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Abstract

Video-on-Demand (VoD) services require frequent updates in file configuration on the stor-
age subsystem, so as to keep up with the frequent changes in movie popularity. This defines a
natural reconfiguration problem in which the goal is to minimize the cost of moving from one
file configuration to another. The cost is incurred by file replications performed throughout
the transition. The problem shows up also in production planning, preemptive scheduling with
set-up costs, and dynamic placement of Web applications. We show that the reconfiguration
problem is NP-hard already on very restricted instances. We then develop algorithms which
achieve the optimal cost by using servers whose load capacities are increased by O(1), in par-
ticular, by factor 1 + δ for some small 0 < δ < 1 when the number of servers is fixed, and
by factor of 2 + 2ε for arbitrary number of servers, for some 0 < ε < 1. To the best of our
knowledge, this fundamental optimization problem is studied here for the first time.

1 Introduction

Video on Demand (VoD) services have become common in library information retrieval, enter-
tainment and commercial applications. In a VoD system, clients are connected through a network
to a set of servers which hold a large library of video programs. Each client can choose a program
he wishes to view and the time he wishes to view it. The service should be provided within a
small latency and guaranteeing an almost constant transfer rate of the data. The transmission
of a movie to a client requires the allocation of unit load capacity (or, a data stream) on a server
which holds a copy of the movie.

Since video files are typically large, it is impractical to store copies of all movies on each server.
Moreover, as observed in large VoD systems (see, e.g., [6, 20]), the distribution of accesses to movie
files is highly skewed; indeed, only small fraction of the movies are requested frequently, while
the vast majority (i.e., more than 80%) of the movies are rarely accessed. Hence, the number of
copies held for each movie needs to reflect the frequency of accesses to this movie. The goal is to
store the movie files on the servers in a way which enables to satisfy as many client requests as
possible, subject to the storage and load capacity constraints of the servers.

Formally, suppose that the system consists of M video program files and N servers. Each
movie file i, 1 ≤ i ≤ M , is associated with a popularity parameter p0

i ∈ (0, 1], where
∑M

i=1 p0
i = 1.

Each server j, 1 ≤ j ≤ N , is characterized by (i) its storage capacity, Cj , that is the number of files
that can reside on it,1 and (ii) its load capacity, Lj, which is the number of data streams that can
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1Unless specified otherwise, we assume that all files have the same size.
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be read simultaneously from that server. For a given popularity vector {p0
1, . . . , p

0
M}, the broadcast

demand of file i is D0
i = p0

iL, where L =
∑N

j=1 Lj is the total load capacity of the system.2 The
data placement problem is to determine a placement of file copies on the servers and the amount of
load capacity assigned to each file copy, so as to maximize the total amount of broadcast demand
satisfied by the system. A solution to the placement problem can be represented as two M × N
matrices: (i) The placement matrix, A, a {0, 1}-matrix, Ai,j = 1 iff a copy of movie file i is stored
on server j. (ii) The broadcast matrix B, Bi,j ∈ {0, 1, . . . , Lj}, Bi,j is the number of broadcasts
of movie i transmitted from server j. A legal placement has to satisfy the following conditions:

• Ai,j = 0 ⇒ Bi,j = 0. Clearly, server j can transmit broadcasts of movie i only if it holds a
copy of this movie.

• For each server j,
∑

i Bi,j ≤ Lj, that is, the total number of broadcasts transmitted from
server j does not exceed its load capacity.

• For each server j,
∑

i Ai,j ≤ Cj , that is, the number of files stored on server j does not
exceed its storage capacity.

A placement is perfect if it satisfies the broadcast demands of all movie files. Formally,
∀i,

∑

j Bi,j = D0
i . Under certain conditions, it is known that a perfect placement always ex-

ists (see Section 1.2).

The above static data placement problem captures well the goal of maximizing throughput in
periods of time where broadcast requirements remain unchanged.3 However, in general, through-
out the operation of a VoD system new movies are released and may become most popular, while
the popularity of the previously hot movies drops. The system should be able to support any
change in the distribution on file popularities. Thus, in order to maintain high throughput, the
system needs to adjust the placement of file copies and the allocation of load capacity to these
copies. This involves replications and deletions of files. File replications incur significant cost
as they require bandwidth and other resources on the source, as well as the destination server.
Minimizing this cost is crucial for optimizing system performance. This is the focus of our paper.

Our dynamic data placement problem can be formalized as follows. Given a perfect placement
of file copies on the servers, with the popularity vector 〈p0

1, . . . , p
0
M 〉, suppose that the popular-

ity vector changes to 〈p1, . . . , pM 〉, with the corresponding broadcast demands 〈D1, . . . , DM 〉.
The reconfiguration problem is to modify the initial data placement to a perfect placement for
〈D1, . . . , DM 〉 at minimum total cost. In updating system configuration, the cost of storing a new
copy of movie file i on server j is given by si,j, while the assignment of load capacity to existing
copy of file i on server j is free. We denote by ci,j the cost of having a copy of movie i on server
j after the reconfiguration. Given the initial placement matrix A, we denote by A ′ the placement
after reconfiguration. Then, by definition, ci,j = 0 if Ai,j = 1, and ci,j = si,j if Ai,j = 0 and
A′

i,j = 1. In other words, the cost of increasing the (i, j)-entry in the assignment matrix, A, is si,j

while changes in the broadcast matrix B are free. The total cost of switching from a placement
A to a placement A′ is given by

∑

i,j ci,j. Note that deletion of a movie file is free. Clearly, the
new assignment must satisfy the three legal-placement conditions.

