
Metric Multidimensional Scaling

(MDS):

Analyzing Distance Matrices

Hervé Abdi1

1 Overview

Metric multidimensional scaling (MDS) transforms a distance ma-

trix into a set of coordinates such that the (Euclidean) distances

derived from these coordinates approximate as well as possible

the original distances. The basic idea of MDS is to transform the

distance matrix into a cross-product matrix and then to find its

eigen-decomposition which gives a principal component analysis

(PCA). Like PCA, MDS can be used with supplementary or illustra-

tive elements which are projected onto the dimensions after they

have been computed.

2 An example

The example is derived from O’Toole, Jiang, Abdi, and Haxby (2005),

in which the authors used a combination of principal component

analysis and neural networks to analyze brain imaging data. In this
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study 6 subjects were scanned using fMRI when they were watch-

ing pictures from 8 categories (faces, houses, cats, chairs, shoes,

scissors, bottles and scrambled images). The authors computed

for each subject a distance matrix corresponding to how well they

could predict the type of pictures that this subject was watching

from his/her brain scans. The distance used was d ′ (see entry)

which expresses the discriminability between categories.

O’Toole et al., give two distance matrices. The first one is the

average distance matrix computed from the brain scans of all 6

subjects. The authors also give a distance matrix derived directly

from the pictures watched by the subjects. The authors computed

this distance matrix with the same algorithm that they used for the

brain scans, they just substituted images to brain scans.

We will use these two matrices to review the basic of multi-

dimensional scaling: namely how to transform a distance matrix

into a cross-product matrix and how to project a set of supplemen-

tary observations onto the space obtained by the original analysis.

3 Multidimensional Scaling:

Eigen-analysis of a distance matrix

PCA is obtained by performing the eigen-decomposition of a ma-

trix. This matrix can be a correlation matrix (i.e., the variables to

be analyzed are centered and normalized), a covariance matrix

(i.e., the variables are centered but not normalized), or a cross-

product matrix (i.e., the variables are neither centered nor nor-

malized). A distance matrix cannot be analyzed directly using the

eigen-decomposition (because distance matrices are not positive

semi-definite matrices), but it can be transformed into an equiva-

lent cross-product matrix which can then be analyzed.

3.1 Transforming a distance matrix into

a cross-product matrix

In order to transform a distance matrix into a cross-product ma-

trix, we start from the observation that the scalar product between
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two vectors can easily be transformed into a distance (the scalar

product between vectors corresponds to a cross-product matrix).

Let us start with some definitions. Suppose that a and b are two

vectors with I elements, the Euclidean distance between these two

vectors is computed as

d 2(a,b) = (a−b)T(a−b) . (1)

This distance can be rewritten in order to isolate the scalar prod-

uct between vectors a and b:

d 2(a,b) = (a−b)T(a−b) = aTa+bTb−2× (aTb) , (2)

where aTb is the scalar product between a and b.

If the data are stored into an I by J data matrix denoted X (where

I observations are described by J variables), the between observa-

tions cross product matrix is then obtained as

S
I × I

= X
I × J

× X
J × I

T . (3)

A distance matrix can be computed directly from the cross-product

matrix as

D
I × I

= s
I ×

1
1× I

T
+ 1

I ×
s

1× I

T
−2 S

I × I
. (4)

(Note that the elements of D gives the squared Euclidean distance

between rows of S)

This equation shows that an Euclidean distance matrix can be

computed from a cross-product matrix. In order to perform MDS

on a set of data, the main idea is to “revert" Equation 4 in order

to obtain a cross-product matrix from a distance matrix. There

is one problem when implementing this idea, namely that differ-

ent cross-product matrices can give the same distance. This can

happen because distances are invariant for any change of origin.

Therefore, in order to revert the equation we need to impose an

origin for the computation of the distance. An obvious choice is

to choose the origin of the distance as the center of gravity of the

dimensions. With this constraint, the cross-product matrix is ob-

tained as follows.
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First define a mass vector denoted m whose I elements give

the mass of the I rows of matrix D. These elements are all positive

and their sum is equal to one:

m
1×

T 1
I ×1

= 1 . (5)

When all the rows have equal importance, each element is equal

to 1
I

.

Second, define an I × I centering matrix denoted Ξ (read “big

Xi”) equal to

Ξ
I × I

= I
I × I

− 1
I ×

m
1× I

T . (6)

Finally, the cross-product matrix is obtained from matrix D as:

S
I × I

=−
1
2
ΞDΞ

T . (7)

The eigen-decomposition of this matrix gives

S = UΛUT (8)

with

UTU = I and Λ diagonal matrix of eigenvalues. (9)

(see appendix for a proof).

