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ABSTRACT

In secret sharing, a dealer knows the secret it shares. In a distributed
key generation (DKG) protocol, a shared secret is collectively gen-
erated in a group in a completely distributed way such that any
subset of size greater than a threshold can reveal or use the shared
secret, while smaller subsets do not have any knowledge about it.
The most important aspect is that there is no dealer or trusted party.
The core idea of secret sharing schemes is Shamir’s secret sharing
method, which uses Lagrange’s interpolation to reconstruct the
shared secret key. This paper investigates an alternative method,
called Newton’s interpolation and it cites the probability of imple-
menting it on current DKG protocols.
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1 INTRODUCTION

Generally, most cryptographic schemes, and especially asymmetric
ones, manage the public-key encryption through a public key infras-
tructure (PKI). PKI provides secure communication on an insecure
public network and uses a digital signature to verify the identity
of the entities. The PKI relies on the security of a central control
point, named the Certification Authority (CA), and is considered
trusted by all and is considered trusted by all, however it also acts
as a single point of failure. If this point gets compromised, the se-
curity of the entire network will fall down. Recent advancements
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in technology [11] showed that the research community needs to
level up current cryptographic protocols in a decentralized manner.
New ideas are driven by a well-studied area of cryptography called
threshold cryptography. A (n, k) threshold cryptography scheme
allows n entities to share the ability to perform a cryptographic
operation so that any k entities suffices to perform this operation
jointly, whereas it is infeasible for at most k — 1 entities to do so,
even by collusion. The cryptographic key, which will be used to
encrypt the message from one person to another, is the fundamental
tool for both symmetric and asymmetric cryptography and must be
protected at all costs, from the generation part to the secret-sharing
of it among the entities of the group.

In secret sharing, a dealer knows the secret it shares. Therefore,
it has to be trusted as in the case of CA for the PKI and remain intact
during key sharing or at least ensure the secrecy of the key before
its reconstruction. Many cryptosystems require the complete dis-
tribution of trust and no party (not even a dealer) should be in sole
possession of the secret. This is the only way to eliminate the single
point of failure. So the concept of distributed key generation (DKG)
comes in hand. In a DKG protocol, a shared secret is collectively
generated in a group in a fully distributed way such that any subset
of size greater than a threshold can reveal or use the shared secret,
while smaller subsets do not have any knowledge about it. The
most important aspect is that there is no dealer or trusted party;
hence, each node in the group runs an instance of a secret sharing
scheme and computes its final share by adding the shares it has
received from the other members of the group. The secret-shared
private keys can later be used in a threshold cryptosystem, e.g.,
to produce threshold signatures, decrypt ciphertexts of threshold
encryption or generate common coins, but before they can be used,
shares have to be gathered and through interpolation methods, the
original keys will be reconstructed.

DKG protocol is more than a secret sharing protocol. In a secret
sharing protocol the secret shares can be used to recover the group
secret, but this can be done only once. After everyone has learned
the group secret the shares cannot be reused. In a DKG the shares
can be used repeatedly for an unlimited number of group signatures
without ever recovering the group secret key explicitly. Most DKG
protocols are discrete-log based cryptosystems and typically utilize
multiple instances of a verifiable secret sharing protocol (VSS).

Most of the existing DKG protocols assume the synchronous
model and asynchronous DKG received attention only recently,
with poor efficiency though. DKG, secret sharing, and threshold
cryptography are all branches of the same tree, called in general
terms multiparty computation (MPC). One security application of
MPC is to protect cryptographic keys from theft and misuse, by
never having them exposed at any single point at any single time,
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and by enforcing usage policies at multiple entities. This provides
the ability to protect cryptographic keys in software, providing
an alternative to legacy hardware solutions, such as TPM’s root
of trust, that introduces many operational challenges in today’s
hybrid and multi-cloud environments.

In this paper, a brief overview of basics schemes is provided
on how the keys are generated and later distributed among the
members of a group that wants to communicate. A comparison is
also made between the two methods of interpolation, Lagrange and
Newton, with the former being the core of the Shamir Secret Shar-
ing scheme and the latter is proposed as an improvement. There is
a theoretical proposal regarding multi-factor authentication in the
work of Bezzateev [4]. The main objective is to perform a compara-
tive analysis of the Lagrange and Newton interpolation methods to
identify the potential of replacing the former method on the exist-
ing DKG schemes, considering also a trusted setup for new nodes
joining a DKG protocol. Shamir’s secret sharing is theoretically
information secure, meaning that its security cannot be improved,
so the focus is on performance. Newton can accommodate vector
or matrix interpolation from scalar data which is very useful on
threshold biometric authentication and also supports incremental
interpolation, e.g., adding new nodes without the need for calculat-
ing the polynomial from scratch, which the present paper considers
will have an impact on performance.

