to
achieve an approximation factor of 1.52.

2. THE ALGORITHM
The facility location problem can be captured by a com-

monly known integer program due to Balinski [3]. For the
sake of convenience, we give another equivalent formulation
for the problem. Let us say that a star consists of one facil-
ity and several cities. The cost of a star is the sum of the
opening cost of the facility and the connection costs between
the facility and all the cities in the star. Let S be the set of
all stars. The facility location problem can be thought of as
picking a minimum cost set of stars such that each city is in
at least one star. This problem can be captured by the fol-
lowing integer program. In this program, xS is an indicator
variable denoting whether star S is picked and cS denotes
the cost of star S.

minimize
X
S2S

cSxS (1)

subject to 8j 2 C :
X
S:j2S

xS � 1

8S 2 S : xS 2 f0; 1g

The LP-relaxation of this program is:

minimize
X
S2S

cSxS (2)

subject to 8j 2 C :
X
S:j2S

xS � 1

8S 2 S : xS � 0

The dual program is:

maximize
X
j2C

�j (3)

subject to 8S 2 S :
X

j2S\C

�j � cS

8j 2 C : �j � 0

We can think of the variable �j in the dual program as
the share of city j toward the total expenses. Now, suppose
we have an algorithm that �nds a solution for the facility
location problem of cost T , and values �j for j 2 C such
that

P
j2C �j = T and for every star S,

P
j2S\C �j � cS,

where  � 1 is a �xed number. Then the approximation
ratio of the algorithm is at most , since if for every facility
i that is opened in the optimal solution and the collection
A of cities that are connected to it, we write the inequalityP

j2A �j � (fi +
P

j2A cij) and add up these inequalities,
we will obtain that the cost of our solution is at most  times
the cost of the optimal solution. Another way of looking at
this is from the perspective of LP-duality. The inequalityP

j2S\C �j � cS implies that if we shrink �j 's by a factor
of , we obtain a feasible dual solution. The value of this
feasible solution for the dual, which is

P
j2C �j= = T=, is

a lower bound on the cost of the optimum.
This method, which is called dual �tting, can be consid-

ered a primal-dual type method. The only di�erence is that
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in primal-dual algorithms, we usually relax the complemen-
tary slackness conditions to obtain a solution for the primal
and a solution for the dual so that the ratio of the values
of the objective functions for these two solutions is bounded
by the approximation factor of the algorithm. However, in
the dual �tting scheme we relax the inequalities in the dual
program. Therefore, the algorithm �nd a solution for the
primal, and an infeasible solution for the dual with the same
value for the objective function. The amount by which the
dual inequalities are relaxed (or in other words, the amount
by which we must shrink the dual solution so that it �ts the
dual) will give a bound on the approximation factor of the
algorithm. This fact is the basis of our analysis. See Jain et
al. [17] or Mahdian et al. [23] for a more detailed discussion
of this technique.

Algorithm 1

1. We introduce a notion of time. The algorithm starts
at time 0. At this time, all cities are unconnected, all
facilities are unopened, and the budget of every city j,
denoted by Bj , is initialized to 0. At every moment,
each city j o�ers some money from its budget to each
unopened facility i. The amount of this o�er is com-
puted as follows: If j is unconnected, the o�er is equal
to max(Bj � cij ; 0) (i.e., if the budget of j is more
than the cost that it has to pay to get connected to i,
it o�ers to pay this extra budget to i); If j is already
connected to some other facility i0, then its o�er to
facility i is equal to max(ci0j � cij ; 0) (i.e., the amount
that j o�ers to pay to i is equal to the amount j would
save by switching its facility from i0 to i).

2. While there is an unconnected city, increase the time,
and simultaneously, increase the budget of each uncon-
nected city at the same rate (i.e., every unconnected
city j has Bj = t at time t), until one of the follow-
ing events occur. If multiple events occur at the same
time, process them in an arbitrary order.

(a) For some unopened facility i, the total o�er that
it receives from cities is equal to the cost of open-
ing i. In this case, we open facility i, and for ev-
ery city j (connected or unconnected) which has a
non-zero o�er to i, we connect j to i. The amount
that j had o�ered to i is now called the contribu-
tion of j toward i, and j is no longer allowed to
decrease this contribution.

