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Abstract. We significantly improve known time bounds for solving the minimum cut problem on
undirected graphs. We use a “semiduality” between minimum cuts and maximum spanning tree
packings combined with our previously developed random sampling techniques. We give a random-
ized (Monte Carlo) algorithm that finds a minimum cut in an m-edge, n-vertex graph with high
probability in O(m log3 n) time. We also give a simpler randomized algorithm that finds all minimum
cuts with high probability in O(n2 log n) time. This variant has an optimal 51# parallelization. Both
variants improve on the previous best time bound of O(n2 log3 n). Other applications of the
tree-packing approach are new, nearly tight bounds on the number of near-minimum cuts a graph
may have and a new data structure for representing them in a space-efficient manner.
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1. Introduction

The minimum cut problem has been studied for many years as a fundamental
graph optimization problem. Initially, the problem was considered a harder
variant of the s-t minimum cut problem and was solved in Õ(mn2) time (where
Õ( f ) denotes O( f polylog f )) on m-edge, n-vertex graphs [Ford and Fulkerson
1962; Gomory and Hu 1961]. Improvements then followed: first to Õ(mn) time
[Hao and Ordin 1994; Nagamochi and Ibaraki 1992a], showing that minimum
cuts were as easy to find as maximum flows; then to Õ(n2) time [Karger and
Stein 1996], showing they were significantly easier.

In this paper, we give an algorithm with an O(m log3 n) running time. Initially
attacked as a harder variant of the maximum flow problem, the minimum cut
problem turns out to be solvable in near-linear time. Side effects of our analysis
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include new combinatorial theorems on the structure, enumeration and represen-
tation of minimum cuts. We also give a relatively simple algorithm that runs in
linear time on a natural class of graphs and in O(n2 log n) time on all graphs.
This algorithm still dominates all previous ones and can also be parallelized
optimally (i.e., with time-processor product no worse than the sequential algo-
rithm’s) to yield the best-known 51# algorithm for the problem.

Our algorithm is based on a “semi-duality” between minimum cuts and
undirected spanning tree packings. It is therefore fundamentally different from
past approaches based on flows or on edge contraction. An algorithm developed
by Gabow [1995] uses directed tree packings to solve the problem, but ours
appears to be the first to use undirected tree packings. It thus introduces a
different approach to finding minimum cuts in undirected graphs.

1.1 THE PROBLEM. This paper studies the minimum cut problem. Given a
graph with n vertices and m (possibly weighted) edges, we wish to partition the
vertices into two nonempty sets so as to minimize the number (or total weight) of
edges crossing between them. More formally, a cut ( A, B) of a graph G is a
partition of the vertices of G into two nonempty sets A and B. An edge (v, w)
crosses cut ( A, B) if one of v and w is in A and the other in B. The value of a cut
is the number of edges that cross the cut or, in a weighted graph, the sum of the
weights of the edges that cross the cut. The minimum cut problem is to find a cut
of minimum value. We use c to denote the value of this minimum cut.
Throughout this paper, the graph is assumed to be connected; otherwise the
problem is trivial. We also require that the edge weights be nonnegative, since
optimizing with negative weights is 13-complete by a transformation from the
maximum-cut problem [Garey and Johnson 1979, page 210]. We distinguish the
minimum cut problem from the s-t minimum cut problem in which we require
that two specified vertices s and t be on opposite sides of the cut; in the
minimum cut problem there is no such restriction.

1.2. APPLICATIONS. The minimum cut problem has several applications.
Picard and Queyranne [1982] survey applications including graph partitioning
problems, the study of project networks, and partitioning items in a database. In
information retrieval, minimum cuts have been used to identify clusters of
topically related documents in hypertext systems [Botafogo 1993]. The problem
of determining the connectivity of a network arises frequently in issues of
network design and network reliability (one of our previous papers [Karger 1995]
exploits an extremely tight connection between minimum cuts and network
reliability). Minimum cut computations are used to find the subtour elimination
constraints that are needed in the implementation of cutting plane algorithms for
solving the traveling salesman problem [Dantzig et al. 1954; Lawler et al. 1985].
Padberg and Rinaldi [1990] and David Applegate (personal communication)
have reported that solving min-cut problems was the computational bottleneck in
their state-of-the-art cutting-plane based TSP algorithm, as well as other cutting-
plane based algorithms for combinatorial problems whose solutions induce
connected graphs.

1.3. PAST WORK. The minimum cut problem was originally approached as a
variant of the s-t minimum cut problem and solved using flow techniques [Ford
and Fulkerson 1962]. The most obvious method is to compute s-t min-cuts for all
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pairs of vertices s and t; this requires (2
n) flow computations. Gomory and Hu

[1961] showed that the problem could be solved by n flow computations; using
present flow algorithms [Gabow and Tarjan 1988], this gives a time bound of
Õ(mn2). After a lengthy period of little progress, several new algorithms
appeared. Hao and Orlin [1994] showed how the n flow computations could be
performed in the time for one, improving the running time to Õ(mn). Gabow
[1995] gave an alternative “augmenting-tree” scheme that required Õ(mc) time
on an unweighted graph with minimum cut c.

Recently [Karger 1999a], we introduced sampling as an attack on minimum
cuts. We showed that sampling could be used to find approximate minimum cuts
in Õ(m) time and to find them exactly in Õ(m=c) time (combining sampling
with Gabow’s algorithm). The same sampling technique is crucial to this paper as
well.

The above approaches all use maximum flow techniques that treat undirected
graphs as directed graphs (Gabow’s algorithm packs directed trees rather than
directed paths, but still addresses directed graphs). Recently a flowless undirected-
graph approach based on edge contraction was discovered. If we can identify an
edge that does not cross the minimum cut, then we can merge its endpoints into
a single new vertex without affecting the minimum cut. Performing n 2 2 valid
contractions will reduce the graph to two vertices, at which point there is only
one nontrivial cut that must therefore correspond to the minimum cut. Nagamo-
chi and Ibaraki [1992a; 1992b] devised a sparse certificate computation that found
a contractible edge in O(m) time; this led to an O(mn)-time minimum cut
algorithm. Karger and Stein [1996] showed that random edge contraction worked
well, leading to an algorithm running in O(n2 log3 n) time.

1.4. OUR RESULTS. In this paper, we present a different approach to mini-
mum cuts that yields faster algorithms than were previously known. We use a
“semiduality” between minimum cuts and maximum packings of undirected
spanning trees–arguably a more natural dual than the directed flows or directed
spanning trees used previously [Gomory and Hu 1961; Hao and Orlin 1994;
Gabow 1995]. Our approach does not rely fundamentally on flows or edge
contractions. For a weighted, undirected graph, we give:

—A randomized algorithm that finds a minimum cut with constant probability in
O(m log2 n) time and with high probability in O(m log3 n) time. This
significantly improves the previous best O(n2 log3 n) bound of Karger and
Stein [1996]. A technical refinement improves the time bound by an additional
log log n factor.

—A variant that finds a minimum cut with constant probability in O(n2) time
and finds all (possibly V(n2)) minimum cuts with high probability in O(n2 log
n) time. While this only gives a speedup of Q(log2 n) over the algorithm of
Karger and Stein [1996], the new algorithm is quite simple, relying only on
computing minimum spanning trees, finding least common ancestors and
evaluating expression-trees. It runs in O(m) time on a natural class of graphs.

—A parallel version of our simpler algorithm that runs in O(log3 n) time using
n2/log2 n processors.

—New bounds of Q(n2a) on the number of cuts with value at most a times the
minimum that a graph can have. For non-half-integral a this improves on a
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previous best general bound of O(n2a) [Karger 1993]. This bound is the first
to match the “step function” behavior of the known lower bounds with respect
to a.

—A new data structure that represents all minimum and near-minimum cuts.
Besides being smaller than previous representations [Karger and Stein 1996],
this representation highlights certain structural features of a graph’s near-
minimum cuts.

1.5. OUR METHODS. We now summarize the approach of the paper. At its
core is the following definition:

Definition 1.1. Let T be a spanning tree of G. We say that a cut in G
k-respects T if it cuts at most k edges of T. We also say that T k-constrains the
cut in G.

Nash-Williams [1961] proved that any graph with minimum cut c contains a set
of c/ 2 edge-disjoint spanning trees. These c/ 2 trees must divide up the c
minimum cut edges. It follows that any such tree packing contains a tree that
2-constrains the minimum cut. Using this idea, we show that for any graph G, we
can find (by packing trees) a small set of spanning trees such that every minimum
cut 2-respects some of the spanning trees. This lets us reduce to the following
problem: find the minimum cut in G that 2-respects a given spanning tree. While
this might appear a harder problem than the original, it turns out that the added
constraints make the problem easier. Our scheme can be thought of as a variant
of the “branch and bound” techniques used for hard optimization problems: we
consider several families of added constraints, one of which is satisfied by the
optimum solution. We can find the optimum by solving each constrained
optimization problem.