The rest of the paper is structured as follows. Section 2 provides
an overview of the related work on DKG schemes and secret sharing.
Section 3 analyses Shamir’s secret sharing scheme with reference
also to Feldman’s verifiable secret sharing scheme, which is a slight
improvement of Shamir’s on the verification of the shares. Section
4 analyses Pedersen’s Distributed key generation scheme and in
the fifth section lies the core idea of the paper, where Lagrange and
Newton’s interpolations are analyzed and a small comparison is
made between the two methods. The paper concludes with proposed
future work and open problems.

2 RELATED WORK
2.1 Related Work on DKG

Numerous works have studied the problem of DKG with vari-
ous cryptographic assumptions and network conditions. Most of
the works have been in the synchronous network model. Peder-
sen proposed the first DKG protocol [28] using a non-interactive
information-theoretic verifiable secret sharing. Gennaro showed
that Pedersen’s protocol allows an attacker to bias the public-key
distribution by selectively denouncing one or more of the parties
it controls, and as a result influence the final outcome. Gennaro’s
approach adds complexity as it requires an additional secret sharing
step using Pedersen VSS protocol [15]. Neji proposed a simple mech-
anism to mitigate the bias-attack illustrated by Gennaro [25]. Neji’s
paper was not very specific about the simulator that was used, so in
ADKG paper [10] authors presented a new proof of secrecy. Canetti
presented an extension of Gennaro in order to be secure against an
adaptive adversary [7]. Fouque and Stern presented a one-round,
publicly-verifiable DKG that uses only public channels to make the
protocol non-interactive [12]. Their final transcript size is O(n?)
and their security proof does not allow for rushing adversaries and
make use of use of Paillier encryption which is likely to make the
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DKG slow and have high communication costs. Their advantage is
that the outputting secrets are field, rather than group, elements, so
they can be used with current threshold schemes. Gurkan designed
a PVSS-based DKG protocol with a linear size public-verification
transcript [17]. However, the secret key in their DKG is a group
element instead of a field element, so their scheme is incompatible
with off-the-shelf threshold signature or encryption schemes. Later,
Groth designed a non-interactive DKG protocol based on a new
PVSS scheme [16], where the secret key in the protocol is a field
element.

Regarding the asynchronous network assumption, works are
more limited. Kate and Goldberg were the first to study DKG in an
asynchronous communication model. They extended Pedersen’s
DKG to a partially synchronous network [20]. They require a net-
work of n > 3t+2f +1 participants, out of which ¢ are controlled by
the adversary and thus considered Byzantine and f parties may fail
in the crash-stop model. They reduced the broadcast overhead per
DKG party from O(n) to O(1) using their constant-sized polynomial
commitment scheme. In his work, Tomescu showed how to reduce
the size of the final DKG transcript to O(n) by making the parties’
contributions aggregatable. They achieved this by making their
transcripts publicly-verifiable so that anybody receiving and aggre-
gating transcripts can verify their correctness [32]. They reduced
the cost of verifying their transcripts to O(n/logn) whereas prior
approaches were O(n?) [20]. They also showed that Pedersen’s
DKG is security-preserving with respect to any rekeyable encryp-
tion scheme, signature scheme, or VUF scheme where the sharing
algorithm is the same as encryption or signing. Kokoris designed
an asynchronous DKG (ADKG) scheme with a total communica-
tion cost of O(kn?) and an expected round complexity of O(n) [22].
Abraham et al. proposed an ADKG protocol with a communication
cost of O(xkn3logn) [1]. Gao [14] and Das [9] gave two methods to
lower the communication cost of [1] to O(kn®). Since Abraham
et al. uses the PVSS scheme of Gurkan , all three constructions
inherit the limitation that the secret key is a group element. The
increasing popularity of threshold signatures has led to many DKG
implementations [18, 26, 29, 30].