(b) For some unconnected city j, and some facility i
that is already open, the budget of j is equal to
the connection cost between j and i. In this case,
we connect city j to facility i. The contribution
of j toward i is zero.

3. For every city j, set �j (the share of j of the total
expenses) equal to the budget of j at the end of algo-
rithm. Notice that this value is also equal to the time
that j �rst gets connected.

At any time during the execution of this algorithm, the
budget of each connected city is equal to its current connec-
tion cost plus its total contribution toward open facilities.
The following fact should be obvious from the description of
the algorithm.

Lemma 1. The total cost of the solution found by the

above algorithm is equal to the sum of �j's.

The above algorithm is similar to the greedy algorithm
of Mahdian et al [23]. The only di�erence is that in [23],
cities stop o�ering money to facilities as soon as they get
connected to a facility, but in our algorithm, they still o�er
some money (the amount that they could save by switching
their facility) to other facilities. As a result, our algorithm
�nds a solution that cannot be improved just by opening
new facilities, and therefore it cannot be improved by the
greedy augmentation procedure of Charikar and Guha [4],
whereas the solution found by the algorithm of Mahdian et
al. [23] does not possess this property. As we will see in the
next section, this change reduces the approximation factor
of the algorithm from 1.86 to 1.61.

3. ANALYSIS OF THE ALGORITHM
In this section we compute the approximation ratio of Al-

gorithm 1. By the comments before Algorithm 1, we know
that in order to prove an approximation guarantee of , it
is enough to show that for every star S, the sum of �j 's of
the cities in S is at most  times the cost of S. In order
to compute such a , in Section 3.1 we will de�ne an op-
timization program (called the factor-revealing LP) whose
solution gives the value of . In Section 3.2 we will use the
factor-revealing LP to prove an upper bound of 1.61 on the
approximation ratio of Algorithm 1. A discussion of this
technique is presented in Section 7.

3.1 Deriving the factor-revealing LP
In this section, we express various constraints that are

imposed by the problem or by the structure of the algorithm
as inequalities so that we can get a bound on the value of 
de�ned above by solving a series of linear programs.
Consider a star S consisting of a facility of opening cost

f (with a slight misuse of the notation, we call this facility
f), and k cities numbered 1 through k. Let dj denote the
connection cost between facility f and city j, and �j denote
the share of j of the expenses, as de�ned in Algorithm 1.
We may assume without loss of generality that

�1 � �2 � � � � � �k: (4)

We need more variables to capture the execution of Al-
gorithm 1. For every i (1 � i � k), consider the situation
of the algorithm at time t = �i � �, where � is very small,
i.e., just a moment before city i gets connected for the �rst
time. At this time, each of the cities 1; 2; : : : ; i� 1 might be
connected to a facility. For every j < i, if city j is connected
to some facility at time t, let rj;i denote the connection cost
between this facility and city j; otherwise, let rj;i := �j .
The latter case occurs if and only if �i = �j . It turns out
that these variables (f , dj 's, �j 's, and rj;i's) are enough to
write down some inequalities to bound the ratio of the sum
of �j 's to the cost of S (i.e., f +

Pk

j=1 dj).
First, notice that once a city gets connected to a facility,

its budget remains constant and it cannot revoke` its contri-
bution to a facility, so it can never get connected to another
facility with a higher connection cost. This implies that for
every j,

rj;j+1 � rj;j+2 � � � � � rj;k: (5)
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Now, consider time t = �i � �. At this time, the amount
city j o�ers to facility f is equal to

max(rj;i � dj ; 0) if j < i; and
max(t� dj ; 0) if j � i:

Notice that by the de�nition of rj;i this holds even if j < i
and �i = �j . It is clear from Algorithm 1 that the total
o�er of cities to a facility can never become larger than the
opening cost of the facility. Therefore, for all i,

i�1X
j=1

max(rj;i � dj ; 0) +

kX
j=i

max(�i � dj ; 0) � f: (6)

