
1

Evaluation of Password Hashing Schemes in Open Source

Web Platforms

Christoforos Ntantogian, Stefanos Malliaros, Christos Xenakis

Department of Digital Systems, University of Piraeus, Piraeus, Greece

{dadoyan, stefmal, xenakis}@unipi.gr

Abstract: Nowadays, the majority of web platforms in the Internet originate

either from CMS to easily deploy websites or by web applications frameworks

that allow developers to design and implement web applications. Considering

the fact that CMS are intended to be plug and play solutions and their main

aim is to allow even non-developers to deploy websites, we argue that the

default hashing schemes are not modified. Also, recent studies suggest that

even developers do not use appropriate hash functions to protect passwords,

since they may not have adequate security expertise. Therefore, the default

settings of CMS and web applications frameworks play an important role in

the security of password storage. This paper evaluates the default hashing

schemes of popular CMS and web application frameworks. First, we formulate

the cost time of password guessing attacks and next we investigate the default

hashing schemes of popular CMS and web applications frameworks. We then

apply our framework to perform a comparative analysis of the cost time of

password guessing attacks between the various CMS and web application

frameworks. Finally, considering that intensive hash functions consume

computational resources, we analyze hashing schemes from a different

perspective. That is, we investigate if it is feasible and under what conditions

to perform slow rate denial of service attacks from concurrent login attempts.

Through our study we have derived a set of critical observations. We have

discovered that many CMS and web application frameworks use outdated hash

functions, arbitrary number of hash iterations, while there is a lack of

password policies and salt. Notably, the popular WordPress still uses MD5

with low number of hash iterations. Overall, we believe that that the security

status of the hashing schemes of CMS and web application frameworks calls

for changes to the default settings from an opt-in to an opt-out security policy.

More security audits and official library implementations are also required to

accelerate the adoption of memory hard functions both by policy makers and

the industry.

Keywords: Passwords, CMS, Web application frameworks, Guessing attacks, Hashing schemes

1 Introduction

Several corporates [1] have become victims of security breaches, resulting in the disclosure of

billions of passwords. One of the most significant data breaches during 2016 disclosed a

database containing 1 billion users’ authentication details [2], and was put on sale for 300.000

dollars [3], while one of the biggest data breaches during 2017 included 145.5 million users’

details. Hackers take advantage of the computing power of graphics processing units (GPU)

and specialized hardware to crack the users’ passwords. Although the price of top tier graphics

cards is relatively high (e.g., 2999$ for an NVIDIA TITAN V [4]), hackers can also rent cloud

infrastructure including dedicated GPUs for a monthly or pay-as-you-go price (e.g. Google

rents a GPU for maximum 2.55$ per hour [5]), making password guessing attacks easier and

faster to perform.

2

To counteract the increasing efficiency of such attacks, key derivation functions such as

PBKDF2 and BCRYPT use repeated iterations of the employed hash function to slow down the

execution time of hashing, and subsequently increase the effort required by an attacker to

perform password guessing. Moreover, memory hard functions (MHFs), such as SCRYPT,

except for iterations, they also utilize the physical memory as much as possible, in order to

increase significantly the costs required to crack passwords. While there is a significant body

of research that analyze the security of hash functions or propose new password cracking

techniques, we have pinpointed that the security of the default hashing schemes in Content

Management Systems (CMS) and web application frameworks has been neglected. Nowadays,

the majority of web platforms originate either from CMS to easily deploy websites or by web

applications frameworks that allow developers to design and implement them. WordPress alone

stands for 31.3% of all websites in the internet. Considering the fact that CMS are intended to

be plug and play solutions and their main aim is to allow even non-developers to deploy

websites, we argue that the default settings, including the hash functions, are not modified.

Also, recent studies [6] suggest that even developers do not use appropriate hash functions to

protect passwords, since they may not have adequate security expertise. Therefore, the

conjecture is that the default settings of CMS and web applications frameworks play an

important role in the security of password storage.

This paper evaluates the security of the default hashing schemes of popular CMS and web

application frameworks. To this end, we propose a simple framework that allows us to quantify

the cost time for password cracking. The proposed framework takes into account the main

parameters of password guessing attacks and considers both brute force and dictionary attacks.

To put our framework into a practical context and derive numerical results, we use as input the

default hashing schemes of popular CMS and web applications frameworks. For this reason,

first we identify and analyze the default hashing schemes of CMS and web applications

frameworks. We have discovered that many CMS use outdated hash functions, arbitrary

number of hash iterations, while there is a lack of password policies and salt. For example, the

popular WordPress still uses MD5 with low number of hash iterations. Subsequently, we apply

our cost analysis framework to perform a comparative analysis between the CMS and

application frameworks which allows us to deduce a set of critical observations. Next,

considering that intensive hash functions consume computational resources, we analyze

hashing schemes from a different perspective. That is, we investigate if it is feasible and under

what conditions to perform slow rate denial of service attacks from concurrent login attempts.

Lastly, we propose security practices and alternative solutions to enhance the overall security

of passwords. Overall, the contributions of this paper are the following:

• We propose a framework to estimate the cost time of brute force and dictionary

password guessing attacks.

• We pinpoint the default hashing schemes of the most commonly used CMS and web

application frameworks and we derive a set of critical observations.

• We apply our framework to the CMS and web application frameworks that allow us to

perform a comparative analysis by quantifying the cost time of cracking a password.

• We investigate the feasibility of slow rate denial of service attacks based on intensive

hash functions.

• Finally, we discuss and propose best practices and alternative solutions to improve the

security of password storage.

The rest of this paper is organized as follows. Section 2 presents the required background

knowledge and the related work while section 3 analyzes the various hashing schemes. Section

4 proposes a cost time analysis framework for brute force and dictionary attacks, while section

5 evaluates the default hashing schemes of CMS and web application frameworks. Section 6

performs a comparative analysis of the cost time of CMS and web applications frameworks,

3

while section 7 examines the feasibility of denial of service attacks based on intensive hashing

schemes. Section 8 discuss recommendations and possible solutions, and, lastly, section 9

contains the conclusions.

2 Background and Related Work

2.1 Password guessing attacks

Password guessing (also known as password cracking) is an attack in which an adversary

attempts to guess the users’ password. We distinguish two password guessing attacks

categories: i) Online and ii) Offline. In online attacks, an attacker can try to login to a website

by selecting frequently used passwords. After a number of unsuccessful attempts, the IP address

or the username that the attacker is trying to login can be locked. On the other hand, in an offline

attack, the scenario is that an attacker has in his possession a database of users’ password hash

values and he can attempt to crack each user’s password offline by comparing the hashes of

likely password guesses with the stolen hash value. Because the attacker can check each guess

offline it is no longer possible to lockout the adversary after several incorrect guesses. In this

paper we consider offline attacks.

Moreover, we can classify password guessing attacks to three categories: i) brute force ii)

dictionary and iii) rainbow tables. In a brute force attack, the adversary tries every possible

password combination considering two parameters; a) the password length; and b) the character

set. On the other hand, in a dictionary attack, the adversary uses passwords from a list, which

are likely to be used as passwords by users. There are four types of dictionary attacks: i) pure

ii) Probabilistic Context Free Grammar (PCFG) based [7], iii) Markov model based [8] and iv)

mangling rules [9]. In the pure dictionary, the attacker simply uses a set of predefined words as

candidate passwords. In the second type, PCFG theories are used to construct a dictionary

containing modified passwords with assigned probabilities. In the third type, Markov-based

models are applied to create candidate passwords based on the probability distribution over

sequences of characters. In the fourth type (i.e., mangling rules), the attacker creates password

variations from a dictionary by applying various modifications rules, such as “add the symbol

! at the end of the password”. Finally, the third category of guessing attacks is rainbow tables,

in which the attacker uses a precomputed list to reverse the hash value. In this paper, the term

password guessing (or cracking), unless stated otherwise, refers specifically to brute force and

dictionary attacks but not rainbow tables. Moreover, from the four types of dictionary attacks

we exclude mangling rules as these are specific to each cracking tool.

2.2 Hardware platforms for password guessing

An attack scales linearly with invested resources, mainly cost of the equipment and energy

consumption, and thus we have to take their influence into account. General purpose computing

on GPUs can boost the computation performance, since the multiple GPU processing cores can

be used in parallel for high-power calculations. Typically, a GPU consists of hundreds of

computing cores grouped into computing clusters sharing the same memory bus. Due to this

architecture, GPUs are specialized in Single Instruction Multiple Data (SIMD) computations

[10], which refer to the simultaneous execution of the same instruction on multiple processors

with different input data for each processor (i.e., parallel computing). Consequently, GPUs can

accelerate password guessing, since the same hashing scheme (i.e., the same instruction) can

be executed simultaneously by hundreds of computing cores with different passwords as input.

In [11], the authors measured the performance of the password guessing functions, where it was

observed that the time required for password guessing decreased by 97% with GPU

acceleration, compared with the time required using only CPU.

4

Apart from GPUs, special purpose hardware such as field-programmable gate arrays (FPGAs)

and more recently application-specific integrated circuits (ASICs) have been utilized to yield

even higher hashrate values. Generally speaking, equipment cost is in favor of the graphic cards,

as GPUs are a consumer product that is sold in large quantities. Also, older versions usually

receive a discount, making them more cost-effective. Interestingly, FPGA vendors use a

different strategy: with the release of a new product line, the price of the old family stays

roughly unchanged, while the new version is offered with a small discount to make the

consumers switch away from the abandoned hardware platform. In this paper, we will consider

GPUs as the hardware platform of password guessing attacks.

2.3 CMS and web application frameworks

Nowadays, the majority of websites originate either from CMS or by web applications

frameworks. CMS are intended to be plug and play solutions and their main aim is to allow

non-developers to deploy websites. CMS play an important role in the Internet. According to

[12], 52.3% of websites in the Internet are based on CMS. Table 1 shows statistics of CMS

usage among all websites in the Internet and among all CMS [12]. In particular, first comes the

popular WordPress with a whopping 31.3% usage among all websites in the Internet, while

59.8% usage among CMS. Second is Joomla with a 3.1 percentage usage among all websites

in the internet, while Drupal is third with 2%.

CMS Market share among all

websites in the Internet

Market share

among CMS

WordPress 31.3% 59.8%

Joomla 3.1% 6. 0%

Drupal 2.0% 3.9%

Magento 1.1% 2.1%

PrestaShop 0.7% 1.4%

TYPO3 0.7% 1.4%

OpenCart 0.4% 0.8%

Table 1: Popular CMS usage statistics

On the other hand, web application frameworks are utilized by developers and aim at supporting

the development of rich web applications by providing a standard way to build and deploy them.

For web application frameworks, we could not find a reliable source of statistics regarding their

market share in the Internet. Considering that many frameworks share the same programming

language, it is difficult to determine which specific framework a website uses. Therefore, we

used statistics from GitHub to discover the most popular open source frameworks [13]. Table

2 shows the number of stars that each web application framework has which can be considered

as a popularity metric among web developers. Laravel which uses PHP has the largest number

of stars, which is 44.465. The second most popular framework, Ruby on Rails, is based on Ruby

with 40.263 stars, while MeteorJS, based on Javascipt, has 40.068 stars. Note that from Table

2 ASP.NET is excluded, since GitHub is used only open-source projects.

Web application

framework

Programming Language # of stars on GitHub

Laravel PHP 44.465

Ruby on Rails Ruby 40.263

MeteorJS Javascript 40.068

ExpressJS Javascript 39.333

Flask Python 37.515

Django Python 35.230

SailsJS Javascript 19.350

5

Table 2: Popular web application frameworks based on GitHub

2.4 Related work

The related work has studied extensively the area of password security from various scopes,

including: i) password guessing attacks in leaked databases, and, ii) analysis of password

complexity. Here we present only the most recent and relevant works. Regarding the first

category, which is password guessing, the main metric used by the related work to estimate the

attack efficiency is called effectiveness. In essence, effectiveness is the fraction of passwords

that will be correctly cracked after an attack. The authors in [7] have used the PCFG technique,

which uses grammar theories to construct a dictionary containing passwords in a decreasing

probability order and succeeded in cracking 28% - 129% more passwords in comparison to

John the Ripper (JtR) [14]. In [15], the authors analyzed the Rock you [16] database to identify

regular expressions that were used to create candidate passwords. The numerical results showed

that the proposed method cracks 14% - 239% more passwords in comparison to JtR.