To introduce our approach, we show in Section 2 that a maximum packing of
spanning trees always contains many trees that 2-constrain any minimum cut. An
immediate application of this observation in Section 3 yields the tightest known
bounds on the number of near-minimum cuts in a graph.

Next, we turn to the problem of actually finding the minimum cut. It follows
from the previous paragraph that we can find the minimum cut by examining
each tree of a maximum packing and finding the smallest cut that 2-respects each
tree. Although finding a maximum tree packing is hard, we show in Section 4 that
Gabow’s minimum cut algorithm [Gabow 1995] or the Plotkin-Shmoys-Tardos
fractional packing algorithm [Plotkin et al. 1991] can be used to find a packing
that is sufficient for our purposes. Unfortunately, in a graph with minimum cut c,
such a packing contains roughly c trees, so checking all of them is prohibitively
slow. Indeed, even finding the packing (with either algorithm) takes time
proportional to c. To eliminate this factor, we use random sampling techniques
that we developed previously [Karger 1994; 1999a] to reduce the packing time to
O(m 1 n log3 n) and the number of trees in the packing to O(log n).

Once we have the packing, it remains to examine each tree in it. We begin in
Section 5 by showing how to find the smallest cut that 1-respects a given tree in
O(m) time. Our algorithm involves a simple dynamic program that determines
the value of the cut “induced” by removing each edge of the given tree. Besides
introducing our techniques, this algorithm can be used to find the minimum cut
in O(m 1 n log3 n) time on a natural family of “fat” graphs containing many
spanning trees.
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In some cases, we will not be able to find a tree that 1-constrains the minimum
cut, so we move on to finding the minimum cut 2-respecting a given tree. We
present two solutions. In Section 6, we extend the simple dynamic program of
Section 5 to compute the value of the cut induced by removing each pair of tree
edges. The algorithm runs in Q(n2) time– optimal for an algorithm that com-
putes the values for all (2

n) pairs. By running on O(log n) trees it identifies all
minimum cuts with high probability in O(n2 log n) time. In Section 6.2, we also
show how it can be parallelized optimally.

The second algorithm, presented in Section 7, implicitly considers all (2
n) pairs

of tree edges without taking V(n2) time to do so. We show how to use a dynamic
tree data structure [Sleator and Tarjan 1983] to evaluate a particular tree in O(m
log2 n) time. Thus, evaluating the necessary O(log n) trees takes O(m log3 n)
time and gives the claimed bound.

We finish by giving some extensions of the algorithm. In Section 8, we give a
fast and simple algorithm for a class of “fat” graphs. In Section 9, we describe
some refinements that improve the running time of our more complicated
algorithm by some small factors.

The initial tree-packing step is the only one using randomization; all subse-
quent operations in the algorithm are deterministic. The fact that random
sampling is used means that our algorithms, like those of Karger and Stein [1996]
are Monte Carlo algorithms. Although the probability of success is high, there is
no fast way to certify the correctness of the final answer (indeed, the fastest
known method is to use one of the deterministic minimum cut algorithms).

2. Cuts and Tree Packings

In this section, we give some background on tree packings and their connection
to cut problems. For the moment, let us restrict attention to unweighted graphs.
An unweighted tree packing is a set of edge-disjoint spanning trees in a graph.
The value of the packing is the number of trees in it. Clearly, every spanning tree
in an unweighted packing must use at least one edge of every cut. Thus, at most
c trees can be packed in a graph with minimum cut c. Nash-Williams [1961] gave
a related lower bound:

THEOREM 2.1. [NASH-WILLIAMS 1961]. Any undirected graph with minimum
cut c contains a tree packing of value at least c/2.

Nash-Williams actually proved a tighter result: if cr is the value of the
minimum r-way cut in the graph, then the value of the maximum tree packing is
exactly minr cr/(r 2 1). But observe that the minimum r-way cut must have
cr $ rc/ 2, since each of the r components of the cut must have c edges leaving
it. Thus,

min
cr

r 2 1
$ min

rc

2~r 2 1!
$

c

2
.

Theorem 2.1 is not universally tight–for example, a single tree has minimum cut
1 and contains one spanning tree. However, it is existentially tight since, for
example, a cycle has minimum cut 2 but has maximum tree packing value 1. We
will find later that the tightness of a graph with respect to tree packings is a
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factor that determines the hardness of finding its minimum cuts using our
algorithm. The factor-of-2 gap is particular to undirected graphs: Edmonds
[1972] proved that a directed graph with directed minimum cut c has a packing of
exactly c edge-disjoint directed spanning trees (Gabow [1995] exploits this in his
minimum cut algorithm).

Since any graph has a packing with c/ 2 trees, it follows that a maximum
packing will contain at least c/ 2 trees. Consider any minimum cut. Since the
edges of the minimum cut must be partitioned among the trees of the maximum
packing, the average number of min-cut edges per tree is at most c/(c/ 2) 5 2. It
follows that at least one of the trees in such a packing has at most 2 minimum-cut
edges. In other words, at least one tree 2-constrains the minimum cut.

We will strengthen this argument in Lemma 2.3. First, let us see why it is
useful. If we are given a tree, and are able to determine which of its edges cross
the minimum cut, then in fact we will have found the minimum cut. For consider
a tree in which all min-cut edges have been noted. Start at any vertex and
traverse the tree path to any other vertex. Each time we cross a min-cut edge, we
know that we have switched sides of the minimum cut. It follows that two vertices
are on the same side of the minimum cut if and only if the number of minimum
cut edges on the path between them is even. More concretely, suppose a tree has
only one minimum cut edge. Then removing this edge separates the tree into two
subtrees, each of which is one side of the minimum cut. If a tree contains two
minimum cut edges, then removing them separates the tree into three pieces.
The “central” piece that is adjacent to both other pieces forms one side of the
minimum cut, while the two remaining pieces form the other side.

The above paragraph demonstrates that any subset of the tree edges defines a
unique two-way cut of the graph G. It is also clear that every cut defines a
unique set of tree edges – namely, those crossing the cut – and that this corre-
spondence between cuts and sets of tree edges is a bijection.

2.1. WEIGHTED PACKINGS. We now extend the above discussion to argue that
many of the trees in a maximum packing must 2-respect that minimum cut. This
is useful since it means that a randomly selected tree is likely to 2-constrain the
minimum cut. We also generalize the tree packing definition to allow for
weighted trees packed into weighted graphs.

Definition 2.2. A (weighted) tree packing is a set of spanning trees, each with
an assigned weight, such that the total weight of trees containing a given edge is
no greater than the weight of that edge. The value of the packing is the total
weight of the trees in it.

If all edge and tree weights are integers, we can treat a weight-w edge as a set
of w parallel edges, and a weight-w tree as a set of w identical trees. This
recovers the unweighted notion of a tree packing as a set of edge-disjoint trees.
The value of the packing becomes the number of (unweighted equivalent) trees.
The definition also allows for fractional weights. This can be ignored, though,
since we can always multiply all edge and tree weights by the least common
denominator of the fractions to return to the integral version. It follows that
Nash-Williams’ Theorem 2.1 applies unchanged to weighted tree packings. We
now give our main packing lemma.
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LEMMA 2.3. Given any weighted tree packing of value bc and any cut of value
ac at least a 1/2(3 2 a/b) fraction of the trees (by weight) 2-constrain the cut.

COROLLARY 2.4. In any maximum packing, half the trees (by weight) 2-con-
strain the minimum cut.

PROOF. Suppose that tree T has weight wT (so (T wT 5 bc) and that we
choose a tree T at random with probability proportional to its weight. Define the
random variable xT to be one less than the number of edges of T crossing the cut
of value ac. Note that xT is always a nonnegative integer. Since we have a
packing, we know that the cut edge weight is divided among the trees. It follows
that

O wT~ xT 1 1! # ac

O wTxT # ac 2 O wT

# ac 2 bc

and thus

E@ xT# 5
1

O wT

z O wT xT

#
a

b
2 1

It follows from Markov’s inequality [Motwani and Raghavan 1995] that xT , 2
with probability at least 1 2 1/2(a/b 2 1) 5 1/2(3 2 a/b). Since xT is an integer,
xT , 2 implies that xT # 1, meaning that the a-minimum cut 2-respects T.

The corollary follows by taking a 5 1 and observing that b $ 1/2 by Theorem
2.1. e

3. Combinatories

As a first application of the concept of respecting constraint trees, we tighten the
bounds on the number of small cuts in a graph. This section can be skipped
without impacting the remainder of the paper. Our discussion is limited to
two-way cuts – that is, sets set of edges crossing a two-way vertex partition. In
contrast, other combinatorial results [Karger and Stein 1996] also apply to
multiway cuts.