The triangle inequality is another important constraint
that we need to use. Consider cities i and j with j < i at
time t = �i � �. Let f 0 be the facility j is connected to
at time t. By the triangle inequality and the de�nition of
rj;i, the connection cost cf 0i between city i and facility f 0

is at most rj;i + di + dj . Furthermore, cf 0i can not be less
than t, since if it is, our algorithm could have connected the
city i to the facility f 0 at a time earlier than t, which is a
contradiction. Here we need to be careful with the special
case �i = �j . In this case, rj;i + di + dj is not more than
t. If �i 6= �j , the facility f 0 is open at time t and therefore
city i can get connected to it, if it can pay the connection
cost. Therefore for every 1 � j < i � k,

�i � rj;i + di + dj : (7)

The above inequalities form the following optimization
program, which we call the factor-revealing LP.

maximize

Pk
i=1 �i

f +
Pk

i=1 di
(8)

subject to 8 1 � i < k : �i � �i+1

8 1 � j < i < k : rj;i � rj;i+1

8 1 � j < i � k : �i � rj;i + di + dj

8 1 � i � k :
i�1X
j=1

max(rj;i � dj ; 0)

+
kX

j=i

max(�i � dj ; 0) � f

8 1 � j � i � k : �j ; dj ; f; rj;i � 0

Notice that although the above optimization program is
not written in the form of a linear program, it is easy to
change it to a linear program by introducing new variables
and inequalities.

Lemma 2. If zk denotes the solution of the factor-revealing
LP, then for every star S consisting of a facility and k cities,
the sum of �j 's of the cities in S in Algorithm 1 is at most
zkcS.

Proof. Inequalities 4, 5, 6, and 7 derived above imply
that the values �j ; dj ; f; rj;i that we get by running Algo-
rithm 1 constitute a feasible solution of the factor-revealing
LP. Thus, the value of the objective function for this solution
is at most zk.

Lemmas 1 and 2 imply the following.

k maxi�k zi

10 1.54147

20 1.57084

50 1.58839

100 1.59425

200 1.59721

300 1.59819

400 1.59868

500 1.59898

Table 1: Solution of the factor-revealing LP

Lemma 3. Let zk be the solution of the factor-revealing
LP, and  := supkfzkg. Then Algorithm 1 solves the metric
facility location problem with an approximation factor of .

3.2 Solving the factor-revealing LP
As mentioned earlier, the optimization program 8 can be

written as a linear program. This enables us to use an LP-
solver to solve the factor-revealing LP for small values of k,
in order to compute the numerical value of . Table 1 shows
a summary of results that are obtained by solving the factor-
revealing LP using CPLEX. It seems from the experimental
results that zk is an increasing sequence that converges to
some number close to 1:6 and hence  � 1:6.
By solving the factor-revealing LP for any particular value

of k, we get a lower bound on the value of . In order to
prove an upper bound on , we need to present a general so-
lution to the dual of the factor-revealing LP. Unfortunately,
this is not an easy task in general. (For example, perform-
ing a tight asymptotic analysis of the LP bound is still an
open question in coding theory). However, here empirical
results can help us: we can solve the dual of the factor-
revealing LP for small values of k to get an idea how the
general optimal solution looks like. Using this, it is usually
possible (although sometimes tedious) to prove a close-to-
optimal upper bound on the value of zk. We have used this
technique to prove an upper bound of 1:61 on . The proof
of this upper bound is presented in Appendix A. Also, we
can use the optimal solution of the factor-revealing LP to
construct an example on which our algorithm performs at
least zk times worse than the optimum. The proof of this
fact is omitted here. These results imply the following.

Theorem 4. Algorithm 1 solves the facility location prob-

lem in time O(n3), where n = max(nf ; nc). Its approxima-
tion ratio is equal to the supremum of the solution of the
maximization program 8, which is less than 1.61, and more
than 1.598.

4. THE TRADEOFF BETWEEN FACILITY
AND CONNECTION COSTS

We de�ned the cost of a solution in the facility location
problem as the sum of the facility cost (i.e., total cost of
opening facilities) and the connection cost. We proved in
the previous section that Algorithm 1 achieves an overall
performance guarantee of 1.61. However, sometimes it is
useful to get di�erent approximation guarantees for facility
and connection costs. The following theorem gives such a
guarantee. The proof is similar to the proof of Lemma 3.