Towards this direction, the work in [17] performs an analysis of Chinese web passwords by

using the PCFG and Markov-based model, which create candidate passwords phonetically

relevant to the words included in a dictionary. The authors succeeded in increasing password

cracking efficiency by 48% and 4.7%, respectively, for each technique. In [18], the authors

proposed a tool named OMEN, which was compared in password guessing with the PCFG and

the Markov-based techniques. The recorded effectiveness was higher by 20% and 40% in

comparison to PCFG and Markov-based techniques respectively. Moreover, [19] performed an

empirical analysis on passwords and compared the effectiveness of dictionary password

guessing attacks to this of the PCFG and Markov-based techniques. The PCFG method

managed to crack 40-50% of the passwords, while 61.90% of passwords were cracked using

the Markov-based methodology with 850 million guesses.

The second category of the related work is password complexity analysis. More specifically,

the work in [20] performs a password analysis of the RockYou leaked database consisting of

cleartext passwords. The results pinpointed that most of the passwords are not secure enough

to withstand password guessing attacks. In fact, 30% of the users chose passwords whose length

is equal or below six characters, and 60% of the users use the limited alpha-numeric set to form

their passwords, while the most common password was “123456”. Reports from the Keeper

password manager [21] show that, even in 2016, the users’ passwords are still predictable, since

the most common recorded passwords include “123456”, “qwerty” and “111111”. Ιn [22], the

authors performed interviews with several different groups (i.e., students, ICT specialists, etc.)

regarding their password habits. They discovered that 50% of the respondents use less than 4

different passwords for all their services. Moreover, in all groups more than 50% of the

respondents use passwords shorter than nine characters and most of the passwords still

consisted of letters and characters.

3 Password hashing schemes

A hashing scheme takes as an input a plaintext password and transforms it into a hash value

considering three parameters: i) hash function; ii) iterations; iii) salt. More specifically, the core

parameter of a hashing scheme is the employed hash function, such as MD5. The iterations

parameter is optional and specifies the number of consecutive executions of the employed hash

function to compute the hash value. For example, if a hashing scheme uses the MD5 hash

function and the number of iterations is 100, then it will conduct 100 consecutive executions of

MD5 to compute the password hash. The number of iterations can be adjusted so that the

computation of the hash value takes an arbitrarily large amount of computing time (also known

as key stretching). In this way, iterations are used to slow down password guessing attacks.

Regarding the last parameter, the salt is also optional and it is a random string which together

6

with the password are the inputs to the hash function to produce the hash value. Using random

salts, rainbow tables become ineffective. That is, an attacker won’t know in advance what the

salt value is and therefore he cannot pre-compute a rainbow table.

There are numerous functions used for password hashing including: MD5 [23], SHA1 [24],

SHA256 - SHA512 [25], PBKDF2 [26], BCRYPT [27], SCRYPT [28] and Argon2 [29]. A

detailed analysis of these hash functions is omitted; instead we briefly mention the most

important features relevant to the scope of this paper. The first four hash functions (i.e., MD5,

SHA1, SHA256, SHA512) do not require the use of a salt by default. Thus, a separate function

should be used to generate a salt for the hashing scheme. On the other hand, the rest of the hash

functions generate and use a random salt internally during hash calculation.

As we mentioned previously, the iterations parameter specifies the number of consecutive

executions of the employed hash function, increasing the computation time to compute the hash

value. For this reason, PBKDF2, BCRYPT, SCRYPT and Argon2 hash functions use iterations

by default. More specifically, PBKDF2 is the simplest function, since it iterates the employed

hash function, usually SHA256 or SHA512. BCRYPT, which is based on the blowfish

encryption algorithm, uses iterations in the Blowfish key setup function, using the salt and

password parameters as inputs. For PBKDF2 and BCRYPT, memory usage is not tunable

separately (i.e., it is fixed for a given amount of CPU time). On the other hand, SCRYPT and

Argon2 belong to a special category of hash functions named MHFs, which are designed to use

an arbitrary large and tunable amount of memory compared to PBKDF2 and BCRYPT making

the size and the cost of a hardware implementation of these hash functions much more

expensive, and therefore, limiting the amount of parallelism an attacker can use. Similar to

BCRYPT, both SCRYPT and Argon2 use iterations in specific parts of the algorithm. SCRYPT

was one of the first proposed MHF [28] and recently in 2016, the SCRYPT algorithm was

published by IETF as a standard (RFC 7914) [30]. It is important to mention that for BCRYPT

and SCRYPT, the literature uses the term cost factor [27], [28] instead of iterations (specifically

for SCRYPT it is called CPU/Memory cost factor). In the rest of the paper we will explicitly

use the term iterations instead of cost factor. Apart from iterations, SCRYPT and Argon2

include several parameters that can be used to adjust the memory requirements for hash value

computation. The analysis of these parameters is out of scope of the paper, since we will

specifically focus on the iterations parameter.

Regarding the exact value of iterations for the above hash functions, NIST guidelines

recommend PBKDF2 with minimum 10.000 iterations [31], while for SCRYPT, its own author

recommends 16384 iterations [28]. On the contrary, there is no official recommendation for

BCRYPT and Argon2. We have only discovered that PHP programming language by default

uses BCRYPT with 1024 iterations [32].

As mentioned in section 2.2, password guessing attacks greatly benefit from multiple

processing cores, especially for hashing schemes that can be executed in parallel. MD5, SHA1,

SHA256, SHA512 hash functions can be executed in parallel on multi-processor systems, fact

that increases significantly the efficiency of password guessing attacks. Moreover, several

weaknesses of PBKDF2 [33] allow efficient implementations with very little use of RAM,

which makes brute-force attacks to PBKDF2 using FPGAs relatively cheap. Also, the work in

[34] achieved a great optimization in running PBKDF2 on GPU hardware.

On the other hand, BCRYPT, due to its pseudorandom access to memory makes difficult to

cache data into the GPU’s internal memory [35]. Subsequently, BCRYPT implementations on

GPUs use the external memory, thus spending more time transferring operands to and from the

GPU. Thus, compared to PBKDF2, BCRYPT is less parallelizable and more resistant to

password guessing attacks [28]. However, recent works such as [36] [37] have presented

BCRYPT implementations that achieve a high level of parallelization in embedded hardware

7

devices. Finally, MHFs such as SCRYPT and Argon2 are specially designed to withstand

against hardware-equipped adversaries. That is, MHFs bound the memory amount and the

memory bandwidth, limiting in this way the level of parallelism that an attacker can achieve.

While a practical attack for SCRYPT has not been demonstrated yet, new MHFs were proposed

in the password hashing competition in 2014 [38] in which Argon2 was the winner.

4 Cost analysis of password guessing attacks

In this section we analyze a cost analysis framework for password guessing attacks. The

rationale is to first compute the number of hashes, that will be performed throughout password

guessing attacks, and secondly to estimate their effectiveness (i.e., percentage of successfully

guessed passwords). By utilizing these two values, the cost of password guessing attacks is

defined as the average number of hashes required to successfully crack a password hash. Lastly,

the cost can be transformed into the average time required to crack a password hash. It is

important to mention that the aim here is not to derive new mathematical models for password

cracking, which has been already done in previous works extensively. Instead, our aim is to

formulate a simple framework that will allow us to perform a security comparison and

evaluation between the various CMS and application frameworks by quantifying the cost of

password cracking.

4.1 Parameters

This section elaborates on the parameters of the proposed framework for the cost estimation of

password guessing attacks. These parameters are as follows:

• Iterations (I): The iterations parameter represents the number of consecutive

executions of a hash function to compute the password hash. For example, a hashing

scheme of 500 SHA1 iterations requires 500 consecutive executions of SHA1 to

compute the hashing result. Note that this value is relevant only for iterations of MD5,

SHA1, SHA256, SHA512 hash functions. On the other hand, PBKDF2, BCRYPT,

SCRYPT and Argon2 that use iterations as an internal parameter, the parameter Ι is not

considered (i.e., I=1).

• Database passwords (D): This parameter indicates the number of password hashes in

the database.

• Salt (S): This parameter indicates the number of salts in the database. We will assume

that each password has a unique salt, therefore the number of database passwords D is

equal to number of salts S. On the other hand, if the database does not use salt, then the

parameter S is not considered (i.e., S=1).

• Hashrate (Hr): It is the number of calculated hash values per second.

• Password length (pwd_length): This parameter is the length of the target passwords

that an attacker desires to crack in a brute force attack. We also define as pwd_lengthmin

the minimum and pwd_lengthmax, the maximum password length that the attacker aims

to crack.

• Charset (C): This parameter is relevant only for brute force attacks. The value of

charset depicts the number of unique characters of the different sets that are used for

the composition of a password. Table 3 (that will be used in the section 6) shows values

of this parameter for the English alphabet. Evidently, for other alphabets or a

combination of them (e.g., Greek and English), appropriate charset values should be

used.

• Attempts in a dictionary attack (attempts): It is the number of candidate passwords

that an attacker will attempt to crack the passwords. This parameter is relevant only for

a dictionary attack.

8

• Effectiveness (EBF or EDC): The effectiveness of a password guessing attack is the

percentage of password hashes in a database that will be cracked after the completion

of the attack. The effectiveness of the brute force attack is denoted as EBF, while for the

dictionary attack is noted as EDC.

Type of character set Charset (C) value

Numeric 10

Lowercase 26

Uppercase 26

Loweralphanumeric or

Upperalphanumeric

36

Mixedcase 52

Mixedalphanumeric 62

Special 94

Table 3: Charset value for different types of character sets for the English alphabet

4.2 Brute force attack

In this section, we elaborate on the cost estimation of brute force password guessing attacks.

The first step of the cost estimation is to compute the number of hashes that will be performed

during a brute force password guessing attack, defined as hashesBF. To achieve this, we need to

calculate the number of candidate passwords, by leveraging the charset and the pwd_length

parameters. The usage of a unique salt per password affects the hashesBF value, since the

guessing attempts performed during a brute force attack, will be a multiplication of all the

candidate passwords by the total number of salts. Lastly, the hashesBF is affected by the usage

of iterations, since a guessing attempt requires iterations of consecutive hash executions.

Based on the above, it can be deduced that the hashesBF value can be estimated by using

equation (1). Τhe hashesBF value is analogous to both the iterations I and to the number of salts

S. In addition, hashesBF value is analogous to the sum of all candidate passwords (i.e. Ci),

considering specific charset and password length values. That is,

𝒉𝒂𝒔𝒉𝒆𝒔𝑩𝑭 = 𝒂 · 𝑰 · 𝑺 · ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (1)

Note that the parameter 𝑎 is a real number, where 𝑎 ∈ (0,1]. The parameter 𝑎 is defined as the

attack success factor and it is related to the probability of attempting all the candidate passwords

of a brute force attack. In the worst case scenario for the attacker, the value of 𝑎 is equal to 1.

