Clustering Data

+ The clustering problem:
Given a set of objects, find groups of similar objects
+ Cluster: a collection of data objects

- Similar to one another within the same cluster
- Dissimilar to the objects in other clusters

+ What is similar?
Define appropriate metrics

+ Applications in
- marketing, image processing, biology

Clustering Methods

K-Means and K-medoids algorithms
- PAM, CLARA, CLARANS [Ng and Han, VLDB 1994]

Hierarchical algorithms
- CURE [6uha et al, SIGMOD 1998]
- BIRCH [Zhang et al, SIGMOD 1996]
- CHAMELEON [IEEE Computer, 1999]

Density based algorithms
- DENCLUE [Hinneburg, Keim, KDD 1998]
- DBSCAN [Ester et al, KDD 96]

Subspace Clustering
- CLIQUE [Agrawal et al, SIGMOD 1998]
- PROCLUS [Agrawal et al, SIGMOD 1999]
- ORCLUS: [Aggarwal, and Yu, STGMOD 2000]
- DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD, 2002]

K-Means and K-Medoids algorithms

* Minimizes the sum of square distances of points to cluster
representative

Ey= ZH’% M
%

- Efficient iterative algorithms (O(n))
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*based on slides by Padhraic Smyth UC, Irvine

1. Ask user how many clusters
they'd like. (e.g. kK=5)

2. Randomly guess K cluster
center locations
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“based on slides by Padhraic Smyth UC, Irvine

Each data point finds out
which center it's closest to.

*based on slides by Padhraic Smyth UC, Trvine

* Redefine each center
finding out the set of the
points it owns




Problems with K-Means type algorithms

= Advantages

Relatively efficient: O(tkn),

where 7nis the number of objects, kis
the number of clusters, and #is the
number of iterations.

ey

Normally, k, + << n.
- Often terminates at a local optimum.

= Problems o Ty o |
- Clusters are approximately spherical .
- Unable to handle noisy data and outlier ! e W ,_-'l !
——l S
- High dimensionality may be a problem —
- The value of kis an input parameter m_'ﬂ BTN G W R
g
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Spectral Clustering (I)

Algorithms that cluster points using eigenvectors of matrices
derived from the data

Obtain data representation in the low-dimensional space that
can be easily clustered

Variety of methods that use the eigenvectors differently

[Ng, Jordan, Weiss. NIPS 2001]
[Belkin, Niyogi, NIPS 2001]

[Dhillon, KDD 2001]

[Bach, Jordan NIPS 2003]

[Kamvar, Klein, Manning. ITCAT 2003]
[Jin, Ding, Kang, NIPS 2005]

Spectral Clustering methods

* Method #1
- Partition using only one eigenvector at a time
- Use procedure recursively
- Example: Image Segmentation
* Method #2
- Use keigenvectors (k chosen by user)
- Directly compute A-way partitioning
- Experimentally it has been seen to be "better” ([Ng,
Jordan, Weiss. NIPS 2001][Bach, Jordan, NIPS '03]).




Kernel-based k-means clustering
(Dhillon et al., 2004)
Data not linearly separable
Transform data to high-dimensional space using kernel
- ¢ a function that maps X to a high dimensional space
Use the kernel trick to evaluate the dot products:
- akernel function k (x, y) computes @(x)-p(y)
cluster kernel similarity matrix using weighted kernel K-Means.
The goal is to minimize the following objective function:
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Hierarchical Clustering

*Two basic approaches:
* merging smaller clusters into larger ones (agglomerative),
* splitting larger clusters (divisive)

*visualize both via “dendograms”
v'shows nesting structure
v'merges or splits = tree nodes

Sep0  Jtep! Step2 Step3 Sepd agglomerative

7 \ \ \ \ divisive
Step 4 Step 3 Step2 Stepl  Step 0

Hierarchical Clustering: Complexity

* Quadratic algorithms

* Running time can be
improved using sampling
[6uha et al, STGMOD 1998]
or using the triangle -
inequality (when it holds)

*based on slides by Padhraic Smyth UC, Irvine




Density-based Algorithms

+ Clusters are regions of
space which have a high
density of points

+ Clusters can have
arbitrary shapes

Regions of
high density

Clustering High Dimensional Data

Fundamental to all clustering techniques is the
choice of distance measure between data points;