Theorem 5. Let f � 1 and c := supkfzkg, where zk is

the solution of the following optimization program.
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Figure 1: The tradeo� between f and c

maximize

Pk

i=1 �i � ffPk
i=1 di

(9)

subject to 8 1 � i < k : �i � �i+1

8 1 � j < i < k : rj;i � rj;i+1

8 1 � j < i � k : �i � rj;i + di + dj

8 1 � i � k :

i�1X
j=1

max(rj;i � dj ; 0)

+
kX

j=i

max(�i � dj ; 0) � f

8 1 � j � i � k : �j ; dj ; f; rj;i � 0

Then for every instance I of the facility location problem,
and for every solution SOL for I with facility cost FSOL

and connection cost CSOL, the cost of the solution found by
Algorithm 1 is at most fFSOL + cCSOL.

We have computed the solution of the optimization pro-
gram 9 for k = 100, and several values of f between 1
and 3, to get an estimate of the corresponding c's. The
result is shown in the diagram in Figure 1. Every point
(f ; 

0
c) on the thick line in this diagram represents a value

of f , and the corresponding estimate for the value of c.
The dashed line shows a lower bound that holds unless
NP � DTIME[nO(log log n)] and is stated in Section 6. Sim-
ilar tradeo� problems are considered by Charikar and Guha
[4]. However, an important advantage that we get here is
that all the inequalities ALG � fFSOL + cCSOL are sat-
is�ed by a single algorithm. In the next section, we will
use the point f = 1 of this tradeo� to design algorithms
for other variants of the facility location problem. Other
points of this tradeo� can also be useful in designing other
algorithms based on our algorithm. For example, Mahdian,
Ye, and Zhang [24] use the point f = 1:1 of this tradeo�
to obtain a 1.52-approximation algorithm for the metric fa-
cility location problem, which is currently the best known
algorithm for this problem.

5. VARIANTS OF THE PROBLEM
The k-median problem di�ers from the facility location

problem in two respects: there is no cost for opening fa-
cilities, and there is an upper bound k, that is supplied as
part of the input, on the number of facilities that can be
opened. The k-facility location problem is a common gen-
eralization of k-median and the facility location problem.
In this problem, we have an upper bound k on the number

of facilities that can be opened, as well as costs for opening
facilities. Jain and Vazirani [18] reduced the k-median prob-
lem to the facility location problem in the following sense:
Suppose A is an approximation algorithm for the facility lo-
cation problem. Consider an instance I of the problem with
optimum cost OPT , and let F and C be the facility and
connection costs of the solution found by A. Algorithm A is
called a Lagrangian Multiplier Preserving �-approximation
(or LMP �-approximation for short) if for every instance
I, C � �(OPT � F ): Jain and Vazirani [18] show that an
LMP �-approximation algorithm for the metric facility lo-
cation problem gives rise to a 2�-approximation algorithm
for the metric k-median problem. They have noted that this
result also holds for the k-facility location problem.

Lemma 6. [18] An LMP �-approximation algorithm for
the facility location problem gives a 2�-approximation algo-
rithm for the k-facility location problem.

In this section, we give an LMP 2-approximation algo-
rithm for the metric facility location problem based on Al-
gorithm 1. This will result in a 4-approximation algorithm
for the metric k-facility location problem, whereas the best
previously known was 6 [18].
In the capacitated facility location problem, for every fa-

cility, there is one more parameter, which indicates the ca-
pacity of this facility, i.e., the number of cities it can serve.
We will refer to the version of this problem in which we are
allowed to open each facility more than once as the capaci-
tated facility location problem with soft capacities. Jain and
Vazirani [18] show that their facility location algorithm gives
rise to a 4-approximation algorithm for the metric capaci-
tated facility location problem with soft capacities. One can
easily generalize their result to the following lemma. This
lemma, together with our LMP 2-approximation facility lo-
cation algorithm gives a 3-approximation algorithm for the
metric capacitated facility location problem with soft capac-
ities.

Lemma 7. An LMP �-approximation algorithm for the
metric uncapacitated facility location problem leads to an
(� + 1)-approximation algorithm for the metric capacitated
facility location problem with soft capacities.

Now we show that there is an LMP 2-approximation al-
gorithm for the metric facility location problem. The proof
is based on Theorem 5 together with the scaling technique
of Charikar and Guha [4]. We prove the following lemma
using this technique.