Definition 3.1. A cut in G is a-minimum if its value is at most a times the
minimum cut value.

Previously [Karger 1993; 1999a], we proved that the number of a-minimum
cuts in a graph is O(n2a). Others have since tightened this bound for small a:
Benczúr [1995] bounded the number of 6/5-minimum cuts by O(n2), Nagamochi
et al. [1994] gave a bound of O(n2) for the number of 4/3-minimum cuts, and
subsequently Henzinger and Williamson [1996] showed that the number of cuts
strictly less than 3/2 times the minimum is O(n2). In an unweighted n-vertex
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cycle, any even size set of up to 2a edges is the edge set of an a-minimum cut.
Therefore, the number of a-minimum cuts can be as large as

Sn
2D 1 Sn

4D 1 · · · 1 S n
2aD 5 Q~n 2a! . (1)

We give an upper bound that is very close to this lower bound, matching its “step
function” behavior as a function of a.

Our bound uses tree packings. It simplifies the proof to restrict attention to
unweighted tree packings— collections of edge-disjoint spanning trees–in un-
weighted graphs. The discussion of the previous section showed that this loses no
generality. We begin with a weaker but easily proved lemma:

LEMMA 3.2. For any constant a, there are O(n2a) a-minimum cuts.

PROOF. Let k 5 2a. Number the a-minimum cuts from 1 to ,. Our goal is
to bound , by O(nk).

Recall Nash-Williams’ Theorem 2.1 [Nash-Williams 1961], which says that any
graph with minimum cut c contains at least c/ 2 edge-disjoint spanning trees.
Suppose that we pick one of these trees at random. Let yi 5 1 if we pick a tree
that k-constrains the ith a-minimum cut and 0 otherwise. Since this cut contains
at most ac edges and each edge is in at most one of our c/ 2 spanning trees, the
expected number of cut edges in our chosen spanning tree is at most 2a. It follows
from Markov’s inequality and the fact that 1 1 2a . 2a that the chosen tree
has at most k 5 2a cut edges with constant probability. That is, yi 5 1 with
constant probability, meaning E[ yi] 5 V(1). Thus

E3 O
i51

,

yi4 5 V1 O
i51

,

12 5 V~,! .

On the other hand, as discussed in the previous section, each cut that
k-respects a given tree is in 1-1 correspondence with the set of at most k edges of
the tree that it cuts. There are (n21

k ) 5 O(nk) such sets of edges, so no tree can
k-constrain more than this many cuts. Thus

E@O yi# # max O yi 5 O~nk! .

Combined with the previous bound, this means , 5 O(nk) as claimed. e

We now give refine the above lemma with a more complicated proof.

THEOREM 3.3. The number of a-minimum cuts is at most

1

2a 1 1 2 2a
S n

2aD S 1 1 OS 1

nD D .

Remark. For a a half integer, this quantity is within 1 1 o(1) of the lower
bound in Eq. (1). The bound remains tight to within a constant factor for all
values of a except those infinitesimally less than an integer (e.g., a 5 3 2 1/n).
For such values, we get a better bound by considering cuts of value at most
2a/2; the theorem then gives a bound of ( n

2a)(1 1 o(1)).
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PROOF. As before, we assume G is unweighted and pack c/ 2 edge-disjoint
trees in the graph. Consider a bipartite graph B, with one side consisting of the
trees in the Nash-Williams packing, and the other of the a-minimum cuts. To
avoid confusion, we refer to the vertices of this bipartite graph as nodes and to its
edges as arcs. Draw an arc from a tree-node T to a cut-node C if the tree
k-constrains the cut in G. We will now assign weights to these arcs so that:

(1) every tree node in B has weighted arc degree at most some D;
(2) every cut node in B has weighted arc degree at least some d

Since there are c/ 2 trees in the packing, we see from Property 1 that the total
weight of arcs in B is at most cD/ 2. It follows from Property 2 that the number
of cuts in B is at most cD/ 2d. We show that this quantity can be made small by
an appropriate choice of arc weights.

We now define the weight assignment. Let k 5 2a. For a given arc (T, C),
if tree T r-constrains cut C for some r # k but does not (r 1 1)-constrain C,
then we give the arc weight 1 1 k 2 r. If more than k edges of T cross the cut
C, we give the arc weight 0. Since a tree can exactly r-constrain at most ( r

n)
distinct cuts, if follows that the tree-side degree

D # O
1#r#k

Sn
r D ~1 1 k 2 r! 5 Sn

kD S 1 1 OS 1

nD D .

Now consider the cut-side degree d. Take any cut C. For tree T, let rT denote
the number of edges of T that cross C. Then the weighted degree of C can be
written as

O
rT#k

~1 1 k 2 rT! $ O
T

~1 1 k 2 rT!

(since all additional terms on the right hand side are negative)

5 ~1 1 k!S c

2D 2 O
T

rT

$ ~1 1 k!S c

2D 2 ac.

(since each of the ac edges of the cut contribute to rT for at most one T)

5 ~1 1 k 2 2a!S c

2D .

This is a lower bound on the weight d incident on any cut-side node in B. Since
we have shown above that D # (k

n)(1 1 O(1/n)), it follows that our bound on
the number of cut nodes, cD/ 2d, is no more than the bound claimed in the
statement of the theorem.

Note that our weight assignment analysis works for any value of k, but that
taking k 5 2a gives the best ratio. An argument based on linear programming
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duality can be used to show that this proof cannot be improved: no other
assignment of arc weights can give a better bound. We defer this argument to the
appendix. e

3.1. WEIGHTED GRAPHS. Although our proof discussed only unweighted
graphs, it clearly extends to weighted graphs as well. One way to see this is to
redo the proof with a weighted tree packing, but this becomes notationally messy.
A simpler way to extend the argument to graphs with integer edge weights is to
replace a weight-w edge with w parallel unweighted edges, creating an un-
weighted graph with the same near-minimum cuts. This argument can be
extended to graphs with rational edge weights as well: simply multiply all edge
weights by their least common denominator, creating an integer-weighted graph
with the same near-minimum cuts. Finally, real valued edge weights can be
handled by considering them as the limits of rational-valued edge weight
sequences.

3.2. DISCUSSION. Note that a cycle has exactly ( n
2a) 1 . . . 1 (2

n) minimum
cuts. Thus, for a a half-integer, our upper bound is tight to within 1 1 o(1). The
gap widens when a is between two half-integers, reaching Q(n) when a is
infinitesimally less than a half-integer. No family of graphs has been exhibited
that has more a-minimum cuts than the cycle, so one is tempted to conjecture
that the bound for the cycle is also the upper bound. The only counterexample of
which we are aware is the 4-clique [Nagamochi et al. 1994], which has ten
4/3-minimum cuts (each singleton or pair of vertices) as compared to the 6 of a
4-cycle. But perhaps this is a unique exception.

Another interesting open question regards the number of cuts strictly less than
a times the minimum. For a a half integer, our above theorem only gives a
bound of O(n2a); a bound of O(n2a), as exhibited by the cycle, seems more
plausible. Such a bound has been proven for a 5 3/2 [Henzinger and Williamson
1996].

4. Algorithms for Finding Good Trees

We now apply the ideas of the previous combinatorial sections algorithmically.
We prove that in any graph, we can find quickly a small set of trees such that the
minimum cut 2-respects some of them. Therefore, we can find the minimum cut
by enumerating only the cuts that 2-respect these few trees.

4.1. PACKING ALGORITHMS. Finding the trees is in a sense trivial from the
preceding discussion, which showed that a maximum tree packing had the right
property. Unfortunately, maximum tree packings in undirected graphs are hard
to find. Gabow and Westermann [1992] gave an algorithm for unweighted graphs
that runs in Õ(min(mn, m2/=n)) time. Barahona [1995] gave an algorithm with
an Õ(mn) running time for weighted graphs. Both of these running times are
dramatically larger than the one we want to achieve, so we will use two other
approaches that find nonmaximum tree packings.

One approach is due to Gabow. Although it does not yield a maximum
packing, it yields a packing of value c/ 2–sufficient for our purposes. Gabow’s
algorithm is actually an algorithm for directed graphs: in such a graph, it finds c
disjoint directed spanning trees (guaranteed by Edmonds’ theorem [Edmonds
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1972]) in O(mc log (n2/m)) time. We can use this algorithm by turning each of
our undirected graph’s edges into two edges, one in each direction. This gives us
a directed graph with directed minimum cut c. Gabow’s algorithm finds a
packing of c directed-edge disjoint trees in this graph. If we now ignore edge
directions, we get a set of c trees such that each of these undirected edges is in at
most 2 trees. It follows that if we give each of our trees a weight of 1/2, we have
a packing of value c/ 2 to which our previous arguments (Lemma 2.3) apply.