2.2 Related Work on secret sharing

The problem of secret sharing was firstly introduced by A. Shamir
n [31], along with the so-called Shamir threshold secret sharing
schemes, based on the Lagrangian interpolation. Since the publica-
tion of Shamir’s work, several other methods have been proposed,
such as M. Mignotte [23] and C. Asmuth and J. Bloom [2], which
are both based on the Chinese remainder theorem for coprime
modules over the ring of integers Z. Chinese remainder theorem
is based on a well known property of integers, the so-called Eu-
clidean division, which is not exclusive to Z. Other rings that admit
it are called Euclidean Domains. Two of them are highlighted ,
the ring of univariate polynomials over a field K[X], and the ring
of Gaussian Integers Z[i]. Mignotte secret sharing scheme can be
extended to these rings. In the literature we can find successive
generalizations of Mignotte’s scheme, firstly by S. Iftene to not
necessarily coprime integers [19]. Later T. Galibus and G. Matveev
[13] provided a version over polynomial rings of one variable and
showed the remarkable property that any access structure can be
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realized by a Mignotte polynomial SSS. Finally, in [27] an extension
of Mignotte threshold scheme to the ring of Gaussian Integers is
proposed. Gaussian Integers play a role in digital signal processing,
cryptography, coding, and many other fields of science and technol-
ogy [5]. Mignotte’s threshold scheme has already been proposed
for image sharing, [33], which will be very useful for future work,
if biometrics are considered as images and try to merge biomet-
ric authentication with threshold secret sharing. Authors in [24],
improved the extension of Mignotte SSS to Gaussian Integers pro-
posed in [27], because in the Euclidean division over Z[i], quotient
and remainder are not unique, so they proposed a new version of
Mignotte’s SSS over Z[i] that works properly unlike [27].

2.3 Motivation

In this paper, considering the aforementioned related work on
the field, the subject of distributed key generation is tackled as
well as secret sharing from a different point of view. Most of the
research has been made on the security of the schemes, depending
on different kind of adversaries and the interactiveness that will
take place between the users of a group in order to gather their
shares of the cryptographic keys, and use them in a aggregatable
way for a threshold digital signature or other cryptographic actions.
When a new member wants to join the communication protocol,
or an old member leaves the group or maybe get compromised,
various solutions have been proposed also, such as resharing of
the keys to all members, refreshing etc. Depending on the network
and adversary assumptions these are costly steps that should be
taken into consideration. On a synchronous, trusted setup, New-
ton’s interpolation instead of Lagrange’s should be considered. The
advantage of this , in Shamir’s secret sharing scheme, is that there
is no need to evaluate the initial polynomial when a new mem-
ber wishes to join the communication protocol and recalculate the
coeflicients of a higher degree polynomial, by making use of the
incremental interpolation that Newton’s method has to offer.

3 SECRET SHARING - VERIFIABLE SECRET
SHARING

3.1 Shamir Secret sharing scheme

Shamir’s Secret Sharing scheme is an algorithm that was first pro-
posed in 1979 by the renowned Israeli cryptographer Adi Shamir.
Shamir’s (¢, n)-threshold scheme makes use of the property that a
polynomial of degree d can be uniquely reconstructed by any set of
d + 1 points using the Lagrange interpolation. Assume there exist
n parties P;, i € [1,n] and the threshold is set at #(1 < t < n):

(1) A ‘dealer’ generates a secret s € F, and constructs a random
polynomial P(x) = f(x) = Zfzo a;xtin Fy, of degree t and
with its constant term set to the secret value f(0) = fp = s.

(2) The dealer then calculates n shares s; = f(i),Vi=1,2..,n.

(3) The shares are privately ‘dealt’ to the parties (sharing phase).

(4) Any t + 1 parties can use their shares to reconstruct the
polynomial, through Lagrange interpolation, and thus reveal
the secret (reconstruction phase).

The security of the above scheme relies on the fact that one must
trust the dealer to be honest. If the dealer is dishonest, then one
has to use a share validation mechanism.
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A Verifiable Secret Sharing (VSS) scheme enables parties to verify
the shares’ consistency, thus ensuring the correct reconstruction of
the shared secret. Most of the current secret sharing schemes use
Feldman’s VSS, which extends the aforementioned Shamir Secret
sharing scheme to a verifiable one, by making the dealer broadcast
homomorphic commitments to each of the polynomial’s coefficients
F; = g% [20]. In more depth, as one polynomial

t . .
R = [ [ 7 = gEie e =g/ 1
i=0

4 DISTRIBUTED KEY GENERATION

A DKG enables a set of parties to generate a keypair such that
any sufficiently large subset can perform an action that requires
the secret key while any smaller subset cannot. To achieve this, a
DKG essentially turns each party into a dealer for a verifiable secret
sharing (VSS) scheme. This process yields a single collective public
key, generated in a distributed manner, with each party keeping
a share of the secret key for themselves. No one-round DKG can
achieve secrecy because a rushing adversary (an adversary that
plays last) can always influence the final distribution [32]. The core
idea of the Pedersen (and the Joint-Feldman) protocol is that each
party executes Feldman’s verifiable secret sharing (VSS) protocol,
acting as a dealer to share a randomly chosen secret among all
parties.
The protocol’s steps work as follows:

(1) Each party P; generates a secret s;, a random polynomial
filx) = 5:0 aix’ with degree t and a Feldman commitment
to it Fi(x) = [1; g%*".