The scores (i.e., the projection of the rows on the principal com-

ponents of the analysis of S) are obtained as

F = M−
1
2 UΛ

1
2 (with M = diag {m}) (10)

The scores have the properties that their variance is equal to the

eigenvalues:

FTMF =Λ . (11)
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Table 1: The d ′ matrix from O’Toole et al., (2005). This matrix gives the d ′ obtained for the discrimination between

categories based upon the brain scans. These data are obtained by averaging 12 data tables (2 per subject).

Face House Cat Chair Shoe Scissors Bottle Scrambled

Face 0.00 3.47 1.79 3.00 2.67 2.58 2.22 3.08

House 3.47 0.00 3.39 2.18 2.86 2.69 2.89 2.62

Cat 1.79 3.39 0.00 2.18 2.34 2.09 2.31 2.88

Chair 3.00 2.18 2.18 0.00 1.73 1.55 1.23 2.07

Shoes 2.67 2.86 2.34 1.73 0.00 1.44 1.29 2.38

Scissors 2.58 2.69 2.09 1.55 1.44 0.00 1.19 2.15

Bottle 2.22 2.89 2.31 1.23 1.29 1.19 0.00 2.07

Scrambled 3.08 2.62 2.88 2.07 2.38 2.15 2.07 0.00

Table 2: The d ′ matrix from O’Toole et al., (2005). This matrix gives the d ′ obtained for the discrimination between

categories based upon the images watched by the subjects.

Face House Cat Chair Shoe Scissors Bottle Scrambled

Face 0.00 4.52 4.08 4.08 4.52 3.97 3.87 3.73

House 4.52 0.00 2.85 4.52 4.52 4.52 4.08 4.52

Cat 4.08 2.85 0.00 1.61 2.92 2.81 1.96 3.17

Chair 4.08 4.52 1.61 0.00 2.82 2.89 2.91 3.97

Shoe 4.52 4.52 2.92 2.82 0.00 3.55 3.26 4.52

Scissors 3.97 4.52 2.81 2.89 3.55 0.00 2.09 3.26

Bottle 3.87 4.08 1.96 2.91 3.26 2.09 0.00 1.50

Scrambled 3.73 4.52 3.17 3.97 4.52 3.26 1.50 0.00
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3.2 Example

To illustrate the transformation of the distance matrix, we will use

the distance matrix derived from the brain scans given in Table 1:

D =

























0.00 3.47 1.79 3.00 2.67 2.58 2.22 3.08

3.47 0.00 3.39 2.18 2.86 2.69 2.89 2.62

1.79 3.39 0.00 2.18 2.34 2.09 2.31 2.88

3.00 2.18 2.18 0.00 1.73 1.55 1.23 2.07

2.67 2.86 2.34 1.73 0.00 1.44 1.29 2.38

2.58 2.69 2.09 1.55 1.44 0.00 1.19 2.15

2.22 2.89 2.31 1.23 1.29 1.19 0.00 2.07

3.08 2.62 2.88 2.07 2.38 2.15 2.07 0.00

























. (12)

The elements of the mass vector m are all equal to 1
8

;

mT
=

[

.125 .125 .125 .125 .125 .125 .125 .125
]

. (13)

The centering matrix is equal to:

Ξ
8×8

=





















.875 −.125 −.125 −.125 −.125 −.125 −.125 −.125

−.125 .875 −.125 −.125 −.125 −.125 −.125 −.125

−.125 −.125 .875 −.125 −.125 −.125 −.125 −.125

−.125 −.125 −.125 .875 −.125 −.125 −.125 −.125

−.125 −.125 −.125 −.125 .875 −.125 −.125 −.125

−.125 −.125 −.125 −.125 −.125 .875 −.125 −.125

−.125 −.125 −.125 −.125 −.125 −.125 .875 −.125

−.125 −.125 −.125 −.125 −.125 −.125 −.125 .875





















.

The cross product matrix is then equal to

S =





















1.34 −0.31 0.34 −0.46 −0.25 −0.26 −0.12 −0.29

−0.31 1.51 −0.38 0.03 −0.26 −0.24 −0.37 0.02

0.34 −0.38 1.12 −0.16 −0.19 −0.14 −0.27 −0.31

−0.46 0.03 −0.16 0.74 −0.08 −0.05 0.07 −0.09

−0.25 −0.26 −0.19 −0.08 0.83 0.05 0.09 −0.20

−0.26 −0.24 −0.14 −0.05 0.05 0.71 0.08 −0.15

−0.12 −0.37 −0.27 0.07 0.09 0.08 0.65 −0.13

−0.29 0.02 −0.31 −0.09 −0.20 −0.15 −0.13 1.15





















.
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The eigen-decomposition of S gives