An alternative approach is due to Plotkin et al. [1991]. They give an algorithm
that packs spanning trees by repeatedly adding one weighted tree to the packing.
In each iteration, which tree to add and the weight it is given are determined by
a minimum-cost spanning tree computation, using costs determined by the
current packing. After Õ(c/e2) iterations (which take time Õ(mc/e2)), the
packing has value at least (1 2 e) times the maximum, and thus at least (1 2
e)c/ 2. Although it is more complicated that Gabow’s algorithm in that it works
with fractional values, this method has the attraction of working only with
undirected spanning trees, emphasizing that our algorithm is able to avoid any
reliance on directed-graph subroutines. It will also be useful when we develop
parallel algorithms.

4.2. SAMPLING. Unfortunately, both of the above algorithms have running
times dependent on c, so using them directly is unacceptable. So we use a
random sampling step to reduce the effective minimum cut in the graph to O(log
n), which means that both schemes can run in Õ(m) time.

THEOREM 4.1. Given any weighted undirected graph G, in O(m 1 n log3 n)
time we can construct a set of O(log n) spanning trees such that the minimum cut
2-respects 1/3 of them with high probability.

PROOF. In previous work [Karger 1999a], we showed how to construct, in
linear time for any e, a skeleton graph H on the same vertices with the following
properties:

—H has m9 5 O(ne22 log n) edges,

—the minimum cut of H is c9 5 O(e22 log n),

—the minimum cut in G corresponds (under the same vertex partition) to a (1 1
e)-times minimum cut of H.

We already know that any tree packing of value c9/ 2 in the skeleton H will
have many trees that 2-constrain the minimum cut in H. Intuitively, for small e,
since the minimum cut in G is a near-minimum cut in H, the tree packing will
also contain many trees that 2-constrain this near-minimum cut. We now
formalize this intuition.

Set e 5 1/6 in the skeleton construction. Since H has minimum cut c9, Gabow’s
algorithm can be used to find a packing in H of weight c9/ 2 in O(m9c9 log n) 5
O(n log3 n) time. The original minimum cut of G has at most (1 1 e)c9 edges in
H, so by Lemma 2.3, a 1/2(1 2 2e) 5 1/3-fraction of the trees 2-constrain this cut
in H. But this (1 1 e)-minimum cut of H has the same vertex partition as the
minimum cut of G, implying that the same trees 2-constrain the minimum cut of
G. e
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Remark. The randomized construction of the skeleton in this proof is the only
step of our minimum cut algorithm that involves randomization. A deterministic
replacement of Theorem 4.1 would yield a deterministic minimum cut algorithm.

An alternative construction based on the Plotkin et al. [1991] algorithm can
also be applied to the sample. We can use that algorithm to find a tree packing of
value (1 2 d)c9/ 2 in O(n log3 n) time for any constant d. Lemma 2.3 again
shows that for d 5 e 5 1/6, say, a 1/10th fraction of the packed weight
2-constrains the (1 1 e)-minimum cut in H that corresponds to the minimum cut
in G. Thus, if we choose a random tree (with probability proportional to its
weight), there is a constant probability that it 2-constrains the minimum cut.
Performing O(log n) such random selections picks at least one tree that
2-constrains the minimum cut with high probability. In fact, since the algorithm
only packs O((log n)/d2) distinct trees we can even afford to try them all. This
gives another O(m 1 n log3 n)-time algorithm for finding a good set of O(log
n) trees. It also has the following corollary that will be applied to our parallel
minimum cut algorithm.

COROLLARY 4.2. In 51# using m 1 n log n processors and O(log3 n) time, we
can find a set of O(log n) spanning trees such that with high probability, a constant
fraction of them (by weight) 2-constrain the minimum cut.

PROOF. The skeleton construction can be performed as before (and is trivial
to parallelize [Karger 1994a]). We have just argued that the algorithm of Plotkin
et al. [1991] can find an approximately maximum packing in the skeleton using
O(log2 n) minimum spanning tree computations. Minimum spanning trees can
be found in parallel in O(log n) time [Johnson and Metaxas 1992] using m9 5
O(n log n) processors, and the other operation of Plotkin et al. [1991] are trivial
to parallelize with the same time and processor bounds. Thus, the claimed
bounds follow. e

The remainder of this paper is devoted to the following question: given a tree,
find the minimum cut that 2-respects it. Applying the solution to the O(log n)
trees described by Theorem 4.1 shows that we can find the minimum cut with
high probability. In particular, we have the following lemma:

LEMMA 4.3. Suppose the minimum cut that 2-respects a given tree can be found
in T(m, n) time. Then the minimum cut of a graph can be found with constant
probability in T(m, n) 1 O(m 1 n log3 n) time and with high probability in
O(T(m, n) log n 1 m 1 n log3 n) time.

PROOF. We have seen above that a constant fraction (by weight) of the trees
in our skeleton packing 2-constrain the minimum cut. So choosing a tree at
random and analyzing it yields the minimum cut with constant probability. Trying
all O(log n) trees identifies the minimum cut with high probability so long as the
skeleton construction worked, which happens with high probability. e

We give two algorithms for analyzing a tree. The first algorithm (in Section 6)
uses the fact that a tree contains only (2

n) pairs of edges, one of which defines the
minimum cut 2-respecting the tree. A very simple dynamic program computes
the cut values defined by all (2

n) pairs of edges in O(n2) time. The second
algorithm (in Section 7) aims for a linear-time bound, and must therefore avoid
enumerating all pairs of edges. We describe local optimality conditions showing
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that only certain pairs of edges can possibly be the pair defining the minimum
cut, and give an algorithm that runs quickly by only trying these plausible pairs.

5. Minimum Cuts that 1-Respect a Tree

To introduce our approach to analyzing a particular tree, we consider a simple
special case: a tree that 1-constrains the minimum cut. In such a tree, there is one
tree edge such that, if we remove it, the two resulting connected subtrees
correspond to the two sides of the minimum cut. This section is devoted to a
proof of the following:

LEMMA 5.1. The values of all cuts that 1-respect a given spanning tree can be
determined in O(m 1 n) time.

COROLLARY 5.2. The minimum cut that 1-respects a given spanning tree can be
found in O(m 1 n) time.

We have already seen that being able to identify all cuts that 2-respect a tree
will let us find the minimum cut. Later, we will exhibit a class of graphs for which
finding the minimum 1-respecting cut will suffice for finding the minimum cut.

We begin with some definitions. Suppose that we root the tree at an arbitrary
vertex.

Definition 5.3. v2 is the set of vertices that are descendants of v in the
rooted tree, including v.

Definition 5.4. v1 is the set of vertices that are ancestors of v in the rooted
tree, including v.

Note that v2 ù v1 5 v, where we allow v to denote the set {v}.

Definition 5.5. #(X, Y) is the total weight of edges with one endpoint in
vertex set X and the other in vertex set Y. An edge with both endpoints in both
sets is counted twice.

Thus, #(v, w) is the weight of the edge (v, w) if it exists, and 0 otherwise. For
the most part, we will focus on disjoint X and Y where double-counting edges is
irrelevant.

Definition 5.6. #(S) is the value of the cut whose one side is vertex set S,
that is, #(S, S# ).

Once we root the tree, the cuts that 1-respect the tree have the form #(v2)
for vertices v. Using this observation, we now prove Lemma 5.1.

5.1. 1-RESPECTING A PATH. As a first step, suppose the tree is in fact a path
v1, . . . , vn rooted at v1. We compute all values #(vi

2) in linear time using
a dynamic program. First, compute #(vi, vi

1) and #(vi, vi
2) for each vi; this

takes one O(m)-time transversal of the vertices’ adjacency lists. We now claim
that the following recurrence applies to the cut values:

#~vn
2! 5 #~vn , vn

1!

#~vn
2! 5 #~vi11

2 ! 1 #~vi , vi
1! 2 #~vi , vi

2! .
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This recurrence follows from the fact that when we move vi from below the cut to
above it, the edges from vi to its descendants become cut edges while those from
vi to its ancestors stop being cut edges. It follows that all n cut values can be
computed in O(n) time by working up from vn.

5.2. 1-RESPECTING A TREE. We now extend our dynamic program from paths
to general trees.

Definition 5.7. Given a function f on the vertices of a tree, the treefix sum of
f, denoted f2, is the function

f2~v! 5 O
w[v2

f~w! .

LEMMA 5.8. Given the values of a function f at the tree nodes, all values of f2

can be computed in O(n) time.

PROOF. Perform a postorder traversal of the nodes. When we visit a node v,
we already will have computed (by induction) the values at each of its children.
Adding these values takes time proportional to the degree of v; adding in f(v)
gives us f2(v). Thus, the overall computation time is proportional to the sum of
the node degrees, which is just the number of tree edges, namely n 2 1. e

We now compute the values #(v2) via treefix sums. Let d(v) denote the
(weighted) degree of vertex v. Let r(v) denote the total weight of edges whose
endpoints’ least common ancestor is v.