A VoD system is homogeneous if all servers have the same load capacities, i.e., L1 = · · · =
LN = L, and the same storage capacities, i.e., C1 = · · · = CN = C (see, e.g., [5, 10]). In this paper

2The broadcast demands are assumed to be integers. Rounded values can be obtained by standard solutions for
the apportionment problem [21].

3In VoD system design, this is also known as the static phase [19].
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A s1 s2

1 1 0
2 1 1
3 1 0
4 0 1
5 0 1
6 0 1

B s1 s2

1 1 0
2 8 4
3 1 0
4 0 3
5 0 1
6 0 2

A’ s1 s2

1 0 1
2 1 1
3 1 0
4 0 1
5 1 0
6 0 1

B’ s1 s2

1 0 2
2 0 3
3 1 0
4 0 3
5 9 0
6 0 2

Table 1: The assignment and broadcast matrices of the placement before (left) and after (right)
the popularity change.

we assume that the system is semi-homogeneous, i.e., all servers have the same load capacities
and arbitrary storage capacities.

Example 1: Consider a system of two servers which holds 6 movies. The popularity vector is
〈0.05, 0.6, 0.05, 0.15, 0.05, 0.1〉. Both servers have the same load capacity L1 = L2 = 10, while the
storage capacities are C1 = 3, C2 = 4. Having L = 20, the demand vector is D0 = 〈1, 12, 1, 3, 1, 2〉.
Figure 1(a) presents a possible perfect placement for this instance. The assignment is described
by a bipartite graph, in which the left hand side nodes represent movie files and the right hand
side nodes represent servers; an edge (i, j) implies that a copy of movie file i is stored on server j.
The maximal degree of a server-node is its storage capacity. Assume that the popularity vector is
changed to 〈0.1, 0.15, 0.05, 0.15, 0.45, 0.1〉. Figure 1(b) presents a new placement, obtained from
the previous one by adding (and deleting) copies of two files. The new placement is perfect for the
new demand vector D = 〈2, 3, 1, 3, 9, 2〉. The corresponding assignment and broadcast matrices
are given in Table 1. The reconfiguration cost is c1,2 + c5,1.

Figure 1: A perfect placement before (a) and after (b) the popularity change. Bold edges represent changes
in storage assignment.

Applications: As mentioned above, a main motivation for this work comes from the constant
need for dynamic data placement in VoD systems. Our reconfiguration problem shows up also in
production planning, as well as in machine scheduling (see a survey in [16]. Suppose that M tasks
are processed by N machines. Each machine has limited amount of resources and a time interval
in which it is active. The resource requirements of the tasks are changing over time. Tasks may
need to be reassigned to the machines in order to fit their new requirement. Reassignment of tasks
incurs some cost due to migration overhead and the set-up of the machines. The goal is to reassign
the tasks to the machine so as to minimize the transition cost. Finally, our problem naturally
arises in dynamic placement of clustered Web applications (see, e.g., [8]). Web applications are
dynamically placed on server machines so as to adjust system configuration to the availability of
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resources. The goal is to maximize the amount of client demands that can be satisfied by the
applications while minimizing the number of placement changes.

1.1 Our Results

We first show (in Section 2) that the reconfiguration problem is NP-hard, already when the
system consists of two servers, with unit reconfiguration costs and very restricted changes in file
popularity. Assuming that the new popularity vector has a perfect placement,4 we give in Sections
3 and 4 algorithms which solve the reconfiguration problem optimally, by using servers whose load
capacities are increased by a small constant factor. Specifically, for a fixed number of servers, we
give in Section 3 an algorithm which accepts as parameter some value 0 < δ < 1 and achieves the
optimal reconfiguration cost by using servers whose load capacities are L(1+δ). The running time
of the algorithm depends on the value of δ (see Section 3.1). For more general inputs, in which
the number of servers may be arbitrarily large, we give in Section 4 an algorithm that achieves
the optimal cost, by using servers whose load capacities are increased by factor 2 + 2ε, for some
0 < ε < 1. Due to space constraints some of the proofs are given in the Appendix.

1.2 Related Work

The data placement problem has been extensively studied (see, e.g., [19, 5, 10, 17, 8] and a
comprehensive survey in [9]). The paper [15] considers the problem of finding a perfect placement
of movie files on the servers. The paper shows the hardness of the perfect placement problem
and that such a placement always exists, e.g., when

∑N
j=1 Cj ≥ M + N − 1. The paper [15] also

presents an algorithm for the data placement problem, for inputs in which the ratio Lj/Cj is
equal for all 1 ≤ j ≤ N (uniform ratio servers). The paper shows that the algorithm achieves a
ratio of 1 − 1/(1 + Cmin) to the optimal, where Cmin = minj Cj. Golubchik et al. gave in [5] a
tighter analysis of this algorithm and showed that it achieves the ratio 1 − 1/(1 +

√
Cmin)2, and

that this ratio is optimal for any algorithm for this problem. The paper [5] also presents a PTAS
for the data placement problem with uniform ratio servers. Later papers considered a generalized
version of the problem, where files may be of different sizes (see, e.g., [10, 17]).