In this case, the attacker will have to examine all the candidate passwords. To better understand

the role of the parameter 𝑎, we consider the following example. Assume a brute force attack in

which the attacker aims to crack numeric passwords (i.e., C=10 from Table 3) of minimum

length 4 and maximum length 5 (i.e., pwd_lengthmin = 4, pwd_lengthmax = 5), for a hashing

scheme that uses 100 iterations (I=100). The number of the hashed passwords is D=100. This

means that the salt S is also equal to 100 (i.e., one salt per password). All the candidate 4-

character numeric passwords are 104, while the 5-character are 105, summing to a total number

of 1.1 105 candidate passwords. If we assume the worst case scenario for the attacker (i.e., 𝑎=1),

then by multiplying the number of candidate passwords with the iterations and the number of

salts, the value of hashesBF will be 1.1·109. This means that the attacker for each password (with

its related salt) will have to attempt all candidate passwords as defined by the charset and length.

On the other hand, in the average case we have 𝛼 = 1 2⁄ and in this case the attacker will attempt

the half of the candidate passwords (i.e., 𝐻𝑎𝑠ℎ𝑒𝑠𝐵𝐹 =
1.1·109

2
).

9

The second step of this analysis is to estimate the number of target password hashes that will

be cracked by a brute force attack, defined as cracked_passBF. This can be achieved by

leveraging the effectiveness parameter EBF, which defines the percentage of password hashes

that will be successfully cracked by the attack. Therefore, using EBF, we can calculate the

cracked_passBF by multiplying the EBF with the average number of password hashes in the

database D, as shown in equation (2).

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 = 𝑫 · 𝑬𝑩𝑭 (2)

Having calculated the hashesBF and the cracked_passBF, we can calculate the cost of password

guessing for the brute force attack, (defined as costBF). The cost costBF represents the average

number of hashes that will be performed during the attack to crack a password hash in the

database. To calculate costBF we use the following equation.

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑩𝑭

𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭

By replacing the hashesBF with equation (1) and cracked_passBF with equation (2), the final

form of costBF can be derived as follows:

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒂 · 𝑰 · 𝑺

𝑫 · 𝑬𝑩𝑭

· ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (3)

Lastly, the costBF can be translated into the average time required to crack a password hash in

the database D, (defined as cost_timeBF) using the hashrate (i.e. Hr) parameter, as shown in

equation (4).

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑩𝑭 =
𝒄𝒐𝒔𝒕𝑩𝑭

𝑯𝒓
 (4)

4.3 Dictionary Attack

In this section, we elaborate on the cost estimation of dictionary password guessing attacks.

The first step of the cost estimation is to compute the number of hashes that will be performed

during an attack, defined as hashesDC. The hashesDC value can be estimated by multiplying the

iterations I with the salt S and with the number of guessing attempts (i.e., attempts). Thus,

hashesDC can be estimated as follows:

 𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪 = 𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 (5)

As in the brute force attack, the parameter 𝑎 is the attack success factor. The next step for the

cost estimation is to compute the number of password hashes that will be cracked after the

completion of a dictionary password guessing attack, defined as cracked_passDC. The value of

cracked_passDC relies on the effectiveness EDC of the dictionary attacks. Note that the EDC value

relies on the actual method of dictionary attack (e.g., pure, PCFG or Markov model). Using

EDC, the estimated number of the cracked passwords can be computed as follows:

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑫𝑪 = 𝑫 · 𝑬𝑫𝑪 (6)

Having calculated the hashesDC, and the cracked_passDC, the last step is to estimate the average

hashes that will be performed in the database D until a successful password crack, defined as

costDC. To achieve this, we divide hashesDC by cracked_passDC.

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪

𝒄𝒓𝒂𝒄𝒌𝒆𝒅𝒑𝒂𝒔𝒔𝑫𝑪

Next, we can use equations (5) and (6), to derive the final form of costDC.

10

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔

𝑫 · 𝑬𝑫𝑪

 (7)

Finally, to convert costDC into the average time required until a successful password crack in

the database D, cost_timeDC, we need to divide costDC by the hashrate (i.e. Hr), as shown in

equation (8).

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑫𝑪 =
𝒄𝒐𝒔𝒕𝑫𝑪

𝑯𝒓
 (8)

5 Evaluation of default hashing schemes in CMS and web

applications frameworks

This section evaluates the default hashing schemes used by CMS and web application

frameworks based on the following parameters: i) hash function; ii) iterations; iii) usage of salt,

and iv) minimum acceptable pwd_length. In total, we have examined 49 commonly used CMS

and 47 popular web application frameworks. Table 4 shows the considered CMS classified into

7 categories: i) 13 CMS are included in the generic category, which represents CMS that allow

the development of websites with various functionalities that focus on the content (e.g. blog,

news web site), ii) 9 for forums, iii) 5 for ecommerce, iv) 7 for Enterprise Resource Planning

(ERP) and Customer Relationship Management (CRM), v) 2 for coding and bug tracking, vi) 2

for project management, and viii) 11 are classified as “Other”, which do not belong to any of

the above categories.

Based on the results of Table 4 which depicts the default hashing schemes of the investigated

CMS, we can observe that 26.53% of the CMS including osCommerce, SuiteCRM, WordPress,

X3cms, SugarCRM, CMS Made simple, Mantisbt, Simple Machines, miniBB, Phorum, MyBB,

Observium, and Composr use the outdated hash function MD5. MD5 is highly parallelizable

and as we will analyze in section 6.1.1, it is the fastest among all hash functions that can be

executed in GPUs. Regarding the remaining hash functions of the CMS, GetSimple CMS,

Redmine, Collabtive, PunBB, Pligg, and Omeka (i.e. 12.24%) use the SHA1 hash function,

which similar to MD5 is highly parallelizable on GPUs. Drupal, EspoCRM, PhreeBooks, Odoo,

ImpressCMS, Magento, Bugzilla, TYPO3 CMS, Mediawiki, and PhpList (i.e. 20.41%) use

either SHA256/SHA512 or PBKDF2. These hash functions are also parallelizable, thus

increasing the effectiveness of password guessing attacks. Lastly, Joomla, Zurmo,

OrangeHRM, SilverStripe, Elgg, XOOPS, e107, NodeBB, Concrete5, phpBB, Vanilla Forums,

Ushahidi, Lime Survey, Mahara, Mibew, vBulletin, OpenCart, PrestaShop, and Moodle (i.e.

40.82%) use the BCRYPT hash function. As we mentioned in section 3, BCRYPT is more

secure than the rest of the hashing schemes, since it more difficult to be parallelized in GPU

hardware. Based on the above we can conclude to the following observation:

Observation 1: A whopping number (i.e., 59.18%) of CMS use default hashing schemes that

can be highly parallelized with GPU hardware, making password guessing attacks easier.

Indicatively, the popular CMS WordPress uses by default MD5. On the other hand, 40.82% of

the CMS use BCRYPT by default including Joomla.

Another observation which is related to the usage of the default hashing schemes is the

following:

Observation 2: No CMS has adopted SCRYPT, Argon2 or any other MHF yet.

Observation 2 may come as no surprise if we consider that the PHP programming language that

all the CMS are based on, has no official SCRYPT implementation. This means that in case an

administrator of a CMS wants to use SCRYPT, he should rely on a third party or custom

implementation of SCYPT. However, using non-official implementations is considered an

insecure practice, as they may include backdoors [39], [40] or insecure code [41]. On the other

11

hand, Argon2 was included recently (late 2017) in PHP v7.2 and compared to SCRYPT it can

be more easily adopted in a CMS. However, Argon2 is a relatively new hash function and the

audits are too scarce to draw safe conclusions about its security properties. Finally, a common

reason that hinders the adoption of both SCRYPT and Argon2 is related to the fact that the

transition to a new hashing scheme of an already deployed website can lead to downtimes or it

may require once again the registration of its users with a new (or the same) password.

Therefore, for backwards compatibility reasons website administrators avoid modifying

hashing schemes and choose to remain with legacy hash functions. A case in point is the CMS

named Phorum; it still uses the MD5 as the default hashing scheme (see Table 4), despite the

fact that there is a request in the official development repository of Phorum to change MD5 to

a stronger hash function [42]. After a discussion between users and the development team (see

[42]), the main developer opposes to this change, because the developers of Phorum CMS are

considered how existing installations are going to update to the new hash function. Thus, they

decide not to proceed with any modification to the hash function leaving MD5 as the main hash

function. Another similar discussion takes place for Magento CMS [43], which is an e-

commerce platform and still uses SHA256.

Regarding the usage of salt, the most important finding is that 14,29% of the targeted CMS,

and specifically X3cms, GetSimple CMS, miniBB, Phorum, MantisBT, Collabtive, and phpList

do not use salt in their default hashing scheme (see Table 4), which renders password hashes

vulnerable to rainbow table attacks. The fact that salt is missing in these CMS implies that users

with the same plaintext passwords will also share the same password hash. Another important

finding is that 36.73% of the tested CMS do not use iterations in their password hashing scheme

(i.e., the iterations value is 1). Also, the rest of the CMS that use iterations use an arbitrary

number of iterations. For instance, for BCRYPT we observe that there are CMS that use 256,

1024, or 4096 iterations, while for PBKDF2 we observe 10.000, 12.000, or 30.000. This

variations stems from the fact that BCRYPT does not have official recommendations for its

iterations, while NIST proposes a minimum of 10.000 iterations for PBKDF2. Based on the

above, we can conclude to the following observation:

Observation 3: Password hashes created by 14.29% of the CMS are vulnerable to guessing

attacks based on rainbow tables, since they do not use salt in their default hashing scheme.

Also, 36.73% of the CMS do not use iterations, which makes them even more vulnerable to

password guessing attacks. On the other hand, the rest of the CMS that use iterations, select

the number of iterations inconsistently and arbitrarily.

The last parameter to be analyzed is the minimum acceptable password length. Although this

parameter does not affect the execution time of a hashing scheme, password hashes created

from small passwords are more likely to be cracked. From the analysis of Table 4 it is observed

that only 12.24% of the CMS (i.e., e107, Typo3 CMS, Bugzilla, Redmine, Phplist, and Moodle)

enforce passwords of 8 characters length or greater. On the other hand, 6.12% require

passwords with a minimum length of 7 characters, 14.29% of 6 characters, 20.41% of 5

characters and 8.16% of 4 characters. However, the most important remark is that 38.78% (i.e.

Drupal, SuiteCRM, WordPress, SugarCRM, EspoCRM, GetSimple CMS, CMS Made simple,

Odoo, Mantisbt, Collabtive, Vanilla Forums, Observium, Lime Survey, MediaWiki, Phorum,

vBulletin, Mibew, and Composr) of the CMS do not check the password length during the

registration process, since we were able to create single character passwords. Based on the

above, we can conclude to the following observation:

Observation 4: 38.78% of the CMS do not enforce minimum password length policy, which

may result in weak passwords. Notably, WordPress and Drupal belong to this category of CMS

that allow a single character password. This observation, alongside with the fact that many

CMS use parallelizable hash functions makes password cracking even more effective.