U =





















0.60 −0.36 −0.10 0.48 −0.23 0.02 0.30

−0.52 −0.64 0.36 0.14 0.10 −0.06 −0.18

0.48 −0.17 0.10 −0.67 0.24 0.04 −0.30

−0.23 0.16 0.20 −0.38 −0.54 0.29 0.49

−0.02 0.39 0.19 0.28 0.61 0.47 0.14

−0.03 0.32 0.11 −0.00 0.14 −0.83 0.23

0.00 0.38 0.02 0.25 −0.43 0.04 −0.69

−0.28 −0.08 −0.87 −0.09 0.11 0.04 0.02





















(14)

and

Λ=

















2.22 0 0 0 0 0 0

0 1.72 0 0 0 0 0

0 0 1.23 0 0 0 0

0 0 0 1.00 0 0 0

0 0 0 0 0.79 0 0

0 0 0 0 0 0.69 0

0 0 0 0 0 0 0.39

















. (15)

As in PCA, the eigenvalues are often transformed into percentage

of explained variance (or inertia) in order to make their interpreta-

tion easier. Here, for example, we find that the first dimension “ex-

plains” 28% of the variance of the distances (i.e., 2.22
2.22+···+0.39

= .28).

We obtain the following matrix of scores.

F =





















2.53 −1.35 −0.30 1.36 −0.58 0.04 0.53

−2.19 −2.37 1.13 0.39 0.24 −0.15 −0.32

2.04 −0.63 0.32 −1.90 0.61 0.10 −0.52

−0.97 0.61 0.62 −1.09 −1.35 0.68 0.86

−0.10 1.44 0.59 0.81 1.53 1.10 0.25

−0.13 1.18 0.33 −0.00 0.35 −1.96 0.40

0.02 1.41 0.05 0.70 −1.09 0.09 −1.22

−1.20 −0.29 −2.74 −0.27 0.28 0.10 0.03





















.

Figure 1a displays the projection of the categories on the first

two dimensions. The first dimension explains 28% of the variance

of the distance, it can be interpreted as the opposition of the face

and cat categories to the house category (these categories are the

ones most easily discriminated in the scans). The second dimen-

sion, which explains 21% of the variance, separates the small ob-

jects from the other categories.
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3.3 Multidimensional scaling:

Supplementary elements

After we have computed the MDS solution, it is possible to project

supplementary or illustrative elements onto this solution. To illus-

trate this procedure, we will project the distance matrix obtained

from the pictures (see Table 2) onto the space defined by the analy-

sis of the brain scans.

The number of supplementary elements is denoted by Isup. For

each supplementary elements, we need the values of its distances

to all the I active elements. We can store these distances in an

I × Isup supplementary distance matrix denoted Dsup. So, for our

example, we have:

Dsup =

























0.00 4.52 4.08 4.08 4.52 3.97 3.87 3.73

4.52 0.00 2.85 4.52 4.52 4.52 4.08 4.52

4.08 2.85 0.00 1.61 2.92 2.81 1.96 3.17

4.08 4.52 1.61 0.00 2.82 2.89 2.91 3.97

4.52 4.52 2.92 2.82 0.00 3.55 3.26 4.52

3.97 4.52 2.81 2.89 3.55 0.00 2.09 3.26

3.87 4.08 1.96 2.91 3.26 2.09 0.00 1.50

3.73 4.52 3.17 3.97 4.52 3.26 1.50 0.00

























. (16)

The first step is to transform Dsup into a cross-product matrix

denoted Ssup. This is done by centering the rows with the same

centering matrix that was used previously to transform the dis-

tance of the active elements. Specifically, the cross-product matrix

is obtained as:

Ssup =−
1
2
ΞDsup . (17)

For our example, this gives:

Ssup =

























1.80 −0.41 −0.83 −0.62 −0.63 −0.54 −0.71 −0.32

−0.46 1.85 −0.21 −0.84 −0.63 −0.82 −0.81 −0.72

−0.24 0.42 1.21 0.62 0.17 0.04 0.25 −0.04

−0.24 −0.41 0.41 1.42 0.22 0.00 −0.22 −0.44

−0.46 −0.41 −0.25 0.01 1.63 −0.33 −0.40 −0.72

−0.18 −0.41 −0.19 −0.02 −0.14 1.44 0.18 −0.09

−0.14 −0.20 0.23 −0.03 0.00 0.40 1.23 0.79

−0.07 −0.41 −0.37 −0.56 −0.63 −0.19 0.48 1.54

























.