For the more realistic model, where file popularities may change over time, there has been
some earlier work which refers to the resulting data migration problem: Compute an efficient plan
for moving data stored on devices (e.g., a set of servers) in a network from one configuration to
another. Since the servers are constrained in handling simultaneous transmissions of files, data
migration is done in rounds, where each round handles the delivery of a subset of the files to
their destinations. Common objective functions are minimizing the makespan of the migration
schedule, or the sum of completion times of the servers (see, e.g., [12, 13]). A survey of known
results for the data migration problem is given in [4]. The data migration problem differs from our
reconfiguration problem in several ways. (i) The final configuration is given as part of the input for
data migration, while it is part of the solution for our problem. (ii) In data migration the output
is a migration schedule, while no assignment schedule is output when solving the reconfiguration
problem, and finally, (iii) in data migration we measure the quality of the migration schedule,
while in our problem we measure the cost of the final configuration.

There has been some other work on reconfiguration of data placement, in which heuristic
solutions were investigated through experimental studies (e.g., [14, 22, 3, 7]). We are not aware

4This is often the case in practical scenarios, where the new popularity vector is a permutation of the initial
vector, that is, the popularity distribution function remains unchanged.
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of earlier results for our reconfiguration problem.

2 Hardness Results

We show that the reconfiguration problem is NP-hard even if the system consists of only two
servers, and even if the popularity changes are limited such that the new popularity vector is a
permutation of the previous one. In other words, the popularity distribution function is preserved.
We use a reduction from a variant of the subset-sum problem. For a set of integers X, let SX

denote the total size of elements in X.

Definition 2.1 The smallest subsets with a given difference problem is defined as follows: Given
are two sets of non-negative integers X = {x1, x2, . . . xnX

} and Y = {y1, y2, . . . , ynY
}, and an

integer z. W.l.o.g, nX ≤ nY . It is known that there exists a subset Y ′′ ⊆ Y of size nX such that
SX = SY ′′ + z. The goal is to find the smallest integer k ≥ 1 such that there exist X ′ ⊆ X and
Y ′ ⊆ Y , where |X ′| = |Y ′| = k, and SX′ = SY ′ + z. Note that such an integer k must exist, since
for k = nX , the sets X ′ = X,Y ′ = Y ′′ form a solution.

Example 2: Let X = {2, 3, 4, 5}, Y = {1, 2, 3, 4, 5}, and z = 4. For Y ′′ = {1, 2, 3, 4} it holds
that |Y ′′| = nX = 4 and SX = 14 = SY ′′ + z. For this instance, the required k is 1 since there are
two subsets of size 1, specifically, X ′ = {5}, Y ′ = {1}, such that SX′ = 5 = SY ′ + z.

Lemma 2.1 The smallest subsets with a given difference problem is NP -hard.

We are now ready to prove the hardness of the reconfiguration problem.

Theorem 2.2 The reconfiguration problem is NP-hard even if the system consists of only two
servers, all replication costs are uniform, and even if the popularity changes are limited such that
the new popularity vector is a permutation of the previous one.

Proof: We reduce the smallest subsets with a given difference problem to a particular instance
of the reconfiguration problem. Given X,Y, z, such that there exists a subset Y ′′ ⊆ Y of size nX

such that SX = SY ′′ + z, consider the following instance of reconfiguration: M = nX + nY ; the
demands are D0 = 〈Y ′′, Y \ Y ′′ ∪ X〉, where Y ′′ is a vector consisting of the nX elements of Y ′′,
and Y \ Y ′′ ∪ X is a vector of nY elements consisting of elements from Y \ Y ′′ followed by the
elements of X. The system has two servers. C1 = nX , L1 = SX − z, C2 = nY , L2 = SY + z. A
possible perfect placement is to store the first nX movie files on the first server, and the remaining
nY movie files on the second server. The load capacities of the servers exactly fulfill the broadcast
demands. Assume further that the demands are changed to be the values of the elements in
X,Y . Specifically, D = 〈x1, x2, . . . xnX

, y1, y2, . . . , ynY
〉. Note that the total demand of the first

nX movies is increased by z, while the total demand of the remaining nY movies is decreased by
z. Finally, let si,j = 1 be the uniform replication cost.

Figure 2 represents the reconfiguration problem induced by Example 2 above. The system
consists of M = 9 movies and two servers having parameters C1 = 4, L1 = 10, C2 = 5, L2 = 19.
Figure 2(a) shows a perfect assignment for the demand vector D0 = 〈1, 2, 3, 4, 5, 2, 3, 4, 5〉. Assume
that the popularity changes so that the new demand vector is D = 〈2, 3, 4, 5, 1, 2, 3, 4, 5〉. The
guaranteed Y ′′ implies the solution (b) having cost 8. An optimal solution (c) has cost 2.