LEMMA 5.9. #(v2) 5 d2(v) 2 2r2(v).

PROOF. The term d2(v) counts all the edges leaving descendants of v. This
correctly counts each edge crossing the cut defined by v2, but also double-counts
all edges with both endpoints descended from v. But an edge has both endpoints
descended from v if and only if its least common ancestor is in v2. Thus, the
total weight of such edges is r2(v). e

Now note that the functions d(v) and r(v) can both be computed for all v in
O(m) time. Computing d is trivial. Computing r is trivial if we know the least
common ancestor of each edge, but these can be determined in O(m) time
[Gabow and Tarjan 1985; Berkman and Vishkin 1993; Schieber and Vishkin
1988]. From these quantities, according to Lemma 5.8, two O(n)-time treefix
computations suffice to determine the minimum cut. This proves Lemma 5.1.

In Section 8, we will describe a class of graphs for which this “1-respects” test
is sufficient to find the minimum cut.

6. Minimum Cuts that 2-respect a Tree in O(n2) Time

We now extend our dynamic program to find the minimum cut that 2-respects a
given tree in O(n2) time. This will immediately yield an O(n2 log n)-time
algorithm for finding all minimum cuts. The dynamic program can be parallel-
ized, yielding an n2-processor 51# algorithm for the problem. The trace of the
dynamic program also provides a small-space data structure representing all the
near-minimum cuts.
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6.1. A SEQUENTIAL ALGORITHM. This section is devoted to proving the
following:

LEMMA 6.1. The values of all cuts that 2-respect a given tree can be found in
O(n2) time.

A sequential algorithm is an immediate corollary (using Lemma 4.3):

THEOREM 6.2. There is a Monte Carlo algorithm that finds a minimum cut with
constant probability in O(n2) time and finds all minimum cuts with high probability
in O(n2 log n) time.

We now prove the lemma. After rooting the given tree and applying the
algorithm of Section 5 in case some tree 1-constrains the minimum cut, we can
assume that (for the right tree) exactly 2 tree-edges cross the minimum cut.
These two edges are the parent edges of two vertices v and w.

Definition 6.3. We say vertices v and w are incomparable, writing v ' w, if
v [y w2 and w [y v2. In other words, v and w are incomparable if they are not
on the same root-leaf path.

Suppose the minimum cut that 2-respects the tree cuts the tree-parent edges of
vertices v and w. If v ' w, then the parent edges of v and w define a cut with
value #(v2 ø w2). If (without loss of generality) v [ w2, then their parent
edges define a cut with value #(w2 2 v2). We start with the first case.
Assuming v ' w,

#~v2 ø w2! 5 #~v2! 1 #~w2! 2 2#~v2, w2!

because #(v2) and #(w2) each include the edges of #(v2, w2) that should
not be counted in #(v2 ø w2). Since the values #(v2) are already computed
for all v, we need only compute #(v2, w2) for every v and w. This can be done
using treefix sums as in the previous section. First, let

fv~w! 5 #~v, w!

be the weight of the edge connecting v to w, or 0 if there is no such edge. It
follows that

fv
2~w! 5 #~v, w2! .

Therefore, we can determine all n2 values

gw~v! 5 #~v, w2! 5 fv
2~w!

in O(n2) time by performing n treefix computations, one for each fv. At this
point, since

gw
2~v! 5 #~v2, w2! ,

we can determine all the desired quantities with another n treefix sums, one for
each gw.

Now consider the second case of v [ w2. In this case,

#~w2 2 v2! 5 #~w2! 2 #~v2! 1 2#~v2, w2 2 v2! ,
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for subtracting #(v2) from #(w2) correctly subtracts the edges connecting v2

to w1, but also incorrectly subtracts all the edges running from v2 to w2 2 v2.
But we claim that

#~v2, w2 2 v2! 5 gw
2~v! 2 2r2~v! .

For gw
2(v) counts every edge with one endpoint in v2 and the other in w2,

which includes everything we want to count but also incorrectly counts (twice) all
edges with both endpoints in v2. This is cancelled by the subtraction of 2r2(v).

Thus, once we have computed each gw, computing the cut value for each pair
v [ w2 in O(n2) time is trivial.

6.2. A PARALLEL ALGORITHM. We can parallelize the above treefix-based
algorithms. Note that they involve two main steps: finding a proper packing of
trees and finding the minimum cut constrained by each tree. Recall from
Corollary 4.2 that the algorithm of Plotkin et al. [1991] can be used to find a
satisfactory packing in O(log3 n) time using m 1 n log n processors. So we need
only parallelize the above algorithms for a particular tree. But the only compu-
tations performed there are least common ancestor lookups, which can be
performed optimally in parallel by, for example, the algorithm of Schieber and
Vishkin [1988]; and treefix sum computations, which can also be performed
optimally in parallel [Karp and Ramachandran 1990, Sect. 2.2.3].

COROLLARY 6.4. Minimum cuts can be found in 51# with high probability in
O(log3 n) time using n2/log2 n processors.

6.3. DATA STRUCTURES. Previously, a linear-space representation of all min-
imum cuts was known [Dinitz et al. 1976], but the best representation of
approximately minimum cuts for general a required Q(n2a) space [Karger and
Stein 1996]. Benczúr [1995] gave an O(n2)-space representation for a , 6/5. We
can now do better.

THEOREM 6.5. Given a graph with k a-minimum cuts, a , 3/2, there is a data
structure that represents them in O(k 1 n log n) 5 O(n2) space that can be
constructed in O(n2 log n) time or in 51# using n2 processors. With this data
structure.

(1) the value of a near-minimum cut can be looked up in O(n) time, and
(2) whether two vertices are on the same side of a given near-minimum cut can be

determined in O(log2 n) time.

PROOF. The output of our Õ(n2)-time algorithm can serve as a data structure
for representing the near-minimum cuts that 2-respect the trees it analyzes. We
simply list the pairs of edges that together induce a near-minimum cut. Now
consider any a , 3/2. We know that with high probability every a-minimum cut
2-respects one of the O(log n) trees we inspect and will therefore be found.

Notice that, given a cut (specified by a vertex partition), we can use this data
structure to decide if it is a-minimum, and if so determine its value, in O(n log
n) time: just check, for each of the O(log n) trees in the data structure, whether
at most 2 tree edges cross the cut. If the cut is a small cut, there will be some tree
for which this is true. We will have recorded the value of the cut with the edge
pair (or singleton) that crosses it.
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We can improve this query time to O(n) if we use a perfect hash function to
map each vertex set that defines a small cut to a size-O(k) table that says which
tree that particular small cut 2-respects. Given a query (vertex set), we can map
that vertex set into the hash table and check the one tree indicated by the
appropriate table entry.

Given the pair of tree edges that specify a cut, we can decide whether two
vertices are on the side. We consider the tree, and ask whether the two given
vertices remain connected in the tree as we remove one or the other of the cut
edges. Such questions can be answered in O(log n) time using an Euler Tour Tree
data structure [Henzinger and King 1999; Holm et al. 1998]. e

In the sequential case, our data structure can actually be constructed determin-
istically if we are willing to take some extra time. Perform the initial tree packing
in the original graph rather than the skeleton. By Lemma 2.3, we know that any
one minimum cut 2-respects at least half the trees of this packing. Thus, if we
pick a random tree, we expect it to 2-constrain half the minimum cuts. It follows
that some tree 2-constraints half the minimum cuts. We can find such a tree
deterministically via an exhaustive search. First, enumerate all the small cuts
using, for example, the deterministic algorithm of Vazirani and Yannakakis
[1992]. Then, check each tree to find one that 2-constrains half the minimum
cuts. In the case of an unweighted graph, we must check c , m trees. In a
weighted graph, we can start from a maximum packing with a polynomial number
of distinct trees in it [Barahona 1995] so that we can check them all in
polynomial time. We now recursively find trees that 2-constrain the remaining
minimum cuts that the first tree missed. Since we halve the number of remaining
min-cuts each time, we only need log2 n2a trees.

We can easily extend this approach to represent a-minimum cuts for any
constant a. Theorem 4.1 generalizes to show that of the O(log n) trees we find
there, a constant fraction will 2a-respect any given a-minimum cut with high
probability. We can therefore represent all a-minimum cuts by considering all
sets of 2a edges in each tree. For any one tree, the values induced by all sets of
2a edges can be found in O(n2a) time using treefix computations as above.

LEMMA 6.6. There is a data structure that represents all k of the a-minimum
cuts in a graph using O(n log n 1 ka) 5 O(an2a) space. Its randomized
construction requires O(n2a) time and space or O(n2a) processors in 51#. It can
also be constructed deterministically in polynomial time.

