Implementation of range trees with fractional cascading for CGAL

Vissarion Fisikopoulos

μπλα

February 2009

э.

Range Trees in CGAL

Range Trees in CGAL

- ► lack of recursive construction of d-dimensional range tree [up to 4d]
- outdated implementation (memory hungry, virtual functions ...)
- ▶ no fractional cascading

(4月) (4日) (4日)

Range Trees with fractional cascading

Range Trees with fractional cascading [4]

construction	$O(n \log^{d-1} n)$
space	$O(n \log^{d-1} n)$
time	$O(\log^d n + k)$
time	$O(\log^{d-1} n + k)$
optimal	$O(\log^{c} n + k) [2, 1]$

Implementation [5]

about implementation ...

 $\mathrm{C} + +$

Generic Programming templates

STL data structures (vectors) algorithms (sorting, binary search)

- * ロ > * 母 > * 画 > * 画 > ・ 画 ・ のへぐ

Range Trees ○○○●	References
Design [3]	

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

3

A (10) A (10)

References

B. Chazelle.

Lower bounds for orthogonal range searching: part i. the reporting case.

J. ACM, 37(2):200-212, 1990.

B. Chazelle.

Lower bounds for orthogonal range searching: part ii. the arithmetic model.

J. ACM, 37(3):439-463, 1990.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

📑 G. S. Lueker.

A data structure for orthogonal range queries.

In SFCS '78: Proceedings of the 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pages 28–34, Washington, DC, USA, 1978. IEEE Computer Society.

B. Stroustrup.

The C++ Programming Language (Special 3rd Edition). Addison-Wesley Professional, February 2000.

Ευχαριστώ!

- 4 日 ト 4 目 ト 4 目 ト - 目 - りへぐ