Since the total storage capacity of the servers is exactly nX + nY , in any perfect placement
there is exactly one copy of each movie stored on one of the two servers. Thus, the reconfiguration
in this case consists of swapping the storage of 2k movie files. By definition of the subset problem,
it is known that there exists a perfect assignment that can be achieved by swapping 2nX movie
files (of Y ′′ and X). An optimal reconfiguration swaps the minimal number of files. Thus, an
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Figure 2: The reconfiguration problem induced by Example 2. (a) initial assignment, (b) reconfiguration
having cost 8, and (c) an optimal reconfiguration having cost 2.

optimal solution for the reconfiguration problem specifies subsets X ′ ⊆ X, and Y ′ ⊆ Y such that
|X ′| = |Y ′| = k, SX′ = SY ′ + z, and k is minimal. The storage capacity is clearly preserved
by this swapping. Also, the total demand of the movies assigned to the first server is now
SX\X′ + SY ′ = SX − z = L1. Similarly, the total demand of the movies assigned to the second
server is now SY \Y ′ + SX′ = SY + z = L2. Therefore, the resulting assignment is perfect. In
general, any reconfiguration that ends up with a perfect assignment, corresponds to two subsets
X ′, Y ′ of X,Y respectively, for which |X ′| = |Y ′| and the difference in the total new demand of
the corresponding movies is z. We conclude that solving the reconfiguration problem can be used
to solve the smallest subsets with a given difference problem, implying that the reconfiguration
problem is NP-hard. 2

3 Minimal Cost Algorithm for Fixed Number of Servers

We present a polynomial time algorithm which finds a minimal-cost reconfiguration for a semi-
homogeneous system, assuming that the number of servers, N , is some fixed constant. The algo-
rithm outputs a placement which achieves the optimal cost and uses servers with load capacities
(1 + 3δ)L, for a small parameter δ ∈ (0, 1].

Given the parameter 0 < δ ≤ 1, a movie file i is considered big, if Di ≥ δL, else, movie i is
small. Our algorithm handles separately the two types of movies. It produces allocations with
the following properties:

(P1) For every big movie i, and every server j, the broadcast allocation Bi,j of server j to movie
i is either 0 or at least δL and an integral multiple of δ2L, i.e., Bi,j = kδ2L, where k is an
integer in [1/δ, 1/δ2 ].

(P2) Every small movie is stored on a single server, on which it is allocated all of its broadcast
demand. Formally, for any small movie i, for a single server j, Bi,j = Di, and for any
j′ 6= j, Bi,j′ = 0.

We show below that if a slight augmentation of the load capacities is allowed, then a minimal

6



Reconfiguration Algorithm

For each storage and load allocation to the big movies, fulfilling P1, do:
Let Lb

j and Cb
j be the total load and storage allocation to big movies on server j.

For all 1 ≤ j ≤ N do Lj := L − Lb
j + 2δ and Cj := Cj − Cb

j

Find a minimum cost placement of the small movies on the servers
assuming server j has load capacity Lj and storage capacity Cj .

Select a configuration for the big movies which yields minimum total cost.

Figure 3: Algorithm for updating data placement on a set of servers.

cost reconfiguration fulfilling the above properties can be found in polynomial time. In addition,
limiting the set of reconfigurations to ones fulfilling the properties does not affect the minimal
cost. An overview of the algorithm is given in Figure 3.

3.1 Analysis of the Algorithm

In analyzing the algorithm, we use the next technical lemmas.

Lemma 3.1 Limiting the allocation to a one fulfilling (P1) and (P2) may require an increase by
at most a factor of (1 + 2δ) in the servers load capacity, without changing the configuration cost.

Proof: Given an arbitrary storage allocation, in which the total broadcast allocation of each server
is at most L. We show that it can be converted into an allocation fulfilling the properties. The
only changes are in the broadcast matrix, B. The assignment matrix A remains with unchanged,
therefore, the reconfiguration cost is the same.

Consider the servers one after the other, for each server j and big movie, i if Bi,j ≥ δL, then
round Bi,j up to the next multiple of δ2L. Note that there are at most 1/δ such movies, thus,
the total overflow on the server due to this step is at most δL. If 0 < Bi,j < δL and the total
demand already allocated to movie i on previously considered servers is less than Di then set
Bi,j = δL. Similarly, for the small movies, when server j is considered, if for some small movie i,
0 < Bi,j ≤ Di and movie i was not assigned its total demand on a previously considered server,
then set Bi,j = Di. Indeed, the total overflow in the server due to this step might be much larger
than δL, because the allowed overflow (in this stage) is per big movie and not per server.

Following the above step, the assignment matrix A remains the same, and both properties P1

and P2 hold. However, some servers have a big overflow, of more than 2δL, some are assigned
total load capacity less than L, and the rest are assigned total load capacity between L and
(1 + 2δ)L - with an allowed overflow. Denote the above sets of servers Overflowed, Vacant, and
Fair respectively. Consider a graph whose vertices set is the servers and there is a clique for each
movie. That is, two servers j1, j2 are connected if for some movie i, Ai,j1 = Ai,j2 = 1. A balancing
step is defined by a path in this graph. The starting server is overflowed, the middle servers are
fine, and the last server is vacant. Server j2 can follow server j1 in the path if j1 is overflowed
of fine, j2 is fine or vacant, and for at least one movie i, shared by the servers, some amount
of broadcasts can be migrated from j1 to j2. If the edge exists due to a small movie i then Di

broadcasts can be migrated. If it exists due to a big movie, then some amount between δL and
2δL broadcasts can be migrated. Specifically, the allocation satisfies that Bi,j1 ≥ δL. If Bi,j1 = δL
or Bi,j1 ≥ 2δL, then exactly δL broadcasts are transmitted. If Bi,j1 ≤ 2δL then Bi,j1 broadcasts
are migrated. This ensures that the resulting assignment also satisfies (P1). Balancing steps are
performed as long as one exists. Note that we do not care about the time complexity of detecting
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and performing balancing steps, as we only need to prove the existence of an assignment fulfilling
P1 and P2. The following claim completes the proof.

Claim 3.2 If no balancing step exists, then all servers are allocating at most (1+2δ)L broadcasts.

