OPTIMAL TASK ASSIGNMENT IN SENSOR NETWORKS Vassilis Papataxiarhis

Mobile Data Management 2016, 13 – 16 June, Porto

HELLENIC REPUBLIC National and Kapodistrian University of Athens

MOTIVATION

- In-network processing paradigm
- Millions of sensors with processing capabilities
- Vision
 - Reduce the volume of data seen / processed by the application
- Complex application tasks can split into simpler tasks that can be accomplished by separate nodes within the network
- Goal: assign the tasks optimally in terms of energy
 - Sensing
 - Processing
 - Communication
 - ..

PROBLEM DEFINITION

Definition (Optimal Assignment)

Let W be a WSN and let T be a complex task. Given the set of all mappings $\Phi = \{\phi: T \to W\}$ where the capabilities of the network fulfill the task and energy requirements, we call an assignment as **energy-optimal assignment** ϕ_{opt} if and only if $(\forall \phi \in \Phi) \varepsilon_{W,T}^{\phi_{opt}} \leq \varepsilon_{W,T}^{\phi}$.

NP-hard [Garey and Johnson, 1979]

Task Model

Definition (Task). Given a set S of subtask vertices and a set C of directed edges among the subtask vertices, we define a task T as a *directed acyclic graph (DAG)* represented by the tuple $T \equiv \langle S, C \rangle$.

Category	Description	Input From		Output To
Sensing	Sense context from the environment	-	•	Processing Sink
Processing	Process input data and forward results	ProcessingSensing	•	Processing Sink
Sink	Retrieve final format of data sensed and processed	ProcessingSensing		-

Task Model - Example

Network Model

Definition (Network). Let N be a set of network nodes and let A be a set of directed network edges. We define a WSN as a *strongly connected directed graph* represented by the tuple $W \equiv \langle N, A \rangle$.

Capability	Sink node	Non-sink node
\underline{Sens}_a	$\left\{ci_i \in CI\right\}$	$\left\{ci_i \in CI\right\}$
Alg_a	$\left\{ alg_{i}\in Alg\right\}$	$\left\{alg_i \in Alg\right\}$
$isSink_a$	$\{sink\}$	Ø
Op_a	$\left\{c_{i_i} \in CI\right\} \bigcup \left\{alg_i \in Alg\right\} \cup \left\{sink\right\}$	$\left\{ ci_{i}\in CI ight\} igcup \left\{ alg_{i}\in Alg ight\}$
Loc_a	$\vec{x}_a \in \Sigma$	$\vec{x}_a \in \Sigma$

Network Model - Example

$$a = \left\langle \{\text{humidity, max}\}, \vec{x}_4, 38000, \left\{M_a (\text{humidity}) = 0.001, M_a (\text{max}) = 0.01\}\right\} \right\rangle$$

$$b = \left\langle \{\text{temperature, max}\}, \vec{x}_3, 50000, \left\{M_b (\text{temperature}) = 0.002, M_b (\text{max}) = 0.005\right\} \right\rangle$$

$$c = \left\langle \{\text{temperature, max}\}, \vec{x}_1, 10800, \left\{M_c (\text{temperature}) = 0.001, M_c (\text{max}) = 0.01\right\} \right\rangle$$

$$d = \left\langle \{\text{sink, temperature}\}, \vec{x}_2, \infty, \left\{M_d (\text{sink}) = 0, M_d (\text{temperature}) = 0.002\right\} \right\rangle$$

$$d = \left\langle \{\text{sink, temperature}\}, \vec{x}_2, \infty, \left\{M_d (\text{sink}) = 0, M_d (\text{temperature}) = 0.002\right\} \right\rangle$$

$$d = \left\langle \{a, d, 0.6, 0.8 \right\rangle$$

$$A_{ac} = \left\langle a, c, 0.2, 0.2 \right\rangle$$

$$A_{ab} = \left\langle a, b, 0.2, 0.1 \right\rangle$$

$$d = \left\langle b, a, 0.2, 0.1 \right\rangle$$

Assignment Model

Definition (Assignment). Let $T \equiv \langle S, C \rangle$ be a complex task and $W \equiv \langle N, A \rangle$ be a WSN with $\Pi = \{\Pi_{ab}\}, \forall a, b \in N$ representing the set of all paths among the network nodes. We define the assignment $\zeta: T \to W$ as the pair of mappings $X_{\zeta}: S \to N$ and $Y_{\zeta}: C \to \Pi$ that satisfy the *consistency constraint*:

$$\left(\forall C_{pq} \in C \right) \left(\forall \Pi_{ab} \in \Pi \right) \quad Y_{\zeta} \left(C_{pq} \right) = \Pi_{ab} \Leftrightarrow$$
$$\left(\left(X_{\zeta} \left(p \right) = Src \left(\Pi_{ab} \right) \right) \land \left(X_{\zeta} \left(q \right) = Dst \left(\Pi_{ab} \right) \right) \right)$$

and we represent it by $\zeta \equiv \langle X_{\zeta}, Y_{\zeta} \rangle \in Z$ where Z is the set of

all possible assignments between T and W.