(2) It then calculates its public key share p; = g° and broadcasts
a commitment to it C; = C(p;, r;), where r; is a random
string.

(3) When all P; finished broadcasting, each P; opens C; and the
shared public key is set to pk = []}; p; with the correspond-
ing secret being s = ¥, s;.

(4) P; broadcasts the commitment to the polynomial and dis-
tributes shares s;; of its secret to all other parties P; (sharing
phase).

Pedersen’s DKG features a complaint round inside the sharing
phase to remove invalid shares but is out of the scope of this paper.
The state of the system after the sharing phase is completed as soon
as each participating party holds n — 1 shares and their secret. For
reconstructing the shared secret, all secrets s; need to be obtained
by reconstructing each polynomial f;(x) for which t + 1 points are
required by each polynomial. Since each party has a point of each
polynomial, any t + 1 parties suffice to reconstruct all n secrets,
thus revealing the common secret.

5 INTERPOLATION METHODS

In general, polynomial interpolation is used to approximate com-
plicated curves such as the evaluation of natural logarithm or the
evaluation of trigonometric functions. It is also used to perform
sub-quadratic multiplication and squaring such as Karatsuba mul-
tiplication and Toom-Cook multiplication because it has a faster
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computation time. But in this paper, it will be used to reconstruct a
polynomial for secret sharing schemes.

The question of how to reconstruct a smooth function f(x) that
agrees with a number of collected sample values does not have a
straight answer, particularly since there are more than one ways to
accomplish this task. We denote as x1, x2, . . ., xy for the x-locations
where f is being sampled and denote the known value of f(x) at
x=x1asy; = f(x1), at x = x3 as y2 = f(x2), etc. The aim is to
reconstruct a function f(x); x € [a; b] such that the plot of f passes
through the following points:

(o1 1) 5 (x2,92) -+, (N5 UN) @)
A commonly used approach is to use a properly crafted polyno-
mial function

F(x) = Pp(x) = ap + a1x + azx? + ...+ ap_1x" L+ apx™  (3)

to interpolate the points (xo,yo), - - -, (Xn, Yn)-
Two ways of evaluating the polynomial P,(x), in Lagrange’s and
Newton’s interpolations will be explored.

5.1 Lagrange Interpolation

For a given set of n + 1 points (x0,Y0) , (X1, Y1), - - . , (xXn, Yn) define
the Lagrange polynomials of degree-n Lo(x), L1(x), ..., Ln(x) as:

1 ifi=j

Li (xj) = 6i; = 4

i (xj) =i {0 i (4)

Since L;(x) is a degree-n polynomial, with the n-roots xo, x1, x2,

.., Xi—1,Xi+1> Xi+2, . . . , Xp it must have the form
n
L =a [| &-x) )
j=0,j#1

If the invariant a; is evaluated from the relation L;(x;) = 1, then

(x - x))

Li(x) = ;
jeo.jwi (X1 = %))

i=0,...n (6)

Thus, the polynomial Py (x) is finally calculated

Pa(x) = ) fxi)Li(x) Y]
i=0

which is called the Lagrangian form of the interpolated polyno-
mial.

5.2 Newton Interpolation

For a given set of data points (xo,y0), . . ., (Xn, yn) the polynomial
Pu(x) for which P(x;) = y;, i = 0,...n can be written in the
following form

Pp(x)=ap+ a1 (x —x0) +az(x—x0)(x—x1)+...
+an-1 (x_XO) (x -x1).. -(x_xn—l) (8)

where the coefficients ao, . . ., a, can easily be calculated con-
secutively as
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P(xo) =yo — ao =1o
Y1 — Yo
P = = —
(x1)=y1 — a o x 9

The advantage of this representation is that for the interpolation
of a new point, only a new coefficient needs to be calculated. Coef-
ficients ay, . . ., ap of the Newton’s method are usually calculated
through a method called divided differences.