7. Near-Linear Time

We now reconsider the algorithm of Section 6 and show how its objective can be
achieved in O(m log2 n) time on any given tree. In this section, we prove the
following lemma.

LEMMA 7.1. The minimum cut that 2-respects a tree can be found in O(m log2

n) time.

Applying Lemma 4.3 yields our main theorem:
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THEOREM 7.2. The minimum cut of a graph can be found with constant
probability in O(m log2 n 1 n log3 n) time or with high probability in O(m log3 n)
time.

To prove the lemma, as in Section 6, we first consider finding the pair
minimizing #(v2 ø w2) for v ' w; the almost identical case of minimizing
#(w2 2 v2) for v [ w2 is deferred to the end of the section. Rather than
explicitly computing #(v2 ø w2) for all pairs v and w, which clearly takes
Q(n2) time, we settle for finding for each v a vertex w that minimizes #(v2 ø
w2). This will clearly let us identify the minimum cut.

7.1. PRECUTS. Recall that for any vertices w ' v,

#~v2 ø w2! 5 #~v2! 1 #~w2! 2 2#~v2, w2! .

We now factor out the contribution of #(v2) to this quantity:

Definition 7.3. The v-precut at w , denoted #v(w), is the value

#v~w! 5 #~v2 ø w2! 2 #~v2! 5 #~w2! 2 2#~v2, w2!

if w ' v and ` otherwise.

Definition 7.4. The minimum v-precut, denoted #v, is the value

min$#v~w! u ' ~v9, w9! [ E, v9 [ v2, w9 [ w2% .

The point of this somewhat odd definition is to notice that for a given v, only
certain vertices w are candidates for forming the minimum cut with v, as is seen
in the following lemma.

LEMMA 7.5. If it is determined by incomparable vertices, the minimum cut is
minv(#(v2) 1 #v).

PROOF. Let the minimum cut be induced by v and a vertex w ' v. It suffices
to show that w is in the set over which we minimize to define #v in Definition
7.4. But this follows from the fact that each side of the minimum cut induces a
connected subgraph of G, for this implies that there must be an edge (v9, w9)
from v2 to w2. To see that each side of the minimum cut must be connected,
note that, if one side of the minimum cut has two disconnected components, then
we can reduce the cut value by moving one of these components to the other side
of the cut. e

Suppose that we have already used the linear-time procedure of Section 5 to
compute the values #(v2) for every v. It follows from Lemma 7.5 that it suffices
to compute #v for every vertex v: the minimum cut can then be found in O(n)
time. We now show how these minimum precuts can be computed in O(m log2

n) time on any tree. We first show that we can find #v for a leaf v in time
proportional to its degree. We then extend this approach to handle a bough – a
path rising from a leaf until it reaches a vertex with more than one child. Finally,
we handle general trees by repeatedly pruning boughs.

We begin by giving each vertex w a variable val [w]. While working on vertex
v, this variable will be used to accumulate #v(w). Initially, we set val [w] 5
#(w2).
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7.2. A LEAF. First consider a particular leaf v. To compute #v, consider the
following procedure:

(1) For each vertex w, subtract 2#(v, w2) from val [w] (so that val [w] 5
#v(w)).

(2) #v is the minimum of val [w] over all w ' v that are ancestors of a neighbor
of v.

The correctness of this procedure follows from Lemma 7.5, the initialization of
val [w], and the definition of #v.

To implement this procedure efficiently, we use the dynamic tree data structure
of Sleator and Tarjan [1983]. Given a tree, this structure supports (among
others) the following operations on a node v:

AddPath (v , x): add x to val [u] for every u [ v1.
MinPath (v): return u[v1

min val [u] as well as the u achieving this minimum.

Each such dynamic tree operation takes O(log n) amortized time on an n-vertex
tree.

We use dynamic trees to compute #v. Recall that #(v, u) is the weight of the
edge connecting vertices v and u, or 0 if no such edge exists. Apply procedure
LocalUpdate from Figure 1.

LEMMA 7.6. After Step 2 in a call to LocalUpdate (v), every w has val [w] 5
#v(w).

PROOF. Step 1 assigns an infinite val [w] to every ancestor w of v, as
required in the definition of #v(w). Next, 2#(v, u) is subtracted in Step 2 from
every val [w] such that u [ w2. Therefore, the total amount subtracted from
val [w] is 2#(v, w2), as required in Definition 7.3. It follows that after Step 2,
val [w] 5 #v(w). e

LEMMA 7.7. LocalUpdate (v) called on a leaf v returns #v.

PROOF. Step 3 minimizes over w ' v that are ancestors of neighbors of v.
According to Definition 7.4, this will identify #v. e

It follows that for a leaf v with d incident edges, we can find #v via O(d)
dynamic tree operations that require O(d log n) time.

7.3. A BOUGH. We generalize the above approach. Let a bough be a maximal
path starting at a leaf and traveling upwards until it reaches a vertex with more
than one child (this vertex is not in the bough).

FIG. 1. Procedure LocalUpdate.
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LEMMA 7.8. Let v be a vertex with a unique child u. Then either #v 5 #u , or
else #v 5 #v(w) for some ancestor w of a neighbor of vertex v.

In other words, given the value #u, we need only “check” ancestors of
neighbors of v to determine #v.

PROOF. We know that #v 5 #v(w) for a certain w. Suppose w is not an
ancestor of a neighbor of v. Then there is no edge from v to w2, meaning #(v2,
w2) 5 #(u2, w2). It follows that #u # #u(w) 5 #v(w) 5 #v. But u [ v2

implies that for any x, #(u2, x2) # #(v2, x2), so #u $ #v. Therefore #u 5
#v. e

We use the above lemma in an algorithm for processing an entire bough.
Given a bough with d edges incident in total on its vertices, we show how to
process all vertices in the bough in O(d log n) time. We use the recursive
procedure MinPrecut from Figure 2. This procedure is initially called on the
topmost vertex in the bough. Although we have formulated the procedure
recursively to ease the proof exposition, it may be more natural to unroll the
recursion and think of the algorithm as executing up from a leaf.

We claim that MinPrecut computes the desired quantity. To prove this, we
prove a stronger statement by induction:

LEMMA 7.9. A call to MinPrecut (v)

(1) sets val [w] 5 #v(w) for each w , and
(2) returns #v.

PROOF. By induction. We first prove Claim 1. The base case is for v a leaf,
and follows from our analysis of LocalUpdate for a leaf in Lemmas 7.6 and 7.7.
Now suppose v has child u. After calling MinPrecut (u), we know by induction
that val [w] 5 #u(w). Thus, after we execute LocalUpdate (v), which (as
shown in Lemma 7.6) decreases such val [w] by #(v, w2), entry val [w] is
updated to be

#u~w! 2 2#~v, w2! 5 ~#~w2! 2 2#~u2, w2!! 2 2#~v, w2!

5 #~w2! 2 2#~v ø u2, w2!

5 #~w2! 2 2#~v2, w2!

5 #v~w! .

FIG. 2. Procedure MinPrecut.
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We now prove Claim 2. Suppose v has child u. According to Lemma 7.8, there
are two possibilities for #v. One possibility is that #v 5 #u. But by induction,
the recursive call to MinPrecut (u) sets c1 5 #u. On the other hand, if #v Þ
#u, then by Lemma 7.8, #v 5 #v(w) for an ancestor of a neighbor of v. But then
c2 is set to #v when we call LocalUpdate (v). In either case, the correct value is
min(c1, c2). e

Based on this lemma, the correctness of the algorithm for finding all minimum
precut values in a bough is immediate.

7.4. A TREE. We now use the bough algorithm repeatedly to analyze a
particular tree. We still assume for now that the cut is defined by v ' w; we
consider the other case in the next subsection. We have already argued that we
can perform the computation for a single bough using a number of dynamic tree
operations proportional to the number of edges incident on the bough. Doing so
will change the values val [w]. However, we can return them to their original
values by repeating the execution of MinPrecut on the bough, replacing each
addition operation by a subtraction.

It follows that we can process a collection of boughs in sequence, since each
computation on a bough starts with the val [w] variables back at their initial
values #(w2). Now note that every edge of G is incident on at most 2 boughs. It
follows that the total size (number of incident edges) of all boughs of our tree is
O(m). Therefore, the time to process all boughs of the tree with the algorithm of
the previous section is O(m log n).

Once we have processed all boughs, we know that we have found the minimum
cut if even one of the two tree-edges it cuts is in a bough. If not, we can contract
each bough of the tree (i.e., merge all vertices in a bough into the vertex from
which that bough descends) without affecting the minimum cut. This can be done
in O(m) time (using a bucket sort on the edge endpoints). It leaves us with a new
tree that 2-constrains the minimum cut of the contracted graph. Furthermore,
every leaf of the new tree had at least two descendants in the original tree (else
it would have been in a bough). This means that the new tree has at most half as
many leaves as the old. It follows that after O(log n) iterations of the procedure
for boughs followed by contractions of boughs, we will have reduced the number
of tree-leaves to 0, meaning that we will have contracted the entire graph.
Clearly, at some time before this, we found the minimum cut.