2

Lemma 3.3 The set of possible configurations of copies of the big movies, along with the corre-
sponding allocations of load capacities, has a polynomial size.

Lemma 3.4 Given a configuration of the big movies on the servers, there exists a polynomial
time algorithm which finds for the small movies a placement of minimum cost, fulfilling property
(P2), where each server j has storage capacity Cj and load capacity Lj(1 + δ).

Proof: Let R denote the set of small movies, and Mr = |R|. Index the small movies 1, . . . ,Mr.
Denote by xi,j ∈ {0, 1} an indicator variable for the assignment of movie i to server j, i ∈ R and
1 ≤ j ≤ N . The assignment will be determined by rounding the solution to the following linear
program. The costs ci,j are the given replication costs. Note that in the input for the assignment
problem, once the big movies have been assigned to the servers, the servers may have different
load capacities; however, by scaling the broadcast requirements of the movies, we may assume,
w.l.o.g., that the load capacities of the servers satisfy L1 = · · · = LN = L̂. Specifically, for a
movie i and server j, define Di,j = Di · L̂/Lj .

(LP) : minimize

Mr
∑

i=1

N
∑

j=1

xi,j · ci,j

subject to:
Mr
∑

i=1

xi,j · Di,j ≤ L̂ for 1 ≤ j ≤ N,

Mr
∑

i=1

xi,j ≤ Cj for 1 ≤ j ≤ N,

N
∑

j=1

xi,j = 1 for 1 ≤ i ≤ Mr,

xi,j ≥ 0 for 1 ≤ j ≤ N, 1 ≤ i ≤ Mr.

Claim 3.5 Given an optimal solution for LP, with the cost C, there exists a polynomial time
algorithm which finds an assignment of the small movies to servers of load capacity L̂(1 + δ),
whose total cost is at most C.

Proof: Given an optimal (fractional ) solution for LP, we use a rounding technique of Shmoys
and Tardos [18]. Specifically, we construct a bipartite graph in which server j is represented by
at most Cj vertices, 1 ≤ j ≤ N . A solution for the fractional matching problem on this graph
induces an integral matching of the same cost with the same cardinality. We show below that the
resulting integral solution may use servers whose load capacities are at most L̂(1 + δ).

Formally, sort the small movies in non-decreasing order by load requirements. Let GB =
(V ∪ U,E) be a bipartite graph, where U = {ui|1 ≤ i ≤ Mr} represents the set of small movies,
and V is the set of server vertices: V = {vj,k|1 ≤ j ≤ N, 1 ≤ k ≤ σj} where σj = d

∑Mr

i=1 xi,je is
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the total number of small movies stored on server j. Clearly, σj ≤ Cj . The vertices vi,1, . . . , vi,σj

correspond to server j, 1 ≤ j ≤ N .

The set of edges E of GB is defined as follows. Given the values of xi,j for 1 ≤ i ≤ Mr, 1 ≤
j ≤ N , for any server j:

(i) If
∑Mr

i=1 xi,j ≤ 1 then there is a single vertex vi,1 ∈ V corresponding to server j. In this
case, for any 1 ≤ i ≤ Mr such that xi,j ≥ 0, we add in GB an edge (ui, vj,1), and set its weight to
be w(ui, vj,1) = xi,j.

(ii) If
∑Mr

i=1 xi,j > 1, find the minimum index i1 such that
∑i1

i=1 xi,j ≥ 1, then E contains all
the edges (ui, vj,1), 1 ≤ i ≤ i1 − 1 for which xi,j > 0. For each of these edges set w(ui, vj,1) = xi,j.
Now, add to E an edge (ui1 , vj,1), whose weight is w(ui1 , vj,1) = 1 − ∑i1−1

i=1 w(ui, vj,1). Thus, the
sum of weights of the edges incident to vj,1 is exactly 1. If

∑i1
i=1 xi,j > 1 add an edge (ui1 , vj,2),

whose weight is w(ui1 , vj,2) = (
∑i1

i=1 xi,j) − 1. Proceed next to movies with i > i1 i.e., those
with smaller broadcast requirements on server j. Similar to the above process for vj,1, add edges
incident to vj,2, until a total of exactly one movie is assigned to vj,2, and so on.

Let i′ be the index of the last movie for which an edge is assigned this way, i.e, i′ = iσj−1.
Now, for any i > i′ for which xi,j > 0 add an edge (ui, vj,σj

) and set w(ui, vj,σj
) = xi,j.

For each server vertex vj,k, let Dmax
j,k (Dmin

j,k ) denote the maximum (minimum) of the broadcast
requirements Di,j corresponding to the edges (ui, vj,k) incident to vj,k. We note that the weight
function on the edges of GB defines a fractional matching, in which any movie vertex Ui is exactly
matched to a server vertex vj,k, 1 ≤ k ≤ σj − 1. In other words, for any 1 ≤ j ≤ N and

1 ≤ k ≤ σj − 1,
∑Mr

i=1 w(ui, vj,k) = 1. In addition, for all 1 ≤ j ≤ N and 1 ≤ k ≤ σj − 1,

Dmin
j,k ≥ Dmax

j,k+1. (1)

We now summarize the steps of the rounding procedure which assigns the small movies.