Lemma 8. Assume there is an algorithm A for the metric
facility location problem such that for every instance I and
every solution SOL for I, A �nds a solution of cost at most

FSOL+�CSOL, where FSOL and CSOL are facility and con-
nection costs of SOL, and � is a �xed number. Then there
is an LMP �-approximation algorithm for the metric facility
location problem.
Proof. Consider the following algorithm: The algorithm

constructs another instance I0 of the problem by multiplying
the facility opening costs by �, runs A on this modi�ed
instance I0, and outputs its answer. It is easy to see that
this algorithm is an LMP �-approximation.

Now we only need to prove the following. The proof of
this theorem follows the general scheme that is explained in
Section 7.

735



Theorem 9. For every instance I and every solution SOL
for I, Algorithm 1 �nds a solution of cost at most FSOL +
2CSOL, where FSOL and CSOL are facility and connection
costs of SOL.

Proof. By Theorem 5 we only need to prove that the
solution of the factor-revealing LP 9 with f = 1 is at most 2.
We �rst write the maximization program 9 as the following
equivalent linear program.

maximize
kX

i=1

�i � f (10)

subject to

kX
i=1

di = 1

8 1 � i < k : �i � �i+1 � 0

8 1 � j < i < k : rj;i+1 � rj;i � 0

8 1 � j < i � k : �i � rj;i � di � dj � 0

8 1 � j < i � k : rj;i � di � gi;j � 0

8 1 � i � j � k : �i � dj � hi;j � 0

8 1 � i � k :

i�1X
j=1

gi;j +
kX
j=i

hi;j � f � 0

8 i; j : �j ; dj ; f; rj;i; gi;j ; hi;j � 0

We need to prove an upper bound of 2 on the solution of the
above LP. Since this program is a maximization program, it
is enough to prove the upper bound for any relaxation of
the above program. Numerical results (for a �xed value of
k, say k = 100) suggest that removing the second, third,
and seventh inequalities of the above program does not its
solution. Therefore, we can relax the above program by
removing these inequalities. Now, it is a simple exercise
to write down the dual of the relaxed linear program and
compute its optimal solution. This solution corresponds to
multiplying the third, fourth, �fth, and sixth inequalities of
the linear program 10 by 1=k, and the �rst one by (2�1=k),
and adding up these inequalities. This gives an upper bound
of 2 � 1=k on the value of the objective function. Thus, for
f = 1, we have c � 2. In fact, c is precisely equal to 2,
as shown by the following solution for the program 9.

�i =

�
2� 1

k
i = 1

2 2 � i � k

di =

�
1 i = 1
0 2 � i � k

rj;i =

�
1 j = 1
2 2 � j � k

f = 2(k � 1)

This example shows that the above analysis of the factor-
revealing LP is tight.

Lemma 8 and Theorem 9 provide an LMP 2-approximation
algorithm for the metric facility location problem. This re-
sult improves all the results in Jain and Vazirani [18], and
gives straightforward algorithms for some other problems
considered by Charikar et al [6].

6. LOWER BOUNDS
In this section we explore some impossibility results. Our

�rst result is the following theorem, which together with
Feige's result on the hardness of set-cover [10] shows that
there is no (1+ 2

e
��)-approximation algorithm for k-median,

unless NP � DTIME[nO(log log n)]. The proof is similar to
the one used by Guha and Khuller [13] to prove the hardness
of the metric facility location problem, and is omitted in this
extended abstract.

Theorem 10. Metric k-median problem cannot be approx-
imated within a factor strictly smaller than 1+ 2

e
unless min-

imum set-cover can be approximated within a factor of c lnn
for c < 1.

This theorem improves a lower bound of 1+ 1
e
due to Guha

[12]. Notice that the above theorem proves that k-median
is a strictly harder problem to approximate than the facility
location problem because the latter can be approximated
within a factor of 1.61.
We also adapt the proof of Charikar and Guha [13] to

show the following lower bound on the tradeo� results. The
dashed line in Figure 1 shows the lower bound provided by
the following theorem.

Theorem 11. Let f and c be constants with c < 1 +
2e�f . Assume there is an algorithm A such that for every
instance I of the metric facility location problem, A �nds a
solution whose cost is not more than fFSOL + cCSOL for
every solution SOL for I with facility and connection costs

FSOL and CSOL. Then minimum set-cover can be approxi-
mated within a factor of c lnn for c < 1.