12

Table 4: The default hashing scheme parameters of the investigated open source CMS

CMS Category Hash

function

Iterations Salt Min pwd

length

CMS Category Hash

function

Iterations Salt Min pwd

length

Drupal 8.4.4 Generic SHA512 65536 ✔ 1 OsCommerce2.3.4.1 Ecommerce MD5 1 ✔ 5

Joomla 3.8.3 Generic BCRYPT 1024 ✔ 4 Zen Cart 1.5.5 Ecommerce BCRYPT 1024 ✔ 7

WordPress 4.9.1 Generic MD5 8192 ✔ 1 SuiteCRM 7.9.9 ERP/CRM MD5 1000 ✔ 1

X3cms 0.5.3 Generic MD5 1 ✘ 5 Zurmo 3.2.3 ERP/CRM BCRYPT 4096 ✔ 5

ImpressCMS 1.3.10 Generic SHA512 5000 ✔ 5 OrangeHRM 4.0 ERP/CRM BCRYPT 4096 ✔ 4

GetSimple CMS 3.3.13 Generic SHA1 1 ✘ 1 SugarCRM 6.5.25 ERP/CRM MD5 1000 ✔ 1

CMS Made simple

2.2.5

Generic MD5 1 ✔ 1 EspoCRM 5.0.2 ERP/CRM SHA512 1 ✔ 1

SilverStripe 4.0.1 Generic BCRYPT 1024 ✔ 1 PhreeBooks 9 ERP/CRM SHA256 1 ✔ 5

Elgg 2.3.5 Generic BCRYPT 1024 ✔ 6 Odoo 11 ERP/CRM PBKDF2SHA512 12000 ✔ 1

XOOPS 2.5.9 Generic BCRYPT 1024 ✔ 5 Mantisbt 2.10.0 Coding MD5 1 ✘ 1

e107 2.1.7 Generic BCRYPT 1024 ✔ 8 Bugzilla 5.1.1 Coding SHA256 1 ✔ 8

TYPO3 v9 Generic PBKDF2SHA512 25000 ✔ 8 Redmine 3.4.4 Proj. Mgmt SHA1 2 ✔ 8

Concrete5 8.3.1 Generic BCRYPT 4096 ✔ 5 Collabtive 3.1 Proj. Mgmt SHA1 1 ✘ 1

PhpBB 3.2.2 Forum BCRYPT 1024 ✔ 6 Ushahidi 3 Other BCRYPT 4096 ✔ 7

Vanilla Forums 2.6 Forum BCRYPT 1024 ✔ 6 Pligg 1.2.2 Other SHA1 1 ✔ 5

Simple Machines 2.0.15 Forum MD5 1 ✔ 6 Observium 0.17.11 Other MD5 1000 ✔ 1

MiniBB 3.2.2 Forum MD5 1 ✘ 5 Lime Survey 2 Other BCRYPT 1024 ✔ 1

Phorum 5.2.23 Forum MD5 1 ✘ 1 MediaWiki 1.30.0 Other PBKDF2SHA512 30000 ✔ 1

MyBB 1.8.12 Forum MD5 1 ✔ 6 Omeka 2.5 Other SHA1 1 ✔ 6

PunBB 1.4.4 Forum SHA1 1 ✔ 4 phpList 4 Other SHA256 1 ✘ 8

vBulletin 5.3.4 Forum BCRYPT 1024 ✔ 1 Mahara 17.04 Other BCRYPT 4096 ✔ 6

NodeBB Forum BCRYPT 4096 ✔ 6 Mibew 3.1.3 Other BCRYPT 256 ✔ 1

OpenCart 3.0.2.0 Ecommerce BCRYPT 1024 ✔ 4 Composr 10 Other MD5 1 ✔ 1

PrestaShop 1.7 Ecommerce BCRYPT 1024 ✔ 5 Moodle 3.4 Other BCRYPT 1024 ✔ 8

Magento 2.2 Ecommerce SHA256 1 ✔ 7

13

Driven by the above remarks, we can conclude that the majority of CMS offer weak hashing

schemes in the default settings. As a prime example to discuss this observation, we select

Phorum as previously; this web platform uses MD5 without iterations and salt, while it allows

even 1-character length passwords (see Table 4). Of note, the majority of the considered CMS

allow modifications to the default settings. For instance, there is a plugin for WordPress that

allows to easily change the default MD5 to BCRYPT for password hashing. However, CMS

are characterized as “plug and play” solutions. In particular, their main goal is to allow even

non-developers to easily deploy websites. This fact makes it less probable that CMS

administrators will ever try to modify the default configurations. What is more, this argument

is also strengthened by the fact that, in general, individuals tend to remain at the default

assignment (also known as default effect [44]). Based on the above, a more generic observation

can be extracted as follows:

Observation 5: CMS follow an opt-in policy for security configurations. That is, by default

they do not provide the most secure hashing schemes, but they allow the modification to more

secure schemes. However, considering that CMS administrators may not be developers and

do not have the appropriate security expertise, we argue that most CMS are deployed in the

Internet with the default security settings including the hashing scheme.

The second part of this section examines the default hashing schemes of the most commonly

used web application frameworks. As we mentioned in section 2.3, a key difference between

CMS and web application frameworks is that the latter require programming knowledge and

they are utilized by web developers, while the former (i.e., CMS) does not require coding

knowledge, since it is based on installable modules. Table 5 shows the investigated web

application frameworks classified into 5 categories, based on the programming language for

web application development. More specifically, we investigated i) 10 frameworks which rely

on PHP, ii) 14 that are based on Python, iii) 11 that use Ruby on Rails, and iv) 11 based on

Javascript. ASP.NET is the last framework we explored, and we categorized it as v) “Other”,

since it supports development in several programming languages. The default hashing schemes

of the investigated web application frameworks are depicted in Table 5. An important

observation that can be derived is that 48.94% of the web application frameworks do not offer

a default password hashing scheme, which might lead to improper password hashing.

Moreover, the Kohana PHP framework uses the same salt value for all stored passwords, thus

they are vulnerable to rainbow table attacks. Another significant finding is that Kohana, Django,

CherryPy, Bottle, ExpressJS, MeanJS, MernJS, nodeJS, AllcountJS, Cuba, and ASP.NET (i.e.

23.40%) use parallelizable hash functions (i.e., MD5, SHA1, SHA256, SHA512 and PBKDF2),

while Kohana, CherryPy, Bottle, AllcountJS, Cuba, and ASP.NET (i.e. 12.77%) use only 1

iteration of the employed hash function. On the other hand, Laravel 5.4, Codeigniter 3.1.4,

CakePHP 3.3, Zend framework3, Yii 2, Phalcon 3.0.4, Aura PHP, Lithium, MeteorJS, SailsJS,

FathersJS, Derby, and Ruby on Rails, which stand for 27.66% use the BCRYPT hash function

by default. Based on the above we can conclude to the following observation:

Observation 6: 23.40% of the web applications frameworks opt for weak (i.e., parallelizable)

hash functions, while 12.77% of them do not use iterations. What is more, only 27.66% use the

BCRYPT hash function by default. Similar to CMS and observation 2, SCRYPT and Argon2 are

absent from the default settings.

Additionally, from Table 5, we can notice that:

Observation 7: 48.94% of the investigated web applications frameworks do not offer a default

password hashing scheme, which might lead to the selection of a weak password hashing

scheme in web applications.

The underlying assumption of observation 7 lies to the fact that developers are expected to have

the knowledge of selecting appropriate hash functions and configure securely the hashing

14

scheme of the websites they develop using salts. In a recent work [6], web developers were

given the task to store passwords for authentication in a website. Among the many key insights

of this work, the most important ones were: i) many developers stored the passwords in

plaintext; ii) most of the developers focused on the functionality and only added security as an

afterthought; iii) even participants who attempted to store passwords securely often did it in a

wrong manner, because they used outdated methods (e.g., they used MD5 without even

iterations); iv) different standards and security recommendations made it difficult for

developers to decide what is the right course of actions. Therefore, all the above observations

imply that there is a lack of adequate security knowledge even by developers, and simply

assuming that they will select a secure password storage scheme is a dangerous misconception.

Hence, it would be beneficial for web applications frameworks to offer secure hashing schemes

by default.

6 Cost analysis comparison of CMS and web applications

frameworks

Based on the cost analysis framework that we proposed in section 4, here we perform a

comparison of the various CMS and web frameworks to evaluate the security of their default

hashing schemes. In order to be able to perform this numerical comparison, first we have to

derive the input values for our cost analysis framework. In particular, we have to compute

values for: i) hashrates for various hash functions and iterations ii) effectiveness of dictionary

attacks, and, iii) effectiveness of brute force attacks.

6.1 Input values

6.1.1 Hashrates

First, we derive hashrate values using a popular GPU-based password cracking tool named

Hashcat [45]. Due to its popularity, there are numerous benchmarks available on the Internet

that calculate the hashrate of various GPU models. However, due to the fact that we were not

able to find up to date benchmarks (i.e., the most recent ones were of 2014) we opted for our

own benchmarks. To this end, we derived hashrate values (see Table 6) of various hash

functions and iterations using the GeForce GTX 1070 [46], which was NVIDIA’s second-best

GPU model of 2016. As expected the hash functions MD5, SHA1, SHA256 and SHA512

exhibit high performance in the sense that GPUs can compute several hashes per second.

PBKDF2 slows downs the computations due to the iterations used. Regarding BCRYPT and

SCRYPT, we observe that BCRYPT has the slowest performance for number of iterations up

to 16384 iterations, but for higher values, SCRYPT is slower than BCRYPT.

Along with GPU based hashrates, it is imperative to compute the runtime of a hash value

calculation in a typical Web Server machine. In particular, the number of iterations should not

be set too high; otherwise the calculation of a hash value can be significantly delayed, disrupting

the normal operation of the website. That is, authentication delays can frustrate users that are

trying to login, especially if they have to provide multiple times their password, because they

provided an erroneous input. As mentioned in [47], [48], authentication delays higher than 1

second are not acceptable by many internet users. As a side note, for an offline environment

(i.e., disk encryption), higher numbers of iterations can be used (e.g., for key generation from

low entropy passwords). To this end, we have used a typical server setup, an Intel Xeon E5-

2640 v2 CPU with 4 GB RAM to estimate the runtime of the hash functions for various

iterations (see Table 6). We observe that in almost all considered iterations values, the runtime

of the hash functions does not exceed the upper limit of one second, except for BCRYPT for

32678 and 65536 iterations, which the runtime is 2.72 sec and 5.45 seconds respectively.