1. Given an optimal solution for LP, form the bipartite graph GB .

2. Find a min-cost (integer) matching H that exactly matches all movie vertices in GB .

3. For each edge (ui, vj,k) ∈ H place movie i on server j.

We show that the assignment obtained in Step 3. of the algorithm has cost C, and that the
overall load capacity used on any server is at most L̂(1 + δ). Since we defined in GB a fractional
matching of cost C, there exists in GB an integral matching, H, whose cost is C, such that all
the movie vertices are exactly matched. Therefore, the matching found in Step 2 has cost C.
Since the cost of the assignment is equal to the cost of the matching, the solution output by the
algorithm has at most the optimal cost C.

Next, we show that the total broadcast requirement assigned on each server is at most L(1+δ).
Consider the movies assigned to server j. For any 1 ≤ j ≤ N , there are σj ≤ Cj vertices
representing server j in GB . Each of these vertices vj,k adds at most one movie file to server
j (the movie which corresponds to the edge selected for the matching H, among those incident
to vj,k). Therefore, at most Cj small movies are assigned to server j. It follows that the total
broadcast requirement of the movies on server j is at most

∑σj

k=1 Dmax
j,k ≤ Dmax

j,1 +
∑σj

k=2 Dmax
j,k ≤ δL̂ +

∑σj−1
k=1 Dmin

j,k

≤ δL +
∑σj

k=1

∑

{i|(ui,vj,k)∈E} Di,j · w(ui, vj,k) = δL̂ +
∑Mr

i=1 Di,jxi,j ≤ L̂(1 + δ)
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The second inequality follows from (1) and the fact that Di,j ≤ δL̂ for all 1 ≤ i ≤ Mr. 2

This completes the proof of the lemma. 2

Combining the above lemmas, we summarize in the next result.

Theorem 3.6 Given a system of N servers, each having load capacity L and arbitrary storage
capacities Cj ≥ 1, 1 ≤ j ≤ N , the Reconfiguration algorithm finds in polynomial time a placement
of the files whose cost is optimal, by using servers with load capacities L(1 + 3δ).

4 Minimal Cost Algorithm for Arbitrary Number of Servers

In this section we consider a system with arbitrary number of servers. We first show that when
the number of movies is fixed, our problem can be optimally solved for any number of servers.

Theorem 4.1 The reconfiguration problem is solvable in polynomial time when M , the number
of movies, is fixed.

For the case where M may be arbitrarily large, we present below a polynomial time algorithm
which finds a minimal-cost reconfiguration in a semi-homogeneous system. Given an instance I,
our algorithm outputs a minimal-cost placement, by using servers of load capacities (2 + 2ε)L
where

ε = argmax{i|Di<L}Di/L. (2)

4.1 The Algorithm

The following is an overview of the algorithm. (i) Partition the instance to big and small movies;
movie i is big if Di ≥ L, else movie i is small. For any big movie i let ki = dDi/Le. Define the
instance Ĩ in which the broadcast demand of any big movie i is D̃i = kiL, and the broadcast
demand of any small movie i is D̃i = Di. (ii) Solve a linear programming relaxation of the
reconfiguration problem for Ĩ with the constraints that each small movie is assigned a single copy
and each big movie i is allocated the load capacity D̃i. (iii) Round the (fractional) solution of the
linear program to obtain an integral solution whose cost is optimal. (iv) Use the integral solution
to assign movie copies to N servers, where server j has storage capacity Cj and load capacity
(2 + 2ε)L.

Solving the LP: Let xij ∈ {0, 1} be an indicator for storing big movie i on server j (on which
it is allocated L broadcasts). Also, yij ∈ {0, 1} is an indicator for the assignment of small movie i
on server j. Finally, ci,j is the given replication cost (which depends on the initial configuration).
We first find an optimal solution for LP’, the linear programming relaxation of the problem, in
which, xij ∈ [0, 1] denotes the fraction of the load capacity of server j allocated to movie i.

Constraints (3) ensure that the total load capacity used by copies of the big movies and by
the small movies on each server is at most (2+ε)L.5 Constraints (4) ensure that the total storage
required on server j is at most Cj . The constraints (5) and (6) reflect the bounds on the number
of copies of each (big or small) movie. Together with constraints (3), it is guaranteed that each
movie is allocated D̃i broadcasts.

Rounding the Fractional Solution: To obtain an integral solution from a given optimal
solution for LP’, replace first the variables xi,j, 1 ≤ j ≤ N , i ∈ Big by the following set of
variables. For each variable xi,j, let fi ≥ 1 be the smallest integer such that D̃i/fi ≤ maxi|Di<L Di.
We define k′

i = f · ki variables xi,j,r, 1 ≤ r ≤ k′
i, where xi,j,r = xi,j/k

′
i. Intuitively, we partition

5We refer to this constraint in Lemma 4.3.
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(LP’) : minimize
∑

i∈Big

N
∑

j=1

xi,j · ci,j +
∑

i∈Small

N
∑

j=1

yi,j · ci,j

subject to:
∑

i∈Big

xi,j · L +
∑

i∈Small

yi,j · Di ≤ (2 + ε)L for 1 ≤ j ≤ N (3)

∑

i∈Big

xi,j +
∑

i∈Small

yi,j ≤ Cj for 1 ≤ j ≤ N (4)

N
∑

j=1

xi,j = ki for i ∈ Big (5)

N
∑

j=1

yi,j = 1 for i ∈ Small (6)

0 ≤ xi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Big

0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small

the load requirement of movie i to k′
i, so we can now consider k′

i sub-movies, where each needs to
be allocated DS

max = maxi|Di<L Di broadcasts and can have a single copy. Note that the values
of the variables xi,j,r and yi,j form an optimal solution for the linear program LP”.