The above theorem shows that �nding an LMP (1 + 2
e
�

�)-approximation for the metric facility location problem is
hard. Also, the integrality gap examples found by Guha [12]
show that Lemma 6 is tight. This shows that one cannot
use Lemma 6 as a black box to obtain a smaller factor than
2+ 4

e
for k-median problem. Note that 3+ � approximation

is already known [2] for the problem. Hence if one wants to
beat this factor using the Lagrangian relaxation technique
then it will be necessary to look into the underlying LMP
algorithm as already been done by Charikar and Guha [4].

7. THE FACTOR-REVEALING LP TECH-
NIQUE

In this section, we elaborate on the technique of using
factor-revealing LPs which we used to analyze the algo-
rithms in this paper. We demonstrate this technique by
applying it in combination with dual �tting to a classical
greedy algorithm for the set cover problem. We also explain
how we can use computers to predict and prove bounds on
the solution to the factor-revealing LP. Similar methods are
used in Mahdian et al. [23] and Goemans and Kleinberg [13].
A re-statement of the greedy algorithm for the set cover

problem is as follows. All uncovered elements raise their
dual-variables until a new set S goes tight (i.e., its cost
equals the sum of the values of the dual variables of its
elements). At this point, the set S is picked. Newly cov-
ered elements pay for the cost of S with their dual values.
In doing so, they withdraw their contributions o�ered to-
wards the cost of any other set. This ensures that at the
end of the algorithm the total contribution of the elements
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is equal to the sum of the cost of the picked sets. However,
we might not get a feasible dual solution. To make the dual
solution feasible we look for the smallest positive number Z,
so that when the dual solution is shrunk by a factor of Z,
it becomes feasible. An upper bound on the approximation
factor of the algorithm is obtained by maximizing Z over all
possible instances. This technique is called dual �tting and
is explained in detail in Mahdian et al [23]. In this section,
we focus on the factor-revealing LP technique, which is used
to estimate the value of Z.
Clearly Z is also the maximum factor by which any set is

over-tight. Consider any set S. We want to see what is the
worst factor, over all sets and over all possible instances of
the problem, by which a set S is over-tight. Let the elements
in S be 1; 2; � � � ; k. Let xi be the dual variable corresponding
to the element i at the end of the algorithm. Without loss
of generality we may assume that x1 � x2 � � � � � xk. It
is easy to see that at time t = x�i , total duals o�ered to
S is at least (k � i + 1)xi. Therefore, this value cannot be
greater than the cost of the set S (denoted by cS). So, the
optimum solution of the following mathematical program
gives an upper bound on the value of Z. (Note that cS is a
variable not a constant).

maximize

Pk
i=1 xi

cS
(11)

subject to 81 � i < k : xi � xi+1

81 � i � k : (k � i+ 1)xi � cS

81 � i � k : xi � 0

cS � 1

The above optimization program can be turned into a
linear program by adding the constraint cS = 1 and chang-
ing the objective function to

Pk

i=1 xi. We call this linear
program the factor-revealing LP. Notice that the factor-
revealing LP has nothing to do with the LP formulation
of the set cover problem; it is only used in order to analyze
this particular algorithm. This is the important distinction
between the factor-revealing LP technique, and other LP-
based techniques in approximation algorithms.
Once we formulate the analysis of the algorithm as a

factor-revealing LP, we can use computers to empirically
compute the upper bound given by the factor-revealing LP
on the approximation ratio of the algorithm. This is very
useful, since if the empirical results suggest that the factor-
revealing LP does not give us a good approximation ratio,
we can try adding other inequalities to the factor-revealing
LP. For this we might need to introduce new variables to
capture the execution of the algorithm more accurately, e.g.,
we needed to introduce the variables rj;i in Section 3.1 in
order to get a good bound on the approximation ratio of the
algorithm.
The next step is to analyze the factor-revealing LP and

derive an upper bound on the value of its solution. For
the set cover example above, this step is trivial, since the
factor-revealing LP associated with the algorithm is quite
simple. However, in general this can be the most diÆcult
step of the proof (as it is in the case of our algorithm and
the algorithm of Mahdian et al. [23]). Here we can use
computers to get ideas about the proof, as explained below.
Proving Theorem 4 would have been very diÆcult without