15

PHP Frameworks Hash function Iterations Salt JavaScript

Frameworks

Hash function Iterations Salt

Kohana 3.3 SHA256 1 ✔

(Constant)

MeteorJS BCRYPT 1024 ✔

Symfony 3.2 No default ExpressJS PBKDF2SHA512 10000 ✔

Laravel 5.4 BCRYPT 1024 ✔ SailsJS BCRYPT 1024 ✔

Codeigniter 3.1.4 BCRYPT 1024 ✔ FathersJS BCRYPT 1024 ✔

CakePHP 3.3 BCRYPT 1024 ✔ Derby BCRYPT 1024 ✔

Zend framework3 BCRYPT 16384 ✔ Wakanda No default

Yii 2 BCRYPT 8192 ✔ MeanJS PBKDF2SHA512 10000 ✔

Phalcon 3.0.4 BCRYPT 256 ✔ MernJS PBKDF2SHA512 10000 ✔

Aura PHP BCRYPT 1024 ✔ nodeJS PBKDF2SHA512 10000 ✔

Lithium BCRYPT 1024 ✔ AllcountJS SHA1 1 ✔

Python Frameworks Hash function Iterations Salt AngularJS No default

Django PBKDF2SHA256 30000 ✔ Ruby Frameworks Hash function Iterations Salt

CherryPy MD5 1 ✔ Ruby on Rails BCRYPT 1024 ✔

Flask PBKDF2SHA256 50000 ✔ Padrino No default

Bottle No default Nyny No default

Pyramid SHA512 1 ✘ Grape No default

Klein No default Nancy No default

Web2py SHA512 1000 ✘ Ramaze No default

Objectweb No default Cuba SHA1 1 ✔

Pecan No default Camping No default

Tornado No default Scorched No default

Grok No default Celluloid No default

Zope No default Sinatra No default

Turbogears No default Other Frameworks Hash function Iterations Salt

Quixote No default ASP.NET SHA256 1 ✔

Table 5: The default hashing scheme parameters of the investigated web application frameworks

16

Hash function (iterations) Hashrate (H/s)

(NVIDIA GTX1070)

Runtime (sec)

(Intel Xeon E5-2640 v2)

MD5 (1) 21,359,700,000.00 1.06·10-6

SHA1 (1) 7,043,888,888.00 1.37·10-6

SHA256 (1) 2,536,500,000.00 1.75·10-6

SHA512 (1) 844,100,000.00 1.95·10-6

BCRYPT (1024) 358.00 8.68·10-6

BCRYPT (8192) 44.75 6.85·10-5

BCRYPT (16384) 22.00 6.8·10-1

BCRYPT (32768) 11.00 2.72

BCRYPT (65536) 5.00 5.45

PBKDF2SHA256 (8192) 121,375.00 1.09·10-2

PBKDF2SHA256 (16384) 60,574.00 3.92·10-2

PBKDF2SHA256 (32768) 30,271.50 7.67·10-2

PBKDF2SHA256 (65536) 15243.50 1.57·10-1

PBKDF2SHA256 (131072) 7,587.00 3.04 10-1

PBKDF2SHA256 (262144) 3,797.00 6.16·10-1

PBKDF2SHA512 (8192) 43,631.00 2.61·10-2

PBKDF2SHA512 (16384) 22,174.00 5.23·10-2

PBKDF2SHA512 (32768) 10,895.25 1.03·10-1

PBKDF2SHA512 (65536) 5487.00 2.06·10-1

PBKDF2SHA512 (131072) 2,752.00 4.12·10-1

PBKDF2SHA512 (262144) 1,388.00 8.22·10-1

SCRYPT (8192) 122.00 2.75·10-2

SCRYPT (16384) 34.00 5.24·10-2

SCRYPT (32768) 9.00 1.06·10-1

SCRYPT (65536) 2.00 2.16·10-1

SCRYPT (131072) 0.3 4.35·10-1

SCRYPT (262144) 0.012 8.71·10-1

Table 6: Hashrates and runtime values

6.1.2 Effectiveness

6.1.2.1 Dictionary

In this section, we analyze the effectiveness EDC (see section 4.1) for three types of dictionary

attacks: i) pure ii) Markov model and iii) PCFG. These values are obtained from the related

work. For pure dictionary attacks, we use the EDC and the attempts parameter values from [19]

(see Table 7). The authors of this work used dictionaries with English, Italian and Finish

lowercase words and executed pure dictionary attacks against two databases DB1 and DB2

respectively, recording effectiveness EDC values 24.79% and 26.02% respectively. Note that the

DB1 included hashed passwords leaked from an Italian messaging server, while DB2 consisted

of hashed passwords from Finnish speaking forums.

Dictionary attempts EDC DB1 EDC DB2

English, Italian

and Finnish words
1.45·103 24.79% 26.02%

Table 7: Effectiveness values for pure dictionary password guessing attacks (values were taken from

[19])

17

Moreover, we have obtained the EDC values based on Markov model and PCFG as derived from

[19] (see Table 8). The EDC for the PCFG model ranges from 41.50% for 1.45 million guessing

attempts to 49.36% for 145 million guessing attempts. On the other hand, the Markov model is

more efficient, since its EDC values are greater than the ones of PCFG. Particularly, by

leveraging the Markov model, 53.49% of the passwords can be cracked with 149 million

attempts, while this value can be increased to 99.70% for 1040 guessing attempts.

Model attempts EDC

PCFG 1.45·106 41.50%

PCFG 41·106 46.33%

PCFG 145·106 49.36%

Markov ~149·106 53.49%

Markov ~156·106 54.58%

Markov ~850·106 61.90%

Markov ~7·1016 91.44%

Markov ~1040 99.70%

Table 8: Effectiveness values for dictionary password guessing using PCFG or Markov models (values

were taken from [19])

6.1.2.2 Brute force

To compute the effectiveness of a brute force attack EBF, we define the parameter Ppwd_length as

the percentage of passwords that have a specific length and the parameter PC,pwd_length, as the

percentage of passwords to have a specific length and charset C. For instance, for

pwd_length=8, Ppwd_length represents the percentages of 8-character passwords, while for charset

C=10 (see Table 3) and pwd_length=4, PC,pwd_length is the percentage of numerical passwords

with 4 digit numbers. Recall also from section 4.1, that pwd_lengthmin and pwd_lengthmax, is the

minimum and maximum password length respectively that the attacker aims to crack. Based on

the above, the EBF value can be estimated as shown in equation (9).

 𝑬𝑩𝑭 = ∑ 𝑷𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉 · 𝑷𝑪,𝒑𝒘𝒅_𝒍𝒆𝒏𝒕𝒈𝒉

𝒑𝒘𝒅_𝒍𝒆𝒈𝒏𝒕𝒉𝒎𝒂𝒙

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (9)

To the best of our knowledge there is no work that has calculated the Ppwd_length and the

PC,pwd_length values. To this end, we perform an empirical analysis of passwords, in order to derive

numerical values for Ppwd_length and PC,pwd_length. More specifically, we have gathered a large

collection of leaked password datasets from various online services across multiple years (from

2006 to 2017). The total number of collected passwords is 254.38 million passwords from 12

datasets. Note that these datasets are public and can be found in the Internet in various blogs

and forums. It is also important to mention that we have collected leaked datasets that include

only plaintext passwords. This is a key factor to avoid biasing results, since in this way we

guarantee that all passwords are included in our statistical analysis. On the contrary, if we had

used datasets that include cracked passwords, then we would have performed a statistical

analysis only with passwords that have been guessed biasing the results. We verified that the

considered databases are composed of plaintext passwords using a two-step procedure: i) by

checking that the length of the passwords in the datasets do not match the length of a hash value

(e.g., an MD5 hash has always a fixed output of 16 bytes), and ii) by performing a cross check

with a historical record of leaked passwords available as a public service [49]. Considering that

the processed usernames and passwords are in plaintext form, we do not reference their source,

since many of these accounts may be still active.

In Table 9, we classify the breached websites into various categories (9 in total) based on their

content or service they provide. We observe that the associated user accounts of these websites

are diverse in the sense that they are created from non-technical users (e.g. Mate1 was an online

18

dating platform) to web developers (e.g. 000webhost is a web hosting platform for

PHP/MySQL websites). Moreover, the breached websites offer their services globally, except

for Auction-warehouse which explicitly requires their users to be US citizens. Therefore, we

believe that the collected datasets represent a diverse and generic set of passwords.

Dataset # Website Category Number of Passwords

1 000webhost Web hosting 15.311.565

2 1394store e-shop 20.649

3 Auction-warehouse Auctions 26.616

4 Clixsense Advertisemts 2.222.542

5 Mail.ru email 4.664.479

6 Mate1 Social 27.403.959

7 Neopets Gaming 68.743.269

8 Rockyou Social 32.625.471

9 Tuscl Adult 38.599

10 VKontakte Social 100.544.934

11 Yahoo voices Publishing 453.837

12 Youporn Adult 2.325.492

Table 9: Categories and number of leaked passwords

The numerical values of the password analysis are shown in Table 10. Note that the presented

values are averages of the password length and character set distributions from each one of the

considered databases. For the character set distributions we classify the passwords based on the

following categorization: i) numeric: only numbers (e.g., 1234567890); ii) lowercase: only

lowercase Latin alphabet characters (e.g. password); iii) uppercase: only uppercase Latin

alphabet characters (e.g., PASSWORD); iv) mixedcase: uppercase + lowercase (e.g.,

PassworD); v) loweralphanumeric: lowercase + numeric (e.g., passw0rd); vi)

upperalphanumeric: uppercase + numeric (e.g., PASSW0RD); vii) mixedalphanumeric:

mixedcase + numeric (e.g., Passw0rD); and viii) special: passwords that contains at least one

special character (e.g., P@ssw0rD).

Table 10 can be used to derive the Ppwd_length and PC,pwd_length values and consequently the

effectiveness EBF of brute force attacks. To exemplify, consider an attack targeting 7 to 8-

character lowercase passwords (i.e., pwd_length=8 and C=26). In this case, Ppwd_length equals to

20.68%, and PC,pwd_length equals to 30.36%, while pwd_lengthmin=7 and pwd_lengthmax=8. Thus,

using equation (9), the effectiveness for a brute force attack EBF is equal to 12.16%.

6.2 Comparative analysis

Here we use our cost analysis model that we presented in section 4 to perform a comparative

analysis of the cost time between different CMS and web application frameworks. To derive

numerical results for the cost time we consider the values from section 6.1.1 for the hashrates

as well as for brute force and dictionary effectiveness. We also consider the worst case scenario

for the attacker, which means that the attack success factor 𝑎 is equal to 1 (see section 4.2).

Table 11 summarizes the numerical results. The comparison is performed using five (5)

different groups. Group 1 compares the cost time for a brute force attack (i.e., cost_timeBF)

19

Password

length

Password

Length

Distribution

Character set distributions

Numeric Lowercase Uppercase Mixedcase Loweralphenumeric Upperalphanumeric Mixedalphanumeric Special

≤4 2,68% 38,47% 39,92% 2,06% 4,80% 3,46% 0,38% 0,08% 10,83%

5 3,60% 13,71% 57,27% 1,83% 5,19% 9,69% 0,53% 0,40% 11,39%

6 19,12% 25,25% 39,96% 1,21% 1,56% 28,40% 1,10% 1,21% 1,31%

7 15,53% 10,57% 37,88% 0,96% 1,68% 42,94% 1,38% 2,18% 2,42%

8 20,68% 13,51% 30,36% 0,61% 1,88% 44,76% 1,31% 4,78% 2,79%

9 12,26% 6,80% 30,23% 0,77% 1,59% 50,53% 1,50% 4,36% 4,22%

10 8,57% 9,96% 29,77% 0,49% 1,58% 46,18% 1,52% 5,14% 5,37%

11 4,22% 6,80% 27,46% 0,59% 2,31% 44,39% 1,47% 7,95% 9,05%

12 2,96% 3,37% 27,28% 0,52% 2,05% 45,02% 1,26% 8,44% 12,06%

13 1,48% 2,52% 20,62% 1,48% 3,24% 44,79% 2,48% 8,30% 16,56%

14 1,12% 3,23% 19,61% 1,29% 1,85% 44,27% 1,88% 9,10% 18,77%

15 0,97% 2,09% 18,66% 1,54% 2,19% 43,50% 2,12% 8,43% 21,46%

16 1,17% 3,97% 19,59% 2,24% 3,12% 34,59% 2,61% 12,65% 21,24%

≥17 5,64% 3,49% 21,25% 1,24% 1,65% 31,83% 1,87% 9,00% 29,68%

Table 10: Values for password length as a function of character set distributions

20

between a CMS that does not enforce a password policy by default and a CMS which applies a

password policy. From the investigated CMS we identified that the majority of the CMS do not

enforce a password policy by default, except for Magento CMS. To this end, in group 1 we

include for the comparison a CMS named EspoCRM (which does not have a password policy)

to Magento CMS (which by default uses a password policy). In particular, Magento policy

accepts passwords that composed from at least 3 different charsets (i.e., numeric, lowercase,

uppercase, special). Thus, for this comparison, we estimate the cost time of a brute force attack

cost_timeBF for 8-character length mixedalphanumeric passwords for Magento (due to the

password policy), and 8-character length lowercase passwords for EspoCRM (due to the

absence of a password policy). Using equation (4) in section 4.2 and the input values derived

in section 6.1, we calculate that for EspoCRM the cost_timeBF is equal to 3940 seconds, while

for Magento is 8708036 seconds, which is a whopping 220.916% increase. This can be justified

by the fact that password charset C of Magento is 62 (mixedalphanumeric – see Table 3) which

greatly increases the required number of hashes for the brute force attack.