Thus, it is possible to apply to the variables yi,j, i ∈ Small, 1 ≤ j ≤ N and xi,j,r, i ∈ Big,
1 ≤ j ≤ N and 1 ≤ r ≤ k′

i the rounding technique of Shmoys and Tardos [18], as described in
the proof of Claim 3.5 (by taking δ = ε). Use the resulting integral solution to assign a single
copy of small movie i on server j if yi,j = 1, i.e., Ai,j = 1 and Bi,j = Di. For any big movie i, let
∑k′

i

r=1 xi,j,r = hi,j , 0 ≤ hi,j ≤ min(Cj , 3) be the number of copies of the sub-movies of i assigned
to server j. If hi,j > 0 then assign a copy of big movie i on server j, i.e., Ai,j = 1 and Bi,j = hi,jL.

4.2 Analysis

Let OPT (I) denote the cost of some optimal solution for I.

Lemma 4.2 The constraint that any small movie is assigned a single copy may increase the total
load capacity used on any server at most by εL.

The proof is similar to the proof of Lemma 3.1 (with δ = ε). We omit the details.

Lemma 4.3 There exists a solution for Ĩ where each small movie is assigned a single copy on
servers with load capacities (2 + ε)L, such that the total cost is OPT (I).

Proof: By Lemma 4.2, the requirement that each small movie is assigned a single copy may add
at most εL to the broadcast requirement of server j, 1 ≤ j ≤ N . Also, rounding up the broadcast
requirement of the big movies increases the requirement of each movie at most by factor of 2.
Thus, given a solution for I, we can obtain a valid solution for Ĩ by doubling the load allocated
to any copy of big movie i on server j. This may increase the total load capacity used on server
j at most by L. Thus, we get an overall demand of at most (2 + ε)L on each server. The running
time of the algorithms is polynomial, since it involves solving and rounding the solution of an LP
program with a polynomial number of variable and constraints. 2

Theorem 4.4 The above algorithm outputs in polynomial time a solution of cost at most OPT (I).
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(LP”) : minimize
∑

i∈Big

k′
i

∑

r=1

N
∑

j=1

xi,j,r · ci,j +
∑

i∈Small

N
∑

j=1

yi,j · ci,j

subject to:
∑

i∈Big

k′
i

∑

r=1

xi,j,r · DS
max +

∑

i∈Small

yi,jDi ≤ (2 + ε)L 1 ≤ j ≤ N

∑

i∈Big

k′
i

∑

r=1

xi,j,r +
∑

i∈Small

yi,j ≤ Cj 1 ≤ j ≤ N

N
∑

j=1

xi,j,r = 1 for i ∈ Big

N
∑

j=1

yi,j = 1 for i ∈ Small

xi,j,r ≥ 0 for 1 ≤ j ≤ N, i ∈ Big, 1 ≤ r ≤ k′
i

yi,j ≥ 0 for 1 ≤ j ≤ N, i ∈ Small

The movies can be placed on N servers with storage capacities C1, . . . , CN and load capacities
(2 + 2ε)L, where ε is defined in (2).

Proof: By Lemma 4.3, the cost of an optimal solution for LP’ is at most OPT (I). As shown in
the proof of Claim 3.5, the rounding procedure preserves the cost of the linear program. We now
bound the extra amount of load capacity required for the placement of the files in the solution
output by the algorithm. By Lemma 4.3 we get an increase of at most (2 + ε)L in the load
capacity of the servers due to rounding up the load requirements of the big movies, and since we
assign a single copy to any small movies. Finally, rounding the fractional solution may increase
the used load capacity on each server by εL. This results in a total increase of (1 + 2ε)L in the
servers load capacities. 2

Extension to Heterogeneous severs: We show that with slight change, the above algorithm
can be applied to a system where each server has arbitrary load capacity. Let Lmin = min1≤j≤N Lj

and Lmax = max1≤j≤N Lj be the minimal and maximal load capacities of any server, respectively.
We assume below that the ratio Lmax/Lmin is bounded by some polynomial in the input size.
Consider the above algorithm with the following change. We say that movie i is big if Di ≥ Lmin

and small otherwise. Also, define ki = dDi/Lmine. Round up the broadcast demand of any big
movie i to D̃i = kiLmin. Let DS

max < Lmin be the maximal broadcast demand of any small
movie. As before, we define k′

i such that for any big movie i D̃i ≤ k′
iD

S
max. Next, solve LP’ and

define for any big movie i xi,j,r = xi,j/k
′
i. Thus, we replace each big movie i by k ′

i sub-movies
whose broadcast demands are DS

max. For these movies, as well as for the small movies, a single
copy needs to be assigned. Using an analysis similar to the analysis in Section 4.2, we get the
following result.6

Theorem 4.5 There is a polynomial time algorithm which finds a min-cost reconfiguration for
general bounded-ratio instances, using servers whose load capacities are increased at most by factor
of 2 + 2ε, for some ε ∈ (0, 1).

6We give the detailed proof in the full version of the paper.
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A Appendix - Some Proofs

Proof of Lemma 2.1: We show that the corresponding decision problem is NP-hard. That is,
given X,Y, z, k, such that there exists a subset Y ′′ ⊆ Y of size nX such that SX = SY ′′ + z, the
goal is to decide if there exist subsets X ′, Y ′, each having k elements and SX′ = SY ′ +z. It is easy
to verify that the minimization problem is solvable in polynomial time if the decision problem is.