Divided differences

A divided difference is a function defined over a set of sequentially
indexed centers, e.g.,

Xiy Xit1s - o Xigjm1, Xitj (10)

The divided difference of these values is denoted by:

f % Xist oo Xig 1, Xin | (11)
The value of this symbol is defined recursively as follows. For
divided differences with one argument

flxil = f(xi) =y (12)

With two arguments:

flxiv1] = f [xi]

flxixie1] = (13)
Xi+1 — Xi
With three:
[xit1, xiv2] = f [x0, xi41]
flxiXiv1, xiv2] = flxivn S lxi.xi (14)
Xit+2 = Xj
With j + 1 arguments:
flxists o oooxing] = f [xin - xivjo]
flxisxist o xigjo1, xigj]| =
Xi+j = Xi
(15)

The fact that makes divided differences so useful is that f [xi, R j]

can be shown to be the coefficient of the highest power of x in a
polynomial that interpolates through

(i, Y1), (Xia 1, Yiw1) s - - s (Xijm1, Yinjm1) » (Xiejoyinej)  (16)

Remember, the polynomial that interpolates (xo, y0), - - ., (Xn, Yn),
which is

Pp(x) = Pp_1(x)
——

highest power =x""!

+apn (x—x0)...(x—xp-1) (17)

=a,x"+ lower powers

Thus, an = f [x0,x1, X2, ..., %n]. Or, in other words

Pu(x) = f [x0]
+ f [x0, x1] (x — x0)
+ f [x0, %1, x2] (x — x0) (x — x1) (18)

fx0,x1, ..., xn] (x —x0) ... (x — xp—1)
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So, if the divided differences, can be quickly evaluated then
Pp(x) has been determined. The resulting polynomials of the two
methods are the same. For more information about different kinds
of interpolation, readers are referred to [6, 8]

5.3 A Toy example

Alice selects a random polynomial p(x) = 3x% + 5x + 1, and wants
to share the constant term of the polynomial which is P(0) = 1.
She calculates some values of the polynomial P(3) = 43, P(4) =
69, P(5) = 101, which will be the shares. At first two receivers will
be considered, which will take the two shares and reconstruct a
polynomial, and later a third person will want to join and take his
share, and then all together will reconstruct Alice’s initial polyno-
mial, once with Lagrange and then with Newton’s method.

5.3.1 Lagrange’s Method. Two people take their shares P(3) =
43, P(4) = 69, and try to create a polynomial, as below

x—4 X—Xx
P(x) = 1+ Y2

X1 — X2 X2 — X1
x—4

= 434 —— 69
3-4 —
x—4 x-3

= BT (19)

—43-(x—4)+(x—-3)-69
—43x + 172 + 69x — 207
26x — 35

As it can be seen, two shares are not enough to reconstruct
Alice’s initial polynomial, which has degree 2, as they need ¢ + 1
shares, where t is the threshold, which in our situation is t = 2 and
in applications is the same as the degree of the initial polynomial.
Now a third person joins the group and takes its share which is
P(5) = 101, so with three shares now they try to estimate the intitial
polynomial. First, the Lagrange polynomials :

G5 x-9x-5 1 ,
L3—(3_4)(3_5)— 5 =5 (x* — 5x — 4x + 20)

= %(xz — 9x + 20)
4_(x—3)(x—5)_(x—3)(x—5):_(x_3).(x_5)

T 4-3)4-5) -1
= (—x? + 8x — 15)
C(x=3)x-4) (x-3)(x-4) _ 1

T 5-3)(5-4) 2 =D =9

5

1
= E(x2 —7x + 12)
(20)
And the reconstruction, after the evaluation of the L;’s is
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5
P(x)= )" flxi)Li(x) =
i=3

43 101
:?~( 2—9x+20)+69-(—x2+8x—15)+T-(x2—7x+12)
=3x% +5x+1

(21)
We observe that three shares are enough to estimate Alice’s
initial polynomial of degree 2, as expected.