It is important to notice that the attacker’s effort for Magento CMS is increased only against

brute force guessing attacks. On the other hand, in case of a dictionary attack, password policies

may not be effective, as attackers apply mangling rules that are able to break complex

passwords. In general, we argue that password policies do not necessarily imply better password

security. As a matter of fact, the latest NIST guidelines [31] explicitly mention that complex

policies that force the users to select passwords using a combination of capital letters, numbers

and special characters may deteriorate the overall resilience of the created passwords. On the

other hand, NIST guidelines mention that the password length is an important factor that should

be taken into account in the password policies (i.e., “Users should be encouraged to make their

passwords as lengthy as they want, within reason” as mentioned in [31]).

Observation 8: A simple password policy such as the one of Magento, can have a drastic effect

on the effort of the attacker to perform password guessing using brute force attacks. The

majority of CMS and web application frameworks do not enforce the use of password policies,

not even in the password length.

Group 2 compares a CMS (i.e., Mibew) that uses BCRYPT with its lowest number of iterations

(i.e., 2) among all CMS and web application frameworks as shown in Table 4, with a web

application framework (i.e., Flask) that uses PBKDF2, which is the highest number of iterations

(50.000 iterations) among all CMS and web application frameworks (see Table 4). The attack

is brute force and since no password policy is enforced in these CMS, we select 8-character

numeric passwords. The numerical results (see Table 11) show that even the lowest iterations

of BCRYPT have significantly higher cost time (i.e., 2499488 seconds) compared to the highest

iterations of PBKDF2 (i.e., 181814 seconds). This is due to the fact that BCRYPT reduces the

level of parallelism [27]. As we mentioned in section 3, NIST guidelines [31] recommend

PBKDF2 for hashing passwords with a minimum number of 10.000 iterations. Given our

results, we argue that this recommendation is not adequate to withstand against offline

passwords attacks.

Observation 9. BCRYPT even only with 256 iterations provide significant improvements in

terms of security over PBKDF2 with 50.000 iterations. Thus, we argue that not only the

minimum recommended iterations of PBKDF2 by NIST is too low (i.e., 10.000), but also the

recommended hash function itself (i.e., PBKDF2) is not resistant to password guessing.

Group 3 investigates the effect of iterations for BCRYPT on the cost time in a dictionary attack.

For this reason, we selected OpenCart, which uses 1024 iterations, and Zend framework, which

uses the highest number of BCRYPT iterations among all CMS and web application

frameworks (i.e. 16384). In this group, the derived numerical results of cost time are based on

a dictionary attack. Specifically, we select a dictionary attack based on PCFG with 1.45·106

21

attempts and EDC=41.5% (see first row of Table 8). As observed, an attacker needs 17302

seconds to guess a password for OpenCart (i.e., 1024 BCRYPT iterations), while this value

increases to 276836 seconds for Zend Framework (i.e., 16384 BCRYPT iterations), which is

an 1500% increase. Considering that the runtime of BCRYPT for 16384 iterations on a server

is 6.8·10-1 seconds (see Table 6), which is lower than the login delay threshold of one second

(see section 6.1.1), OpenCart (and all other CMS using BCRYPT) can increase the value of

iteration.

Observation 10. Most CMS uses 1024 iterations for BCRYPT. This is attributed to the fact that

the PHP programming language which all the CMS are based on, uses 1024 BCRYPT iterations

by default. We argue that PHP can increase the default number of BCRYPT iterations (e.g.,

16384) without imposing significant delays in the login procedure.

Group 4 aims at investigating the cost time of MHFs compared to BCRYPT. For this reason,

we opt for phpBB which uses BCRYPT with 1024 iterations and a hypothetical website

utilizing SCRYPT with 16384 iterations. Note that the recommended value of SCRYPT [28] is

16384. We select a dictionary attack based on PCFG using EDC=41.5%. From numerical results

we can deduce that the SCRYPT hash function increases the robustness of password hashing

schemes, considering that an attacker needs 31376 seconds to crack a password. Moreover, the

runtime of SCRYPT on servers is negligible, since it equals to 5.24·10-2
 seconds for 16384

iterations (see Table 6). From group 4 results, we can conclude to the following:

Observation 11. As a long-term solution, we suggest CMS to upgrade their default hash

function to a MHF which is resistant to password cracking and does not add login delays. Also

NIST guidelines could replace PBDKF2 with a MHF when the latter has reached an adequate

number of security audits. On a positive note recent 2017 NIST guidelines do suggest the use

of MHFs.

Finally, group 5 aims at comparing the three most popular CMS namely WordPress, Joomla,

and Drupal. WordPress, which is the most commonly used CMS, uses the weak MD5 hash

function with 8192 iterations, while Drupal uses 65536 iterations of the highly parallelizable

SHA512 hash function. On the contrary, Joomla uses BCRYPT with the PHP’s default iteration

value (i.e. 1024). As observed, a dictionary attack with EDC=41.5% can crack a WordPress

password in 2.4 seconds, while this value increases to 481 seconds for Drupal. The low level

of parallelization of BCRYPT, has a significant impact on the cost_timeDC considering that an

attacker needs 17302 seconds to crack a Joomla password hash. To conclude, the most secure

CMS is Joomla, followed by Drupal, while WordPress is the most vulnerable to offline

password guessing attacks despite the fact that it is the most widely used CMS.

 Attack Target CMS
Password

Policy
Hash function Iterations Attempts Effectiveness

Cost time

(sec)

Group

1
BF

Magento ✔ SHA256 1 628 (Pl =8, C=62) EBF =0.99% 8708036

EspoCRM ✘ SHA512 1 268 (Pl =8, C=26) EBF =7.83% 3940

Group

2
BF

Flask ✘ PBKDF2SHA256 50000 108 (Pl =8, C=10) EBF =2.79% 181814

Mibew ✘ BCRYPT 256 108 (Pl =8, C=10) EBF =2.79% 2499488

Group

3
DC

OpenCart ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302

Zend ✘ BCRYPT 16384 1.45·106 EDC =41.5% 276836

Group

4
DC

PhpBB ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302

Hypothetical

website
✘ SCRYPT 16384 1.45·106 EDC =41.5% 31376

Group

5
DC

WordPress ✘ MD5 8192 1.45·106 EDC =41.5% 2.4

Drupal ✘ SHA512 65536 1.45·106 EDC =41.5% 481

Joomla ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302

22

Table 11: Numerical results of the cost time for various CMS and web application frameworks.

7 Misuse of password hashing schemes for denial of service attacks

In this section we investigate whether hashing schemes can be misused to lead to denial of

service attacks to web applications. The rationale behind the experiments was that resource

intensive configurations of hashing schemes (e.g., high number of iterations) can deplete the

CPU resources of the web server and eventually result in denial of service conditions. To this

end, we deployed a custom version of the popular WordPress CMS using the Apache web

server. We implemented a plugin for WordPress with which we can easily modify and configure

all the parameters of the hashing scheme, such as the hash function and the number of iterations,

(see below). Finally, we wrote a script that performs multiple login requests with a registered

username and random password values, forcing WordPress to hash and verify them. On the

web server, we measured the CPU utilization using htop toolkit [50]. Regarding the hardware

setup, we used a Intel Xeon E5-2640 v2 CPU and 4 GB memory running Ubuntu server 18.04,

Apache 2.4.29 and PHP 7.2.

As shown in Table 12, the parameters of the experiment were: i) the hash function, ii) iterations,

iii) password length and iv) rate (login requests per second). More specifically, we examined

hash functions that are used. Particularly, we considered the following hash functions, which

are the default ones for the 3 most popular CMS (i.e., WordPress, Joomla, Drupal). That is, we

examined: i) MD5 as it is the default one used by WordPress, ii) SHA512 which is the default

one of Drupal, and iii) BCRYPT used by Joomla. Apart from the above hash functions we also

included in the experiments SCRYPT, which is a memory hard function as discussed in section

3. Moreover, the iterations value ranges from 1 to 65536 (216), while the password length ranges

from 10 to 10000 characters. Lastly, the rate of the login requests per second of users varies

from 1 to 30 requests per second.

Parameter Values

Hash function MD5, SHA512, BCRYPT,

SCRYPT

Iterations (I) 1, 1024, 4096, 8192, 16384,

32768, 65536

Password length (pwd_length) 10, 1000, 5000, 10000

Rate (login requests per second) 1, 5, 10, 15, 20, 25, 30

Table 12: Parameters of the hashing schemes.

Figure 1 shows the CPU utilization as a function of the login rate for the MD5, SHA512,

BCRYPT, and SCRYPT hash functions. In this experiment, we have used the default iteration

values of the hash functions as they employed in the popular CMS. That is, we use: i) MD5

with 8192 iterations, as this is the default setting in WordPress, ii) BCRYPT with 1024

iterations, which is the default setting of Joomla iii) SHA512 with 65536 iterations, which is

the default setting of Drupal. Moreover, to include also a MHF in the experiments, we use

SCRYPT with 16384 iterations, as recommended in its specifications [28]. As it is observed, in

all cases the increase of the CPU utilization is almost linear as the login rate increases. It is

important to note that BCRYPT (i.e. Joomla), and SHA512 (i.e. Drupal) with their default

settings could cause the CPU utilization to increase to 100% for rate equal to 20 and 25 requests

respectively. By maintaining such CPU load, the web server cannot cope with the required login

attempts, thus keeping occupied all the available Apache connections. This results in a denial

of service at the application layer, since the web server cannot respond to new requests. A

significant remark is that denial of service attacks performed with 20-25 login requests per

second, are not easily detectable by firewalls, if the logins are performed from different IPs

(i.e., distributed denial of service). On the other hand, SCRYPT reaches 80% for rate equal to

23

30 requests per second. It is important to mention that during the experiments we observed that

when CPU utilization reached 80%, the website was responsive but its pages were loading after

a significant delay (i.e., 10-15 seconds). Therefore, although SCRYPT did not reach 100% CPU

utilization, it was still capable of clogging the web server. On the other hand, Figure 1 suggests

that MD5 cannot deplete the CPU resources as its increase rate is very slow and does not exceed

30% CPU utilization. Based on the above, we can conclude to the following observation:

Observation 12: Slow rate denial of service attacks against websites that use hash functions

with iterations are feasible (except for MD5). BCRYPT with 1024 iterations can reach 100%

CPU utilization, even for login rate equal to 20 requests per second. This result is alarming

considering that distributed denial of service attacks originated by botnets can far exceed the

rates of our experiments. As mentioned in [51] the majority of the distributed denial of service

attacks in 2017 was performed using 100 to 1000 requests per second.

Figure 1: CPU utilization vs login rate

Although slow rate denial of service attacks are not easily detectable by intrusion detection

systems and next generation firewalls [52], the nature of our considered denial of service based

on password hashing has a weak point that the defenders can take advantage of, to withstand

websites against this attack. In particular, by using a mechanism called rate-limit (aka throttle),

a website can block the usernames related to the incorrect logins, for a specific time period

when a predefined threshold of failed consecutive attempts is reached. In this way, attackers

cannot continue performing the denial of service for a long time period, since eventually all the

usernames under the possession of the attacker will be blocked and the related login attempts

will be discarded. Another beneficial characteristic of this solution lies to the fact that the rate

limit can be applied at the application layer. As a matter of fact, there are many ready to use

and free CMS plugins, (such as [53] for WordPress) or a middleware for web application

frameworks (such as [54] for CakePHP) that an administrator/developer can use.