(18)
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The next step is to project the matrix Ssup onto the space de-

fined by the analysis of the active distance matrix. We denote by

Fsup the matrix of projection of the supplementary elements. Its

computational formula is obtained by first combining Equations

10 and 8 in order to get

F = STM−
1
2 UΛ

−
1
2 , (19)

and then substituting Ssup for S and simplifying gives

Fsup = ST

supM−
1
2 UΛ

−
1
2 = ST

supFΛ−1 . (20)

For our example, this equation gives the following values:

Fsup =



























2.45 −1.38 −1.18 2.53 −2.05 −0.30 2.56

−1.46 −3.24 2.30 −0.55 1.04 −0.34 −3.68

0.43 0.55 1.19 −3.89 −0.23 0.69 −2.81

0.37 1.98 1.50 −3.74 −1.90 1.61 2.21

0.25 2.74 1.87 −0.19 2.90 3.24 0.79

0.26 2.61 0.06 −1.07 −0.44 −4.43 −0.11

0.08 2.22 −1.79 −1.10 −1.37 −0.99 −5.05

−0.30 0.83 −4.59 −0.59 −1.24 −0.87 −3.72



























.

(21)

Figure 1b displays the projection of the supplementary cate-

gories on the first two dimensions. Comparing plots a and b shows

that an analysis of the pictures reveals a general map very similar

to the analysis of the brain scans with only one major difference:

The cat category for the images moves to the center of the space.

This suggests that the cat category is interpreted by the subjects as

being face-like (i.e., “cats have faces").

4 Analyzing non-metric data

Metric MDS is adequate only when dealing with distances (see To-

gerson, 1958). In order to accommodate weaker measurements

(called dissimilarities) non-metric MDS is adequate. It derives an

Euclidean distance approximation using only the ordinal informa-

tion from the data (Shepard, 1966; for a recent thorough review,

see Borg & Groenen, 1997).
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Appendix: Proof

We start with an I ×I distance matrix D, and an I ×1 vector of mass

(whose elements are all positive or zero and whose sum is equal to

1) denoted m and such that

m
1×

T 1
I ×1

= 1 . (22)

The centering matrix is equal to

Ξ
I × I

= I
I × I

− 1
I ×

m
1× I

T . (23)

We want to show that the following cross-product matrix

S
I × I

=−
1
2
ΞDΞ

T , (24)

will give back the original distance matrix when the distance ma-

trix is computed as:

D
I × I

= s
I ×

1
1× I

T
+ 1

I ×
s

1× I

T
−2 S

I × I
. (25)

In order to do so, we need to choose an origin for the coordinates

(because several coordinates systems will give the same distance

matrix). A natural choice is to assume that the data are centered

(i.e., the mean of each original variable is equal to zero). There we

assume that the mean vector, denoted c computed as:

c
J ×1

= X
J ×

T m
I ×1

, (26)

(for some data matrix X). Because the origin of the space is located

at the center of gravity, its coordinates are equal to c = 0. The cross-

product matric can therefore be computed as

S
I × I

=

(

X
I × J

− 1
I ×

c
1× J

T

)(

X
I × J

− 1
I ×

c
1× J

T

)T

=

(

X
I × J

− 1
I ×

c
1× J

T

)(

X
J × I

T
− c

J ×
1

1× I

T

)

. (27)

11



Hervé Abdi: Metric Multidimensional Scaling (MDS)

First, we assume that there exists a matrix denoted S such that

Equation 25) is satisfied. Then we plug Equation 25 into Equa-

tion 24, develop and simplify in order to get

−
1
2
ΞDΞ

T
=−

1
2
Ξs1T

Ξ
T
−

1
2
Ξ1sT

Ξ
T
+ΞSΞT . (28)

Then we show that the termsΞ
(

s1T
)

Ξ
T andΞ

(

1sT
)

Ξ
T are null

because::

(

s1T
)

Ξ
T
= s1T

(

I−1mT
)T

= s1T
(

I−m1T
)

= s1T
−s1Tm1T (but from Equation 22: 1Tm = 1)

= s1T
−s1T

= 0
I × I

. (29)

The last thing to show now is that the term ΞSΞT is equal to S.

This is shown by developing:

ΞSΞT
=

(

I−1mT
)

S
(

I−m1T
)

= S−Sm1T
−1mTS+1mTSm1T . (30)

Because
(

XT
−c1T

)

m = XTm−c1Tm (cf. Equations 26 and 22)

= c−c

= 0
I ×1

, (31)

we get (cf. Equation 27):

Sm =

(

X−1cT
)(

XT
−c1T

)

m = 0 (32)

12
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and, therefore, Equation 30 becomes

ΞSΞT
= S , (33)

which lead to

−
1
2
ΞDΞ

T
= S , (34)

which completes the proof.
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