5.3.2  Newton’s Method. The same two people, will try to recon-
struct a polynomial with their shares P(3) = 43, P(4) = 69, but
with Newton’s method now, as below

flxo] =43
y1—yo 69-—43 (22)
x]= 27T e
f[xo X1] X1 — X0 4-3

Thus:

P(x) = flxo] + flx0.x1] - (x — x0) = 43 + 26 - (x - 3)

=43 +26x - 78 (23)

= 26x — 35
Same result as before, e.g., the same polynomial from the two
shares, and again they are not able to reconstruct the second degree
polynomial because they need an extra share. A third person joins
the group again with the share P(5) = 101. In a similar way, they
try to reconstruct the initial polynomial. The difference is that they

do not need to recalculate the whole L;’s, but only

2 — U1 101 — 69
Floxg) = 228 - 272

32 (24)
X2 — X1 5-4

flx1,x2] = flxo, 1] 32-26
X2 — X0 5-3

flxo,x1,x2] = 3 (25)

So the polynomial will be

P(x) = flxol + flxo, x1](x — x0) + flx0, %1, x2](x — x0)(x — x1)
= 26x — 35 +3(x — xq) - (x — x1)

= 26x — 35 + 3(x% — 7x + 12)

=3x% +5x + 1
(26)

5.4 Comparison of polynomial interpolation
methods

Starting with an examination of Lagrange’s method, it is appar-
ent that determining Py (x) is very easy. The method of writing a
formula for P, (x) without solving any systems has been shown.
However, in order to write P, (x) = ag+a1x+...+a,x" the cost of
evaluating the a;’s would be high. Each L;(x) would need to be ex-
panded, leading to O(n?) operations for each L;(x) implying O(n?)
operations for Py (x). The cost of evaluating P, (x) for an arbitrary
x is significant. The a;’s do not need to be computed beforehand,
as long as the evaluation of Pp(x) is carried out at a selected few
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locations. For each L;(x) the evaluation requires n subtractions and
n multiplications, implying a total of O(n?) operations, which is
better than O(n®) for computing the a;’s. Lastly, it does not accom-
modate incremental interpolation, which is a crucial disadvantage
on today’s asynchronous networks.

Passing on to the evaluation of Newton’s method, the cost of
computing Py, (x) is O(n?) and the cost of evaluating Py, (x) for an
arbitrary x is O(n). This can be accelerated (similar to Horner’s
method) using the recursive scheme defined above. Its most impor-
tant aspect is that it allows for incremental interpolation without
recalculating the initial polynomial and its coefficients.

Shamir’s secret sharing scheme is based on the Lagrangian in-
terpolated polynomial. An advantage of Lagrange over Newton
interpolation, is that the quantities that have to be computed in
O(n?) operations do not depend on the data fj» whereas Newton
interpolation requires the recomputation of the divided difference
for each new function. In the Newton formula, the divided differ-
ences do have such a dependence [3]. Another advantage is that it
does not depend on the order in which the nodes are arranged.

However, besides the advantages, when the degree of the poly-
nomial needs to be increased, a recalculation of the values of the
polynomial at the previous known points and the corresponding
addition of one more (n + 1)-th point is required. All interpolation
coeflicients must be recalculated since each term of the polynomial
takes a single correct value, and when a new point is added, the
values of all terms of the polynomial need to be aligned according
to the new point. So, with an increase in the degree of a polynomial,
and accordingly, an increase in the number of interpolation nodes
required to restore it, it is necessary to rebuild the entire polyno-
mial, which is inconvenient on multiparty computation schemes,
and especially during authentication procedures, where people can
enter or leave from the group at any time, go offline, or even get
compromised and need to be discarded from the protocol.

Newton’s interpolation polynomial of degree n can be repre-
sented as

n

Pu(x) = f [xol + ) f[x0, ...

n
x| Je-x) @
i=1 i=0
Note that increasing the degree of the polynomial by one while
the values of the polynomial at the previously known points remain
unchanged will require only adding the (n + 1)-th interpolation
node, and accordingly, calculating the corresponding coefficient.
The polynomial values at previously known points do not change,
so there is no need to recalculate the previous coefficients; one only
needs to add a new one. The recalculated Newton interpolation
polynomial of degree n + 1 can be, thus, represented as

Prs1(x) = Pa(x) + f [x0, ..o xpna] | |r=x)  (28)
i=0

and this is the main reason Newton’s interpolation is proposed
in this paper. Furthermore, Newton’s interpolation has the ability
to accommodate vector or matrix interpolation from scalar data,
better than Lagrange in terms of efficiency, which is very useful on
threshold biometric authentication, and incremental interpolation

Anastassios Voudouris, llias Politis, and Christos Xenakis

on distributed key generation may have a favorable impact on
performance level [21].

6 CONCLUSION-FUTURE WORK

It has been shown how Shamir’s secret sharing scheme works and
a brief explanation of Feldman’s VSS has been provided. After ana-
lyzing the two methods of interpolating a polynomial, Langrange’s
and Newton’s, our future work will be to implement Newton’s
interpolation method to existing DKG protocols and test the per-
formance.
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