Observation 13: It is imperative to employ rate-limit in websites to mitigate denial of service

attacks based on concurrent login attempts. The rate limit of login attempts is an effective and

easy to deploy security mechanism available in many CMS and web applications frameworks.

NIST guidelines consider as highly important to enforce rate limits and recommend maximum

100 failures per account [31].

In the next two experiments we will investigate if password length and iterations can cause

denial of service attacks even for very slow rates. More specifically, Figure 2 shows the CPU

utilization versus the password length for the same hash functions and number of iterations as

in the previous experiment. The rate of attempts is equal to 1 request per second. The first and

most important finding is that SHA512 with 65536 iterations (i.e., Drupal default settings) is

vulnerable to denial of service attacks, since the CPU utilization reaches 100% for password

length equal to 6000. MD5 has also an increasing behavior but reaches almost 15% CPU

24

utilization for password length equal to 10.000. This happens because MD5 and SHA512 do

not have a maximum acceptable password length. On the contrary, BCRYPT has a constant

CPU utilization independent from the password length, because the maximum password length

for BCRYPT is 72 characters. Lastly, although SCRYPT does not have a password length

limitation, the CPU utilization does not change significantly, possibly due to its fast runtime on

CPUs (see Table 6). Based on the above results, we infer that CMS and web application

frameworks should set by default a maximum acceptable password length policy to avoid denial

of service with very large passwords. We discovered that WordPress by default limits to 4096

characters, while Drupal limits even more the password length to 128 characters.

Figure 2: CPU utilization vs password length

Observation 14: All websites that use SHA1, SHA256, SHA512 or PBKDF2 with very high

number of iterations should accordingly limit the maximum password length similarly to

WordPress and Drupal to avoid falling victim of denial of service. On the other hand, BCRYPT

and SCRYPT are not susceptible to denial of service with large passwords.

Finally, Figure 3 shows the CPU utilization as a function of iterations. In this experiment, we

use a small password length and slow login rate, equal to 10-character and 1 request/sec

respectively. From Figure 3 we can observe that in all cases the CPU utilization increases with

iterations. However, by increasing the iterations, we also increase the resistance of passwords

against guessing attacks. In other words, the iterations regulate an inherent tradeoff between

security and performance. In particular, as the number of iterations increases, on the one hand

the password hashes are more resistant to guessing attacks (security), but on the other hand

CPU utilization is increased (performance). Figure 3 depicts also that BCRYPT is vulnerable

to denial of service, since it reaches 100% CPU utilization with 32768 iterations, while

SCRYPT reaches only 25% CPU utilization for 65536 iterations. At the same time, the runtime

for SCRYPT is lower than 1 second in a typical server machine (see Table 6), which makes it

suitable for interactive logins, due to its small authentication delay. Subsequently, we can

conclude to the following observation:

25

Figure 3: CPU utilization vs iterations

Observation 15: Compared to BCRYPT, SCRYPT is more scalable in the sense that the number

of iterations can be increased for password security without introducing denial of service

conditions and login delays provided that the web server has enough physical memory (>4

GB).

8 Discussion

In light of our analysis, this section provides recommendations and alternative solutions to

enhance robustness of passwords against guessing attacks.

Update NIST recommendations. As mentioned previously, NIST recommends the use of

PBKDF2 with 10.000 iterations minimum. Based our observations, we believe that NIST

guidelines should be updated to replace PBKDF2 with a MHF, which is adequately audited and

proved that it is robust against attacks. However, an important prerequisite for this change to

occur is related to the fact that MHFs, such as Argon2, should be audited with a high level of

scrutiny to prove their security properties. Moreover, official implementations of MHFs in the

form of libraries are required to accelerate their adoption as well as security-wise software

testing of these implementations is imperative to verify their robustness against software

attacks.

Use of secure default settings. One of the most influential insights from the behavioral

sciences is that whatever is in the “default” position generally persist. Thus, CMS developers

should shift from an “opt-in” to an “opt-out” policy with stronger security configurations. Web

application frameworks should also follow this practice and avoid making the assumption that

developers are able to select secure and appropriate hashing schemes (e.g., use of salt, password

policy, etc.).

Upgrade legacy hash functions. Regarding legacy hash functions, it is a fact that many

websites have remained with outdated hash functions such as MD5 or SHA1. The problem that

hinders adoption of a new hash function is the possible frustration to the users of the website,

because they will be forced to register once again to provide a new password for the new hash

function [55]. We argue that there are two possible ways to upgrade a hash function without the

need of a new registration. The first solution is to keep two tables side by side one with the old

hash function (e.g., MD5) and another table for the new hash function. When a user logs in for

the first time after the addition of the new hash function, the website will first verify the legacy

hash (e.g., MD5) and then store the new hash (derived from the new hash function). When all

the new hashes have been calculated by all users, then the website can delete the old table with

the MD5 hashes. This solution is feasible only for a small number of users, otherwise it could

take an extremely long amount of time to achieve the migration to the new hash function. The

second solution is called layered hashing scheme and it has been adopted by Facebook [56] (see

26

Figure 4). The idea is to use multiple hashes one after the other. That is, the output of a hash

function becomes the input of another hash function. In this way, a website can update a hash

function at any time simply by adding a new layer of a hash function, eliminating the need to

maintain two separate tables and wait the users to log in first. In the case of Facebook, the

layered hashing scheme is as follows:

1. H = md5(pwd) (the legacy hash function)

2. H = hmacsha1(H, K1, salt) (K1 is a secret key stored in the web server)

3. H = Cryptoservice::hmac(H, K2) (K2 is a secret key stored in the cryptoservice)

4. H = scrypt(H, salt) (the new key hash function. Depending on the implementation SCRYPT output

length can be several bytes)

5. H = hmacsha256(H, K3, salt) (this hash function is used to limit the output length to 256 bits)

Figure 4: Layered Hashing scheme of Facebook

Note that in step 3, the Cryptoservice::hmac(H, K2) refers to the computation of a hash value

by an external service (see below for analysis) using a keyed HMAC function (this is known as

distributed hashing – see below). In the example of Facebook, the output of the legacy MD5

(i.e., step 1) is being used as an input to multiple hash function including a HMACSHA1 in step2,

another HMAC value (with unknown hash function) in a remote cryptoservice (i.e., step 3), an

SCRYPT (i.e., step 4), and finally a HMACsha256 (i.e., step 5). Therefore, using this layered

approach, a hash function can be updated without causing disruptions to the normal operation

of the website.

Distributed hashing. A solution which is orthogonal to the actual hash function that a website

uses and can substantially protect against offline password guessing attacks is named

distributed hashing. The main idea of this solution lies in the delegation of the hash value

computation to an external service. More specifically, a hashing scheme which is composed of

multiple hash functions as the one presented previously in Figure 4 can offload the computation

of an intermediate hash calculation to a remote crypto service (aka crypto as a service) and send

back the hashed value back to the web application to continue the calculation of the hash value.

Note that the hash calculation in the cryptoservice is based on a keyed HMAC function, using

a secret key, which is stored in the cryptoservice (see step 3 in Figure 4). In this way, even if

an attacker is able to compromise the database of a web platform, in order to perform the

guesses, he should necessarily request the cryptoservice to obtain the intermediate hash value,

since the attacker does not possess the secret key for the HMAC function. In this way, the

offline guessing attack becomes an online attack, which means that the cryptoservice can detect

anomalies (i.e., a spike due to attempts of the attacker) and throttle appropriately the traffic

(thus reducing the number of attempts an attacker can perform). Of note, recently a new

research area has emerged [57] [58] [59] where the aim is to enhance the cryptographic

primitives used in distributed hashing schemes to eliminate possible attacks against crypto

services.

Federation and FIDO. Moreover, websites can opt for federated authentication solution using

OpenID Connect protocol. In this way, there is no need for websites to maintain a user database

including passwords, due to the delegation of authentication to established services such as

Google and Facebook. On the users’ side, good security practices for selecting passwords are

still relevant. Users should select long passwords with high entropy and avoid reusing

passwords across multiple websites. What is more, passwords managers and two-factor

authentication are traditional yet effective measures to resist against password cracking. Also,

the emerging FIDO protocol [60], which is based on device-centric authentication, aims to

eliminate the use of passwords using public key cryptography.

27

Server relief. Denial of service attacks that take advantage of intensive hash functions can be

mitigated by the use of a relatively new mechanism named server relief (Argon2 incorporates

such a mechanism). The rationale of server relief is to allow the server to carry out the majority

of computational burden on the client. That is, instead of doing the entirety of the computation

on the server, the client does the most demanding - in terms of computation - parts and then the

client sends the intermediate values to the server, which calculates the final hash value. In this

way, server relief can mitigate denial of service targeting intensive hash functions (see section

7) and online brute force attacks, since the attacker machines undertake the responsibility to

perform the demanding hash computations. On the contrary, it does not protect passwords

against offline guessing attacks. That is, in case of a database leakage, an adversary can perform

an offline guessing attack as discussed in section 4.

Server relief is profoundly regulated by a tradeoff between server load, attacker effort, security

and usability. More specifically, as computation parts of the employed hash function are moved

to the client, the server load is reduced, while at the same time the effort of an attacker to

perform denial of service or online brute force attacks is increased (i.e., the attacker must

increase the number of machines to compensate). On the other hand, providing an internal state

of the hash computation to the client, may result in information leaks that can help the attacker

to break the security of the hash function. That is, an attacker can try to login with a valid

username and attempt to guess the password using the internal state of the hash value that he

obtained from the server. What is more, the extra computation load at the client can negatively

affect the user experience, due to the additional delays. This happens because as we mentioned

previously, the client machine participates also in the hash computation, which causes delays

due to the extra roundtrip required for the client to obtain and then send to the server the hash

computation. Moreover, compared to server machines, clients do not have the same

computational power. This is especially true for mobile devices that are characterized by low

computational capabilities.

Finally, it is important to notice that there are limited studies that quantify or analyze the

inherent tradeoffs related to this mechanism (such as [61]). Accordingly, much research work

remains to be done for the development of efficient and secure server relief solutions.

9 Conclusions

This paper has evaluated the security of hashing schemes for popular CMS and web application

frameworks. We proposed a simple framework that allows us to quantify the cost time for

password cracking. The proposed framework takes into account the main parameters of

password guessing attacks and considers both brute force and dictionary attacks. These

parameters are: i) salt, ii) iterations, iii) hashrate, iv) password length, v) charset (relevant only

for brute force attacks), vi) number of password hashes, vii) number of guessing attempts

(relevant only for dictionary attacks), and, viii) effectiveness. Next, we identified the default

hashing schemes of various CMS and web applications frameworks and based on our findings

we derived a set of critical observations. We concluded that the majority of CMS and web

applications frameworks do not offer secure default settings. We observed usage of outdated

hash functions, arbitrary number of iterations, lack of password policies and salt. Next, we

applied our cost analysis framework to the default settings, in order to perform a comparative

security analysis between the various CMS and web applications frameworks. We also

investigated whether hashing schemes can be misused to lead to denial of service attacks.

Finally, we provided a set of best practices and alternative solutions to enhance the security of

password storage. In general, we believe that the security status of the hashing schemes of CMS

and web application frameworks calls for changes to the default settings.