7.5. COMPARABLE v AND w. It remains to explain the procedure for finding
#v(w) when (without loss of generality) v [ w2. We proceed much as before. In
Section 6, we showed that

#~w2 2 v2! 5 #~w2! 2 ~#~v2! 1 2~ gw
2~v! 2 2r2~v!! .

It is therefore sufficient to compute, for each v, after factoring out #(v2) 1
4r2(v), the quantity

#v~w!9 5 min
w[v2

#~w2! 1 2gw
2~v! .

We again do so using the dynamic tree data structure. We initialize val [w] 5
#(w2). We then use dynamic tree operations to add 2gw

2(v) to val [w].
Suppose first that v is a leaf. Then for each neighbor u of v, we call AddPath (u,

66 DAVID R. KARGER



2#(v, u)). Having done so, we can extract our answer as MinPath (v). This
follows because gw

2(v) 5 (x[v2 #( x, w2). So to add 2gw
2(v) to w, we want to

add twice the capacity of every edge from v to each descendant u [ w2.
Also as before, we can process an entire bough by working up from the leaf.

For each vertex v9 in the bough, we execute AddPath (u9, #(v9, u9)) operations
for each neighbor u9 of v9 and then compute MinPath (v9). By the time we call
MinPath (v9), we will have val [w] properly updated for each ancestor w of v9.
After processing each of the boughs, we contract all of them and recurse on the
resulting tree. Note that unlike the case of w ' v, here we perform only one
MinPath (v9) operation for each vertex v9 in the bough, rather than performing
one for each of its neighbors.

8. A Simple Class of Graphs

In this section, we describe a class of graphs that are easier to solve. On these
graphs we can find the minimum cut using only our simple algorithm for cuts that
1-respect a tree. Since we can recognize these graphs quickly, in practice we
might often be able to avoid running the more complicated algorithm for the
2-respecting case.

The Nash-Williams lower bound of c/ 2 trees in a graph with minimum cut c is
often pessimistic. The number of trees in the maximum packing may be as large
as c (the exact number is determined by the value of the “sparsest cut” of the
graph as discussed in Section 2 (cf. [Nash-Williams 1961]). Call G a d-fat graph if
its maximum packing contains more than (1 1 d)c/ 2 trees.

THEOREM 8.1. For any constant d . 0, the minimum cut in a d-fat graph can
be found with constant probability in O(m 1 n log3 n) time and with high
probability in O(m log n 1 n log3 n) time.

PROOF. Consider a maximum packing in a d-fat graph. It has (1 1 d)c/ 2
trees (by weight) sharing c minimum cut edges. Thus, the average number of
minimum cut edges per tree is at most 2/(1 1 d) , 2. Thus, by Markov’s
inequality, there is a constant probability that the number of min-cut edges in a
randomly chosen tree is less than 2, meaning that it must be exactly 1.

As before, we cannot actually take the time to find a maximum packing.
However, we can use the same skeleton construction as Theorem 4.1. Consider
the skeleton H with minimum cut c9 5 O(log n). We have shown [Karger 1998]
that if a graph is d-fat then, with high probability, any skeleton we construct from
it (with c9 5 O(log n)) is (d 2 e)-fat, where e is a constant that can be made
arbitrarily small by proper choice of c9. Since the skeleton is (d 2 e)-fat, the
maximum packing has (1 1 d 2 e)c9/ 2 trees. We can therefore find a packing
of (1 1 d/ 2 2 e)c9/ 2 trees in O(n log3 n) time using the Plotkin-Shmoys-
Tardos algorithm (note that Gabow’s algorithm cannot be applied here as it
always gives a packing of weight exactly c9/ 2 regardless of the graph’s fatness).
These trees share the at most (1 1 e)c9 edges of the cut in H corresponding to
the minimum cut of G. Thus, so long as e ,, d (e 5 d/5 suffices), the average
number of cut edges per tree is a constant less than 2. Thus, as in Lemma 2.3, a
constant fraction of the trees (by weight) will 1-respect the minimum cut of G.

Given such a tree, we can use the algorithm of Section 5 to identify the
minimum cut in linear time. The constant-probability argument follows by
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selecting a random tree and applying our linear-time algorithm to find the
minimum cut that 1-respects it. The high probability bound follows from
selecting O(log n) random trees and running our algorithm on each. On sparse
graphs, the bottleneck is now the packing algorithm of Plotkin et al. [1991]. e

The above algorithm can be applied even if we do not know initially that our
graph is d-fat, for the heuristic is actually “self certifying.” Once we have used the
tree to find the minimum cut in the graph, we can compare the size of our
tree-packing to the value c0 of the corresponding cut in the skeleton (which we
know is near-minimum with high probability). If the packing has (1 1 d)c0/ 2
trees, then we know the skeleton is d-fat. We have shown [Karger 1998] that with
high probability the skeleton is d-fat if and only if the original graph is.
Unfortunately, the certification is correct with high probability but not with
certainty (there is a small chance the skeleton is d-fat but the graph is not). Thus,
the checking heuristic does not guarantee that we have found the minimum cut.
Rather, we have the following:

LEMMA 8.2. If a graph is d-fat, then with high probability the d-fat heuristic
certifies itself and returns the minimum cut. If a graph is not d-fat, then with high
probability the d-fat heuristic does not certify itself.

Thus, so long as we are satisfied with a Monte Carlo algorithm, we can halt if
the algorithm certifies itself.

Although fat graphs seem to form a natural class, it should be noted that they
form a small class: a random graph (in the standard model of Bollobas [1985]) is
highly unlikely to be fat. Its minimum cut is within 1 1 o(1) of the average
degree k, and counting edges shows that a graph with average degree k can have
at most k/ 2 spanning trees.

9. Small Refinements

In this section, we give two very small refinements of our algorithm that improve
its running time to the unhappy bound of O(m(log2 n) log(n2/m)/log log n).
Such a messy bound suggests to us that further improvements should be possible.

9.1. FEWER TREES. Our first improvement reduces the number of trees that
we must analyze for 2-constrained cuts.

LEMMA 9.1. A minimum cut can be found with high probability in O(m (log3

n)/log log n 1 n log6 n) time.

PROOF. We use the fact that trees can be analyzed more quickly for 1-re-
specting cuts than for 2-respecting cuts. In our initial sampling step (discussed in
Section 4.2), set e 5 1/4 log n. Using Gabow’s algorithm to pack trees in this
sample takes O(n log7 n) time. A sampling-based speedup [Karger 1999a]
improves the running time to O(n log6 n).

In a second phase, choose 4 log2 n trees at random from the packing and find
the minimum cut that 1-respects each in O(m log2 n) time. In a third phase,
choose (log n)/log log n trees at random from the packing and find the minimum
cut that 2-respects each of them in O(m(log3 n)/log log n) time. Our speedup
arises from checking (log n)/log log n trees for the “2-respects” case instead of
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log n. We claim that this algorithm finds the minimum cut with probability 1 2
O(1/n).

To see this, consider the sampled graph. It has minimum cut c9. The minimum
cut of G corresponds to a cut of value at most (1 1 e)c9 in the sample. The tree
packing has value r $ c9/ 2, of which, say, ar trees 1-respect the minimum cut
and br trees 2-respect the minimum cut. Since any tree not counted by a or b
must have at least 3 cut edges, we have

ar 1 2br 1 3~1 2 a 2 b!r , ~1 1 e!c9 # 2~1 1 e!r

a 1 2b 1 3~1 2 a 2 b! , 2~1 1 e!

3 2 2a 2 b , 2 1 2e

b $ 1 2 2e 2 2a

Suppose first that a . 1/4 log n. Each time we choose a random tree, the
probability is a that we will choose one that 1-respects the minimum cut. Thus, if
we choose 4 log2 n random trees, the probability that none of them 1-respects the
cut is at most

S 1 2
1

4 log nD
4log2n

,
1

n
.

Thus, with high probability, in the second phase we choose and analyze a tree
that 1-respects the minimum cut, and therefore find the minimum cut.

Now suppose that a # 1/4 log n. It follows from the previous inequalities and
the fact that e 5 1/4 log n that

b $ 1 2
1

log n
.

It follows that when we choose (log n)/log log n trees and test them for
2-respecting cuts in the third phase, our probability of failing to choose a tree
that 2-respects the minimum cut is only

~1 2 b! (log n)/log log n # S 1

log nD
(log n)/log log n

5
1

n
.