Assignment Model - Example

OPTIMIZATION

ILP Variables

Symbol	Туре	Size	Description
x _{p,a}	Binary Matrix	$ S \cdot N $	Vertex assignment of subtask vertex $p \in S$ to network node $a \in N$
$y_{pq,ab}$	Binary Matrix	$\left(\frac{ S \!\cdot\!\left(S \!-\!1\right)}{2}\right)\!\!\times\!\left N\right ^2$	Edge assignment of subtask edge C_{pq} to network path Π_{ab}
β_{pq}	Integer Column	$\frac{ S \cdot \left(S - 1\right)}{2}$	Data bits exchanged over subtask edge $C_{_{\ensuremath{\textit{pq}}}}$
ρ_{ab}	Real Column	$\left N ight ^2$	Total energy rate (per bit) when the network path Π_{ab} is activated
$\rho_{ab,c}$	Real Matrix	$\left N ight ^{3}$	Energy rate (per bit) for network node $c \in N$ when network path Π_{ab} is activated
$\varepsilon_{c,p}$	Real Column	$ S \cdot N $	Execution energy cost of subtask vertex $p \in S$ in network node $c \in N$
е с	Real Column	N	Available energy of network node $c \in N$

OPTIMIZATION

ALGORITHM 1. ILP Formulation

Input: Sets $C, S, N, \Pi, I_p, J_{pq}$, Variables $\beta_{pq}, \rho_{ab}, \rho_{ab,c}, \varepsilon_{c,p}, \varepsilon_c$ **Output:** Variables $x_{p,a}$, $y_{pq,ab}$ **Objective function:** minimize $\left\{\sum_{c \in N} \left\{ \sum_{p \in S} \varepsilon_{c,p} \cdot x_{p,c} + \sum_{C_{-} \in C} \sum_{\Pi_{+} \in \Pi} \beta_{pq} \cdot y_{pq,ab} \cdot \rho_{ab,c} \right\}\right\}$ **Constraints set:** $(\forall p \in S) \quad \sum_{x_{p,a}} x_{p,a} = 1 \quad // \text{Unique subtask vertex assignment constraint}$ $\left(\forall C_{pq} \in C\right) \quad \sum_{\Pi_{+} \in \Pi} y_{pq,ab} = 1 \quad // \text{Unique subtask edge assignment constraint}$ $(\forall C_{pq} \in C)(\forall a \in N) \quad \sum_{\prod c \in \overline{Sm}(c)} y_{pq,ab} = x_{p,a}$ //Edge-to-source-vertex consistency constraint $(\forall C_{pq} \in C) (\forall b \in N) \sum_{\Pi, \in \widetilde{Dst}(b)} y_{pq,ab} = x_{q,b}$ //Edge-to-destination-vertex consistency constraint $(\forall c \in N) \quad \sum_{p \in S} \mathcal{E}_{c,p} \cdot x_{p,c} + \left\{ \sum_{C \in C} \sum_{\Pi \to S\Pi} \beta_{pq} \cdot y_{pq,ab} \cdot \rho_{ab,c} \right\} \le \mathcal{E}_{c} \quad //\text{Node} \quad \text{energy}$ conservation

constraint

$$\begin{array}{l} (\forall p \in S) \Big(\forall a \in N / I_p \Big) \quad x_{p,a} = 0 \\ & (\forall C_{pq} \in C) \Big(\forall \Pi_{ab} \in \Pi \setminus J_{pq} \Big) \quad y_{pq,ab} = 0 \end{array} \qquad // \text{Vertex compatibility constraint}$$

Experimental setting

Parameter	Value	
CI	10	
Alg	15	
Sens _{aver}	4	
$ Alg_{aver} $	2	
Quant _{aver}	6000	
# SinkSubtasks	1	
$eta_{\it pq,aver}$	320 Kbit	
Spatial constraint	1:5 sensing subtasks	

p-comp

Energy status of the network after Run #100

Optimal assignment – Run #1

Optimal assignment – Run #21

RESULTS Mesh network

Per Alg - ILP - Det. Cumulative Communication Energy Cost

RESULTS Mesh network

Per Alg - ILP - Det. Execution Time

RESULTS Mesh network

Per Alg - ILP - Det. Cumulative Execution Time

FUTURE WORK & EXTENSIONS

- Experimentation with non-optimal solutions that scale
- Maximize the network lifetime instead of minimizing the energy at each step separately
- Model the unreliability of wireless channels
- Insert the concept of *mobility* (Levy Walk model)
- Incremental assignment of tasks

REFERENCES

- Alexander Schrijver. 1986. Theory of linear and integer programming. John Wiley & Sons, Inc., New York, NY, 1986. ISBN 0-471-90854-1
- Virginia Pilloni, Pirabakaran Navaratnam, Serdar Vural, Luigi Atzori, and Rahim Tafazolli. 2014. TAN: A Distributed Algorithm for Dynamic Task Assignment in WSNs, IEEE Sensors Journal,vol.14, no.4, pp.1266,1279, April 2014. DOI: <u>10.1109/JSEN.2013.2294540</u>
- Hady S. AbdelSalam, Stephan Olariu. 2011. Toward Efficient Task Management in Wireless Sensor Networks, Computers, IEEE Transactions on, vol.60, no.11, pp.1638,1651, Nov. 2011, DOI: <u>10.1109/TC.2010.264</u>
- Muhammad Kafil, and Isfaq Ahmad. 1998. Optimal Task Assignment in Heterogeneous Distributed Computing Systems, *IEEE Concurrency*, IEEE Educational Activities Department Piscataway, NJ, USA Volume 6 Issue 3, July 1998, Pages 42-51, 1998, DOI: <u>10.1109/4434.708255</u>
- Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness, Miller Freeman, San Francisco, 1979
- Gurobi Optimization, Gurobi Optimizer Reference Manual. 2014. Retrieved December 21, 2014 from <u>http://www.gurobi.com</u>