28

References

[1] "World's Biggest Data Breaches," [Online]. Available:

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-

hacks/. [Accessed May 2018].

[2] G. Vindu and N. Perlorth, "Yahoo Says 1 Billion User Accounts Were Hacked," New

York Times, 14 December 2016. [Online]. Available:

https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html. [Accessed April

2018].

[3] A. Ghoshal, "Yahoo’s billion-user database reportedly sold on the Dark Web for just

$300,000," The next web, January 2017. [Online]. Available:

https://thenextweb.com/security/2016/12/16/yahoos-billion-user-database-reportedly-

sold-on-the-dark-web-for-just-300000/#.tnw_7j4OqioP. [Accessed April 2018].

[4] "GEFORCE NVidia TITAN V," NVIDIA, [Online]. Available:

https://www.nvidia.com/en-us/titan/titan-v/. [Accessed 8 May 2018].

[5] "Google," [Online]. Available: https://cloud.google.com/gpu/. [Accessed 7 May 2018].

[6] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand and M. Smith, "Why

Do Developers Get Password Storage Wrong?: A Qualitative Usability Study," in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 2017.

[7] M. Weir, S. Aggrawal and B. d. Medeiros, "Password Cracking Using Probabilistic

Context-Free Grammars," in 30th IEEE Symposium on Security and Privacy, 2009.

[8] A. Narayanan and V. Shmatikov, "Fast Dictionary Attacks on Passwords Using Time-

Space Tradeoff," in Proceedings of the 12th ACM Conference on Computer and

Communications Security, Virgina, 2005.

[9] S. Marechal, "Automatic mangling rules generation," December 2012. [Online].

Available: http://www.openwall.com/presentations/Passwords12-Mangling-Rules-

Generation/Passwords12-Mangling-Rules-Generation.pdf. [Accessed 8 May 2018].

[10] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk and W.-M. W. Hwu,

"Optimization principles and application performance evaluation of a multithreaded GPU

using CUDA," in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming, New York, 2008.

[11] T. Murakami, R. Kasahara and T. Saito, " An implementation and its evaluation of

password cracking tool parallelized on GPGPU," in 10th International Symposium on

Communications and Information Technologies, Tokyo, 2010.

[12] "Usage of content management systems for websites," W3Techs, [Online]. Available:

https://w3techs.com/technologies/overview/content_management/all. [Accessed July

2018].

[13] "Github: Web application frameworks," [Online]. Available:

https://github.com/showcases/web-application-frameworks?s=stars. [Accessed July

2018].

29

[14] "http://www.openwall.com/john/," Openwall, [Online]. Available:

http://www.openwall.com/john/. [Accessed April 2018].

[15] E. I. Tatli, "Cracking More Password Hashes With Patterns," IEEE Transactions on

Information Forensics and Security, vol. 10, no. 8, pp. 1656-1665, 2015.

[16] "Passwords," Skullsecurity, [Online]. Available:

https://wiki.skullsecurity.org/Passwords. [Accessed April 2018].

[17] W. Han, Z. Li, L. Yuan and W. Xu, "Regional Patterns and Vulnerability Analysis," IEEE

Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 258-272, 2016.

[18] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito and A. Chaabane, "OMEN: Faster

Password Guessing Using an Ordered Markov Enumerator," International Symposium on

Engineering Secure Software and Systems, pp. 119-132, 2015.

[19] M. D. Amico, P. Michiardi and Y. Roudier, "Password Strength: An Empirical Analysis,"

in Proceedings of the 29th conference on Information communications (INFOCOM

2010), 2010.

[20] "The Imperva Application Defense Center (ADC) - Consumer Pasword Worst Practices,"

[Online]. Available:

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf.

[Accessed Apr 2018].

[21] C. McGoogan, "The world's most common passwords revealed: Are you using them?,"

The Telegraph, January 2017. [Online]. Available:

http://www.telegraph.co.uk/technology/2017/01/16/worlds-common-passwords-

revealed-using/. [Accessed May 2018].

[22] B. Lorenz, K. Kikkas and A. Klooster, "The Four Most-Used Passwords Are Love, Sex,

Secret, and God'': Password Security and Training in Different User Groups," in Human

Aspects of Information Security, Privacy, and Trust: First International Conference, Las

Vegas, Springer Berlin Heidelberg, 2013, pp. 276-283.

[23] R. Rivest, "The MD5 Message-Digest Algorithm," Apr. 1992. [Online]. Available:

https://www.ietf.org/rfc/rfc1321.txt. [Accessed June 2018].

[24] D. Eastlake, "US Secure Hash Algorithm 1 (SHA1)," Sept 2001. [Online]. Available:

https://tools.ietf.org/html/rfc3174. [Accessed June 2018].

[25] D. Eastlake, "US Secure Hash Algorithms (SHA and HMAC-SHA)," Jul 2006. [Online].

Available: https://tools.ietf.org/html/rfc4634. [Accessed 2 Sept 2007].

[26] B. Kaliski, "PKCS #5: Password-Based Cryptography Specification Version 2.0," RSA

Laboratories, Sept 2000. [Online]. Available: https://tools.ietf.org/html/rfc2898.

[Accessed 3 Sept 217].

[27] N. Provos and D. Mazières, "A Future-Adaptable Password Scheme," in Proceedings of

the FREENIX Track: 1999 USENIX Annual Technical Conference, 1999.

[28] C. Percival, "Stronger Key Derivation via Sequential Memory-Hard Functions," 2009.

[Online]. Available: https://www.tarsnap.com/scrypt/scrypt.pdf. [Accessed April 2018].

30

[29] A. Biryukov, D. Dinu and D. Khovratovich, "Technical Report: Argon and argon2:

password hashing scheme," 2015. [Online]. Available: https://password-

hashing.net/submissions/specs/Argon-v2.pdf..

[30] I. E. T. F. (IETF), "RFC 7914: The scrypt Password-Based Key Derivation Function,"

August 2016. [Online]. Available: https://tools.ietf.org/html/rfc7914.

[31] "NIST Special Publication 800-63B: Digital Identity Guidelines Authentication and

Lifecycle Management," June 2017. [Online]. [Accessed July 2018].

[32] "PHP - password_hash()," [Online]. Available:

http://php.net/manual/en/function.password-hash.php. [Accessed July 2018].

[33] A. Visconti, S. Bossi, H. Ragab and A. Calò, "On the weaknesses of PBKDF2," in

International Conference on Cryptology and Network Security (CANS 2015), Marrakesh,

Morocco, 2015.

[34] A. Ruddick and J. Yan, "Acceleration Attacks on PBKDF2: Or, What Is inside the Black-

Box of oclHashcat?," in 10th USENIX Workshop on Offensive Technologies, 2016.

[35] "bcrypt on GPU," Openwall community wiki, [Online]. Available:

http://openwall.info/wiki/john/GPU/bcrypt. [Accessed May 2018].

[36] F. Wiemer and R. Zimmermann, "High-speed implementation of bcrypt password search

using special-purpose hardware," in International Conference on ReConFigurable

Computing and FPGAs, 2014.

[37] K. Malvoni, S. Designer and J. Knezovic, "Are Your Passwords Safe: Energy-Efficient

Bcrypt Cracking with Low-Cost Parallel Hardware," in 8th USENIX Workshop on

Offensive Technologies, 2014.

[38] "Password Hashing Competition," [Online]. Available: https://password-hashing.net.

[39] P. Pierluigi, "Lenovo spotted and fixed a backdoor in RackSwitch and BladeCenter

networking switches," SecurityAffairs.co, [Online]. Available:

https://securityaffairs.co/wordpress/67729/hacking/lenovo-backdoor-networking-

switches.html. [Accessed July 2018].

[40] L. Armasu , "Backdoors Keep Appearing In Cisco's Routers," Tom's Hardware, [Online].

Available: https://www.tomshardware.com/news/cisco-backdoor-hardcoded-accounts-

software,37480.html. [Accessed July 2018].

[41] T. McLean, "Critical vulnerabilities in JSON Web Token libraries," Auth0.com, [Online].

Available: https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/.

[Accessed July 2018].

[42] "Phorum - Improving md5 password storage security," [Online]. Available:

https://www.phorum.org/phorum5/read.php?14,155691,155691. [Accessed June 2018].

[43] "Magento - Use native PHP Password API," [Online]. Available:

https://github.com/magento/magento2/issues/992. [Accessed July 2018].

[44] B. P. Knijnenburg, A. Kobsa and H. Jin, "Counteracting the Negative Effect of Form

Auto-completion on the Privacy Calculus," in AIS Electronic Library (AISeL), 2013.

[45] "Hashcat," [Online]. Available: https://hashcat.net/hashcat. [Accessed June 2018].

31

[46] "GeForce 1070 / 1070 Ti," [Online]. Available: https://www.nvidia.com/en-

us/geforce/products/10series/geforce-gtx-1070-ti/.

[47] J. Blocki, B. Harsha and S. Zhou, "On the Economics of Offline Password Cracking," in

IEEE Symposium on Security and Privacy (SP), 2018.

[48] G. Rempel, ""Defining Standards for Web Page Performance in Business Applications,"

in Proceedings of the 6th ACM/SPEC International Conference on Performance

Engineering ICPE '15, 2015.

[49] "Vigilante.pw," [Online]. Available: https://vigilante.pw/.

[50] "march 2018 Web server Survey," Netcraft, [Online]. Available:

https://news.netcraft.com/archives/2018/03/27/march-2018-web-server-survey.html.

[51] "Global DDOS Threat Landscape Q4 2017," Incapsula, [Online]. Available:

https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html. [Accessed July

2018].

[52] K. Ronen, "Why Low & Slow DDoS Application Attacks are Difficult to Mitigate,"

[Online]. Available: https://blog.radware.com/security/2013/06/why-low-slow-

ddosattacks-are-difficult-to-mitigate/. [Accessed July 2018].

[53] Arshid, "WP Limit Login Attempts," [Online]. Available:

https://wordpress.org/plugins/wp-limit-login-attempts/. [Accessed June 2018].

[54] "(API) Rate limiting requests in CakePHP 3," Github, [Online]. Available:

https://github.com/UseMuffin/Throttle. [Accessed May 2018].

[55] B. Schneier, "Schneier on Security: Changing Passwords," [Online]. Available:

https://www.schneier.com/blog/archives/2010/11/changing_passwo.html.

[56] A. Muffett, "Facebook: Password Hashing & Authentication," in Real World Crypto ,

2015.

[57] J. Camenisch, A. Lysyanskaya and G. Neven, "Practical yet universally composable two-

server password-authenticated secret sharing," in Proceedings of the 2012 ACM

conference on Computer and communications security, 2012.

[58] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels and T. Ristenpart, "The pythia PRF

service," in SEC'15 Proceedings of the 24th USENIX Conference on Security Symposium,

2015.

[59] R. F. Lai, C. Egger, D. Schröder and S. S. M. Chow, "Phoenix: Rebirth of a Cryptographic

Password-Hardening Service," in 26th USENIX Security Symposium (USENIX Security

17), 2017.

[60] " FIDO Alliance," [Online]. Available: https://fidoalliance.org/. [Accessed July 2018].

[61] S. Contini, "Online report: Method to Protect Passwords in Databases for Web," [Online].

Available: https://eprint.iacr.org/2015/387.pdf.

[62] A. S. brown, E. Bracken, S. Zoccoli and K. Douglas, "Generating and remembering

passwords," Applied Cognitive Phychology, vol. 18, no. 6, pp. 641-651, 2004.

32

[63] M. J. Yang, W. Luo and N. Li, "A study of probabilistic password models," in IEEE

Symposium on Security and Privacy, 2014.

