Geometric Data Structures 000000	Multi-dimensional queries 000	Nearest neighbour problem	References

Notes on Computational Geometry and Data Structures

2008

Geometric Data Structures ●○○○○○	Multi-dimensional queries 000	Nearest neighbour problem	References

Geometric Data Structures and CGAL

Geometric Data Structures and CGAL

Data Structure	CGAL
Interval Tree	no
Priority Search Tree	no
Segment Tree up to 4 dimension	
Range tree	up to 4 dimensions
nange tree	no fractional cascading
k-d Tree	d dimensions

There is an introduction of these data structures in [4].

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Geometric Data Structures 000000	Multi-dimensional queries 000	Nearest neighbour problem	References
Interval Tree			

Interval Tree

Use: Report the k intervals out of n that contain a query point.

	construction	O(n log n)
Performance:	space	O(n)
	time	$O(\log n + k)$

Applications:
Interval intersections in one dimensionOrthoganal intersections (used as y-structure)

Geometric Data Structures ○○●○○○	Multi-dimensional queries 000	Nearest neighbour problem	References
Priority Search Tree			

Priority Search Tree

Use: Report k points out of n in a semi-unbounded query range of the form $(-\infty : x] \times [y : y']$.

	$\operatorname{construction}$	O(n log n)
Performance:	space	O(n)
	time	$O(\log n + k)$

- Applications:
 Report all intervals which intersect to a query interval in one dimension.
 - Orthoganal and interval intersections.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Performance Analysis
- ► VLSI routing

Geometric Data Structures ○○○●○○	Multi-dimensional queries 000	Nearest neighbour problem	References
Segment Tree			

Segment Tree

Use: Report the k segments out of n that intersect a vertical query segment.

	$\operatorname{construction}$	$O(n \log n)$
Performance:	space	$O(n \log n)$
	time	$O(\log^2 n + k)$

- Applications:
 Computation of the total volume of simple polygons in 2-dimensions.
 - ► Hidden line/surface removal.
 - Orthogonal intersection in d-dimensions.

- 同 ト - 日 ト - - - ト

Geometric Data Structures ○○○○●○	Multi-dimensional queries 000	Nearest neighbour problem	References
Range Tree			

Range Tree

Use: Report k points out of n in a d-dimension range query.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

	construction	$O(n \log^{d-1} n)$
Performance:	space	$O(n \log^{d-1} n)$
r enormance.	time	$O(\log^d n + k)$
	time (fractional cascading)	$O(\log^{d-1} n + k)$

Applications:

Multi-dimensional queries.

Geometric Data Structures ○○○○○●	Multi-dimensional queries 000	Nearest neighbour problem	References
k-d Tree			

k-d Tree

Use: Report k points out of n in a d-dimension range query.

(4) (5) (4) (5) (4)

	construction	O(dn log n)
Performance:	space	O(dn)
	time	$O(n^{1-\frac{1}{d}} + k)$

Applications: • Multi-dimensional queries.

▶ Nearest neighbour queries.

Geometric Data Structures 000000	Multi-dimensional queries ●○○	Nearest neighbour problem	References	
Types of Multi-dimensional queries				

Types of Multi-dimensional queries

Given n d-dimensional points

- ▶ Exact match queries
- ▶ Partial match queries
- ▶ Region queries

Output: k points

メロト (四) (三) (三) (三) (つ) (つ)

Geometric Data Structures 000000	Multi-dimensional queries ○●○	Nearest neighbour problem	References
Region queries			

Region queries

The general case.

	k-d tree [1]	range tree	optimal $[3, 2]$
const	$O(n \log n)$	$O(n \log n)$	
space	O(n)	$O(n \log n)$	$O(n \log^{\epsilon} n)$
time	$O(\sqrt{n} + k)$	$O(\log^2 n + k)$	$O(\log n + k)$
const	O(dn log n)	$O(n \log^{d-1} n)$	
space	O(dn)	$O(n \log^{d-1} n)$	$O(n(\log n/\log\log n)^{d-1})$
time	$O(n^{1-\frac{1}{d}} + k)$	$O(\log^{d-1} n + k)$	$O(\log^{c} n + k)$

(同) (三) (三)

for a fixed $\epsilon > 0$ and any constant c

Geometric Data Structures 000000	Multi-dimensional queries ○○●	Nearest neighbour problem	References
Exact & Partial match queries			

Exact & Partial match queries

Exact match queries (search for a point)

- ► The region is a point.
- time: $(d + \log n)$

Partial match queries (t keys)

- The region is k t dimensional hyperplane.
- time: $(n^{1-t/d} + k)$

Geometric Data Structures 000000	Multi-dimensional queries 000	Nearest neighbour problem	References

Nearest neighbour problem

k-d tree [1]

- worst case (point on a circle):
 # inspections = O(n)
- average (special case, hyperrectangles = hypercubic):
 # inspections = O(log n)
 - # distance calculations = exponential in dimension d

- 同 ト - 日 ト - - - ト

other techniques for nnp \ldots

References

J. L. Bentley.

Multidimensional binary search trees used for associative searching.

```
Commun. ACM, 18(9):509-517, 1975.
```

B. Chazelle.

Lower bounds for orthogonal range searching: part i. the reporting case.

```
J. ACM, 37(2):200-212, 1990.
```


Lower bounds for orthogonal range searching: part ii. the arithmetic model.

```
J. ACM, 37(3):439-463, 1990.
```

M. de Berg, M. van Kreveld, M. Overmars, and
 O. Schwarzkopf.
 Computational Geometry: Algorithms and Applications.
 Springer-Verlag, second edition, 2000.