The reduction is from the cardinality subset-sum problem, which is known to be NP-hard [2].
Given a set X = x1, x2, . . . xnX

of positive integers, a cardinality constraint k < nX , and a target
integer w, the goal is to find a subset X ′ ⊆ X such that |X ′| = k and SX′ = w. W.l.o.g, we
assume that (i) w > k (else, a solution can be found by checking if X contains k units), (ii) the
largest k elements in X have total size at least w (else, the answer is trivially negative), and (iii)
all the elements in X are integers larger than 1 (else, X,w, can be scaled).

Given X, k,w, an instance for cardinality subset-sum, construct the following instance for the
decision problem of smallest subsets with a given difference: k = k, z = w−k, X = X, Y consists
of nX − 1 units, and a single element of value SX − nX + 1 − w + k. Note that the instance is
defined properly since by our assumptions (i) z is positive and by assumption (ii) the last element
in Y is positive. Also, as required, for Y ′′ = Y we get that Y has a subset of nX elements of total
size nX − 1 + SX − nX + 1 − w + k = SX − z.

Claim A.1 The set X has a subset of k elements having total size w if and only if there is a
positive answer to the above decision problem of smallest subsets with a given difference.

Proof: There are only two types of subsets of k elements in Y . The first one has k unit elements.
For this type of subset, X has a subset X ′ of k elements summing up to w if and only if SX′ =
w = k + z = SY ′ + z. that is, if and only if the required subsets exist. The other type of subset
Y ′ ⊆ Y of k elements consists of the last element and k − 1 units. The total size of elements in
this subset is SX − nX + 1 − w + k + (k − 1) = SX − nX − z + k. We show that no subset of k
elements from X can sum to this value plus z. Let X ′ be a subset of k elements from X. There
are nX − k elements in X \X ′, whose total size is at least 2(nX − k) (by assumption (iii)). Thus,
SX′ ≤ SX − 2(nX − k), which is strictly smaller than SX − nX + k = SY ′ + z. 2

2

Proof of Claim 3.2: Let M(j) be the set of movies that are allocated broadcasts from server
j, that is, i ∈ M(j) if and only if Bi,j > 0. Assume that no balancing step exists but there exists
an overflowing server j. Since the allocation fulfills (P1) and (P2), then for every i ∈ M(j), if
i is big then Bi,j ≥ δL, and if i is small then Bi,j = Di. Clearly, j can migrate broadcasts to
any of his neighbors in the cliques corresponding to the movies in M(j). After such a migration
is done, any server j ′ in each such clique can similarly migrate broadcasts to any server in the
cliques corresponding to movies in M(j) ∪ M(j ′). By repeating this process, we calculate the
set of all servers that might be allocated additional broadcasts due to a balancing path starting
at server j. Note that this set of servers forms a connected component in the graph, which is
servicing some set of movies. If all the servers in this component are overflowed or fine then the
total broadcast allocation to movies stored on this component is larger than their allocation in the
given assignment - a contradiction. Otherwise, there must be a vacant server, v, in the component
and by the way the component was defined, there is a balancing path from j to v.

A single balancing step might involve migrations of up to 2δL broadcasts, as well as migrations
of small amounts of broadcasts (Di for some small movie i). Therefore, a fine server might become
overflowed by participating in a balancing path. However, this new overflowed server will be taken
care of by another balancing step. The process must end with no overflowed server since, as shown
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above, it is guaranteed that as long as there is an overflowed server, there is also a vacant server
that can get additional broadcasts. 2

Proof of Lemma 3.3: Consider the entries corresponding to big movies in the broadcast matrix
B. We show that there is a polynomial number of ways to fill these entries. For each server
(column in B) there are at most 1/δ positive entries in the corresponding column, each has a
value kδ2L, for an integer k ∈ [1/δ, 1/δ2 ]. Thus, there are at most (M · 1/δ2)1/δ possible ways
to fill each column in B, and (M/δ2)N/δ possible ways to determine the allocation to big movies.
This value is polynomial since N is fixed. 2

Proof of Theorem 4.1: Number the collection of subsets of the M movies by 1, . . . , 2M , then
the assignment of movie files to the N servers can be represented as an assignment vector of
length 2M , in which the kth entry gives the number of servers that contain the kth subset of

movies. The number of possible assignment vectors is
(2M+N−1

2M−1

)

. It is possible to compute the
cost of each assignment vector as follows. Construct the bipartite graph GB = (U, V,E), in which
|U | = |V | = N . Each vertex u ∈ U corresponds to a server, and each vertex v ∈ V corresponds to
a subset of movies for which there is a non-zero entry in the assignment vector. In other words, if
the kth entry in the vector is equal to h, 1 ≤ h ≤ N , then in GB there are h vertices in V which
correspond to the kth subset of movies. There is an edge (u, v) ∈ E if the server corresponding to
u has storage capacity larger than the number of movies in the subset that corresponds to v; the
cost of (u, v) is the cost of assigning this subset of movies on v. Next, solve the minimum weight
perfect matching problem on GB . The cost of each perfect matching (if one exists) is the cost
of the corresponding assignment vector. Given a perfect matching of minimum cost, use a flow
network to test the feasibility of the given assignment vector, namely, to verify that each movie i
can be allocated its load requirement Di. Finally, among the feasible assignments, select the one
having the smallest cost. 2
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