Thus, regardless which case holds, we find the minimum cut with probability at
least 1 2 1/n. e

9.2. SOLVING ONE TREE FASTER. Our second improvement reduces the time
it takes to analyze a single tree.

LEMMA 9.2. The smallest cut that 2-respects a given tree can be found in O(m
log n log(n2/m)) time.
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PROOF. We previously bounded the time to analyze a bough with d incident
edges by O(d log n). We show that in an amortized sense, we can also bound this
time by O(n log n). We thus break the time to process a tree with up to n leaves
into two parts. The time to reduce the number of leaves (and boughs) to l is (as
was shown in Section 7) O(m(log n) log n/l ). The time to process the l-leaf tree
is (by the amortized bound) O(nl log n). Overall, the time to process the tree is

O~~m log n/l 1 nl !log n! .

Choosing l 5 m/n yields the claimed time bound.
To prove the amortized time bound, suppose we process a bough with d incident

edges. Afterward, we contract that bough to a single node. Assuming we merge
parallel edges during the contraction, a single node can only have n incident edges.
Thus, d 2 n of the edges incident on the bough vanish. We charge the dynamic tree
operation for each edge that vanishes to the vanishing edge, and charge the at-most
n dynamic tree operation for nonvanishing edges to the algorithm. Over the entire
course of the algorithm, each edge gets charged once (for a negligible total of O(m)
operations) while the algorithm gets charged O(nl ) times. e

10. Conclusion

This paper has presented two algorithms for the minimum cut problem. The first
is quite simple and runs in O(n2 log n) time (and on fat graphs in O(m log n)
time). The second algorithm is relatively complicated, but holds out the possibil-
ity that the minimum cut problem can be solved in linear time. Several probably
unnecessary logarithmic factors remain in the running time, suggesting the
following improvements:

—Give a dynamic path-minimization data structure taking constant amortized
time per operation. This would reduce the running time by a log n factor. We
are not using the full power of dynamic trees (in particular, the tree on which
we operate is static, and the sequence of operations is known in advance), so
this might be possible.

—Extend the approach for boughs directly to trees in order to avoid the O(log
n) different phases needed for pruning boughs. This too would reduce the
running time by a log n factor.

—Give a deterministic linear-time algorithm for finding a tree that 2-constrains
the minimum cut. This would eliminate the log n factor required by our
randomized approach. Note that randomization is used only to find the right
tree; all remaining computation is deterministic. Thus any o(mn)-time algo-
rithm for finding a good tree would yield the fastest known deterministic
algorithm for minimum cuts.

Our algorithm is Monte Carlo. It would be nice to develop a deterministic, or
at least a Las Vegas, algorithm based upon our ideas. One standard approach to
getting a Las Vegas algorithm would be to develop a minimum cut “certifier”
that would check the correctness of our Monte Carlo algorithm.

Another question is whether the near-linear time algorithm can be parallel-
ized. This would require finding a substitute for or parallelization of the
sequence of dynamic updates the algorithm performs.

Our tree-packing approach has also led to some progress on the enumeration
of near-minimum cuts. The gap between upper and lower bounds is now
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extremely small and should be eliminated entirely. Except for the 4-clique and
one graph on 7 vertices [Nagamochi et al. 1994], the cycle appears to have the
most small cuts, so it is the upper bound which seems likely to be improved.

Appendix A. Optimality of the Cut Counting Proof

In Theorem 3.3, we gave an upper bound of

qk 5
O r#k ~k 1 1 2 r!~ r

n!
k 1 1 2 2a

on the number of a-minimum cuts a graph may have. The upper bound held for
every (and thus the smallest) value of k $ 2a (to ensure qk . 0). The proof
of this bound relied on a weighted bipartite graph on cuts and packed trees. It is
not obvious that this proof has been “optimized.” Perhaps a different assignment
of edge weights would yield a better bound. In this section, we show that no
better bound is possible. Our analysis was derived using linear-programming
duality, but is presented in a simplified way that does not use duality.

Our upper-bound proof assigns a weight wr $ 0 to any edge connecting a cut
C to a packed tree containing exactly r edges of C. The maximum weighted tree
degree is therefore (wr( r

n). We then consider the smallest possible weighted
degree that a cut C could have given these weights. If nr trees contain exactly r
edges of this minimum-degree cut, then its weighted degree is (wrnr. We deduce
that the number of cuts is upper bounded by

R~$wr , nr%! 5
c/ 2 O wr~ r

n!
O wrnr

.

The argument assumes that nr reflects the smallest possible cut degree, so our
choice of weights wr yields an upper bound of

max
nr

R~$wr , nr%!

on the number of cuts. Since we are interested in as tight a bound as possible, we
would actually like to compute

min
wr

max
nr

R~$wr , nr%! .

Of course, we need not consider all possible values nr. In particular, since every
tree has r edges of C for some r , we know that

O
r

nr 5
c

2
. (2)

Furthermore, since the trees must share the at most ac edges of C, we must have

O
r

r z nr # ac. (3)

Finally, we must clearly have

nr $ 0 (4)
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for every r. Conversely, for any nr satisfying these three equations, there clearly
exist trees yielding these values nr.

Using these restrictions on nr, we chose a particular set of values wr to show in
Theorem 3.3 that

min
wr

max
nr

R~$wr , nr%! # min
k$2a

qk .

We now prove that one cannot make a stronger argument. We exhibit a
particular assignment of values nr for which

min
wr

R~$wr , nr%! 5 min
k$2a

qk .

Thus, no weight assignment can prove a ratio better than min qk. Since we have
given weights that prove a ratio of min qk, we have an optimal bound.

To show our analysis is optimal, fix k to minimize qk and consider the
following values for nr:

nr 5
c

2qk
Sn

r D ~r 5 1, . . . , k!

nk11 5
c

2S 1 2
1

qk
O
r#k

Sn
r D D

nr 5 0 ~r . k 1 1!

We will shortly show that these nr satisfy the three feasibility equations and thus
correspond to some set of trees. We will also prove one more fact: for every r,

nr #
c

2qk
Sn

r D . (5)

This clearly holds with equality for r , k 1 1 and is trivial for r . k 1 1; we
will show it holds for r 5 k 1 1 as well. Assuming it for now, observe that for
any weights wr, the ratio we get for our proof is

R~wr , nr! 5
c/ 2 O ~ r

n!wr

O nrwr

$
c/ 2 O r#k ~ r

n!
O r#k c/ 2qk~ r

n!

In other words, no weight assignment can yield a better bound than qk in the
proof of Theorem 3.3.

We now need to justify the claims made earlier in Eqs. (2), (3), (4), and (5).
Eq. (2) is obvious from the definition of nk11. Next we prove Eq. (3), showing
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that (r z nr # ac:

O r z nr 5 O
r#k

r
c

2qk
Sn

r D 1 ~k 1 1!
c

2S 1 2
1

qk
O
r#k

Sn
r D D

5
c

2S O
r#k

r

qk
Sn

r D 1 k 1 1 2 ~k 1 1! O
r#k

1

qk
Sn

r D D
5

c

2S k 1 1 2 O k 1 1 2 r

qk
Sn

r D D
5

c

2
~k 1 1 2 ~k 1 1 2 2a!!

5 ac

as claimed.
It remains only to prove Eqs. (4) and (5), which are nonobvious only for r 5

k 1 1. Plugging in the definition of nk11, we need to prove that

0 #
c

2S 1 2
1

qk
O
r#k

Sn
r D D #

c

2qk
S n

k 1 1D
or equivalently (multiplying by 2qk/c) that

O
r#k

Sn
kD # qk # O

r#k11

Sn
r D .

We begin with the upper bound. Since qk # qk11 (by choice of k to minimize
qk), we deduce that

qk 5 ~k 1 2 2 2a!qk 2 ~k 1 1 2 2a!qk

# ~k 1 2 2 2a!qk11 2 ~k 1 1 2 2a!qk

5 O
r#k11

~k 1 2 2 r!Sn
r D 2 O

r#k

~k 1 1 2 r!Sn
r D

5 O
r#k11

Sn
r D

as desired. Now consider the lower bound. If k . 2a, then we must have qk $
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qk21, so we can work much as before:

qk 5 ~k 1 1 2 2a!qk 2 ~k 2 2a!qk

$ ~k 1 1 2 2a!qk11 2 ~k 1 2a!qk

5 O
r#k

~k 1 1 2 r!Sn
r D 2 O

r#k21

~k 2 r!Sn
r D

5 O
r#k

Sn
r D

If, on the other hand, k 5 2a, then just recall that

qk 5 O
r#k

k 1 1 2 r

k 1 1 2 2a
Sn

r D .

But note that for all r # k, the numerator k 1 1 2 r $ 1 while the denominator
k 1 1 2 2a # 1. So the claim holds.

This completes the analysis of our proof, and shows that no other weight
function assignment will improve on the one we have already given. Of course,
this does not prove that there is no better bound on the number of cuts: a
completely different proof could show one.
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