using these techniques.
Since the factor-revealing LP provides an upper bound on

the approximation ratio of the algorithm, we can relax some
of the constraints of this LP to make it simpler. After each
relaxation, we can use computers to verify that this relax-
ation does not change the value of the objective function
drastically. After simplifying the factor-revealing LP in this
way, we can �nd an upper bound on its solution by �nding
a feasible solution for its dual for every k. Again, here we
can use a computer to solve the dual linear program for a
couple hundred values of k, to observe a trend in the values
of the optimal dual solution. After guessing a sequence of
dual solutions, one has to theoretically verify their feasibil-
ity. For complicated linear programs, it is usually a good
idea to throw in a few parameters (like p1 and p2 in the
proof of Theorem 4 in Appendix A), guess a general dual
solution in terms of these parameters, and optimize over the
choice of these parameters at the end.
Note that in general this technique does not guarantee

the tightness of the analysis, because sometimes the algo-
rithm performs well not because of local structures but for
some global reasons. Still, in many cases one may get a
tight example from a feasible solution of the factor-revealing
LP. For example, from any feasible solution x of the factor-
revealing LP 11, one can construct the following instance:
There are k elements 1; : : : ; k, a set S = f1; : : : ; kg of cost
1 + � which is the optimal solution, and sets Si = fig of
cost xi for i = 1; : : : ; k. It is easy to verify that our al-
gorithm works

P
xi times worst than the optimal on this

instance. This means that the approximation ratio of the
set cover algorithm is precisely equal to the solution of the
factor-revealing LP, which is Hn.

8. CONCLUDING REMARKS
A large fraction of the theory of approximation algorithms,

as we know it today, is built around the theory of linear
programming, which o�ers the two fundamental algorithm
design techniques of rounding and the primal-dual schema
(see Vazirani [31]). The technique of using dual �tting with
the factor-revealing LP appears to be a third emerging tech-
nique.
The technique that we used in this paper seems to be a

useful tool for analyzing greedy, heuristic, and local search
algorithms. For many algorithms, the proof of the approxi-
mation ratio is mainly based on combining several inequal-
ities (usually linear inequalities) to derive a bound on the
approximation ratio. It might be possible to \automatize"
such proofs using a method similar to the one used in this
paper. It would be interesting to �nd other examples that
apply this method.
When analyzing a problem using this method, we usually

encounter the problem of �nding the limit of the solution of a
sequence of linear programs. This seems to be a very diÆcult
task in general. It would be nice to develop a general method
for solving such problems. One possible idea is to consider
the limit of the values of the variables in the optimal solution
as a continuous function, and derive functional equations
from the inequalities.
We have implemented our facility location algorithm, and

run it on several randomly generated test cases. The test
cases were generated by considering shortest distance met-
ric in a complete bipartite graph with random weights, or
Euclidean distance metric among a set of random points as
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the connection costs. In all instances, the solution given by
our algorithm was at most a factor of 1.05 away from the
lower bound obtained by solving the LP relaxation of the
problem. This shows that in practice our algorithm works
much better than the guaranteed approximation ratio. A
theoretical explanation of this fact would be interesting.
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APPENDIX

A. UPPER BOUND ON THE SOLUTION OF
THE FACTOR-REVEALING LP

In this appendix we prove an upper bound of 1:61 on the
solution of the factor-revealing LP 8. This proof is obtained
using the techniques explained in Section 7. We start by
proving the following lemma which allows us to concentrate
on the case when k is suÆciently large.

Lemma 12. If zk denotes the solution to the factor-revealing
LP, then for every k, zk � z2k.

Proof. Let (�j ; dj ; f; rj;i) be the optimum solution of
the factor-revealing LP for k. We construct a feasible solu-
tion (�0j ; d

0
j ; f

0; r0j;i) for 2k by duplicating everything as fol-
lows: �02j�1 = �02j = �j , r

0
2j�1;2i�1 = r02j�1;2i = r02j;2i�1 =

r02j;2i = rj;i, d
0
2j�1 = d02j = dj , and f 0 = 2f . It is easy to see

that this is a feasible solution for 2k with an objective value
of zk. Thus, z2k � zk.

Lemma 13. Let zk be the solution to the factor-revealing

LP. Then for every suÆciently large k, zk � 1:61.

Proof. Consider a feasible solution of the factor-revealing
LP. Let xj;i := max(rj;i � dj ; 0). The fourth inequality of
the factor-revealing LP implies that for every i � i0,

(i0 � i+ 1)�i �

i0X
j=i

dj + f �

i�1X
j=1

xj;i: (12)

Now, we de�ne li as follows:

li =

�
p2k if i � p1k
k if i > p1k

where p1 and p2 are two constants (with p1 < p2) that will
be �xed later. Consider Inequality 12 for every i � p2k and
i0 = li, and divide both sides of this inequality by (li�i+1).
By adding up these inequalities we obtain

p2kX
i=1

�i �

p2kX
i=1

liX
j=i

dj
li � i+ 1

+ (

p2kX
i=1

1

li � i+ 1
)f

�

p2kX
i=1

i�1X
j=1

xj;i
li � i+ 1

: (13)

Now for every j � p2k, let yj := xj;p2k. The second
inequality of the factor-revealing LP implies that xj;i � yj
for every j < i � p2k and xj;i � yj for every i > p2k. Also,

let � :=
Pp2k

i=1
1

li�i+1
. Therefore, inequality 13 implies

p2kX
i=1

�i �

p2kX
i=1

liX
j=i

dj
li � i+ 1

+ �f �

p2kX
i=1

i�1X
j=1

yj
li � i+ 1

: (14)

Consider the index ` � p2k for which 2d` + y` has its
minimum (i.e., for every j � p2k, 2d` + y` � 2dj + yj). The
third inequality of the factor-revealing LP implies that for
i = p2k + 1; : : : ; k,

�i � r`;i + di + d` � x`;i + 2d` + di � di + 2d` + y`: (15)

By adding Inequality 15 for i = p2k + 1; : : : ; k with In-
equality 14 we obtain

kX
i=1

�i �

p2kX
i=1

liX
j=i

dj
li � i+ 1

+ (2d` + y`)(1� p2)k

+

kX
j=p2k+1

dj �

p2kX
i=1

i�1X
j=1

yj
li � i+ 1

+ �f

=

p2kX
j=1

�dj �

p2kX
j=1

p2kX
i=j+1

dj + yj
li � i+ 1

+
kX

j=p2k+1

(1 +

p2kX
i=p1k+1

1

k � i+ 1
)dj

+(2d` + y`)(1� p2)k + �f

�

p2kX
j=1

�dj +
kX

j=p2k+1

(1 +

p2kX
i=p1k+1

1

k � i + 1
)dj + �f

+(2d` + y`)

 
(1� p2)k �

1

2

p2kX
j=1

p2kX
i=j+1

1

li � i+ 1

!
;

where the last inequality is a consequence of the inequality
2d`+y` � 2dj+yj � 2dj+2yj for j � p2k. Now, let �

0 := 1+Pp2k
i=p1k+1

1
k�i+1

and Æ := (1�p2)�
1
2k

Pp2k
j=1

Pp2k
i=j+1

1
li�i+1

.

Therefore, the above inequality can be written as follows:

kX
i=1

�i �

p2kX
j=1

�dj +
kX

j=p2k+1

�0dj + �f + Æ(2d` + y`)k; (16)

where
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� =

p2kX
i=1

1

li � i + 1
= ln

p2(1� p1)

(p2 � p1)(1� p2)
+ o(1); (17)

�0 = 1 +

p2kX
i=p1k+1

1

k � i+ 1
= 1 + ln

1� p1
1� p2

+ o(1); (18)

Æ = 1 � p2 �
1

2k

p2kX
j=1

p2kX
i=j+1

1

li � i+ 1

=
1

2
(2� p2 � p2 ln

p2
p2 � p1

� ln
1� p1
1� p2

) + o(1): (19)

Now if we choose p1 and p2 such that Æ < 0, and let
 := max(�; �0) then inequality 16 implies that

kX
i=1

�i � ( + o(1))(f +
kX

i=1

dj):

Using equations 17, 18, and 19, it is easy to see that sub-
ject to the condition Æ < 0, the value of  is minimized when
p1 � 0:439 and p2 � 0:695, which gives us  < 1:61.
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