2
Dl )= 3]
k=1
+ Assumption: All features are equally important:;
+ Such approaches fail in high dimensional spaces
Feature selection (Dy and Brodley, 2000)
Dimensionality Reduction

Applying Dimensionality Reduction Techniques

Dimensionality reduction techniques (such as Singular Value
Decomposition) can provide a solution by reducing the
dimensionality of the dataset:

illl‘
. %
Drawbacks: a -

+ The new dimensions may be difficult to interpret

+ They don't improve the clustering in all cases




Applying Dimensionality Reduction Techniques

Different dimensions may be relevant to different
clusters

In General: Clusters may exist in different subspaces,
comprised of different combinations of features
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Subspace clustering

Subspace clustering addresses the problems that arise from high

dimensionality of data

- It finds clusters in subspaces: subsets of the attributes

* Density based techniques
= CLIQUE: Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98)
= DOC: Procopiuc, Jones, Agarwal, and Murali, (SIGMOD, 2002)
 TIterative algorithms
= PROCLUS: Agrawal, Procopiuc, Wolf, Yu, Park (SIGMOD'99)
= ORCLUS: Aggarwal, and Yu (SIGMOD 2000).

Subspace clustering

Density based clusters: find dense
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Identifying the right sets of
attributes is hard

Assuming a global threshold allows

bottom-up algorithms
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Locally Adaptive Clustering

Each cluster is characterized by different attribute weights
(Friedman and Meulman 2002, Domeniconi 2004)
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[C. Domeniconi et al SDM04]
* Computing the weights:
X, »averagesquared distance along dimension 7 of points in
S, frome;

X/l :‘L Z(C/' _XL)Z

xes,

Wi =£g > |Exponenﬁal weighting scheme |
1
Result:
Wi Wy W, IA weight vector for each clusterl




Convergence of LAC

The LAC algorithm converges to a local minimum of the
error function:

k
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g
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Cz[cl”'ck] Wz[wl”'wk]

EM-like convergence:

Hidden variables: assignments of points to centroids (S )
E-step: find the values of S, given w, c;

M-step: find W, C;; that minimize E(C,W) given current
estimates S, .

Semi-Supervised Clustering

* Clustering is applicable in many real life scenarios
= there is typically a large amount of unlabeled data available.

The use of user input is critical for
= the success of the clustering process

= the evaluation of the clustering accuracy.
* User input is given as

= Labeled data

= Constraints

Learning approaches that use
labeled data/constraints + unlabeled data
have recently attracted the interest of researchers
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Motivating semi-supervised learning

Data are correlated. To recognize clusters, a distance function should

reflect such correlations.
Different attributes may have different degree of relevance

depending on the application / user requirements

® A clustering algorithm does not provide the criterion to be used.

l

Semi-supervised algorithms: Define clusters taking into account
« labeled data or constraints

if we have “labels" we will convert them to “constraints”
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Cluster 2

- The right
clustering may
depend on the
user’s
perspective.

- Fully

s Y o5

techniques are
very limited in
addressing
this problem

Clustering under constraints

- Use constraints to

- learn a distance function

- Points surrounding a pair of must-link/cannot-link

points should be close to/far from each other

- guide the algorithm to a useful solution

+ Two points should be in the same/different clusters

Defining the constraints

A set of points X = {x, .

cannot-link constraints(D)have been defined.

Must-link constraints

- S:{(x, X;) in X }: x; and x; should belong to the same cluster

Cannot-link constraints

- D: {(x; xJ) in X} : x; and x; cannot belong to the same cluster

Conditional constraints

- J-constraint and e-constraint

... X,} on which sets of must-/ink(S)and




Clustering with constraints: Feasibility issues

+ Constraints provide information that should be satisfied.
- Options for constraint-based clustering
- Satisfy all constraints

* Not always possible: A with B, B with C, C not with A.

- Satisfy as many constraints as possible

Clustering with constraints: Feasibility issues

-Any combination of constraints involving

cannot-link constraints is generally

computationally intractable (Davidson & Ravi,
ISMB 2000),
+ Reduction to k-colorability problem:

Can you cluster (color) the graph \

(> v
with the cannot-link edges

using k colors (clusters)?

Feasibility under ML and ¢

e-constraint: Any node x should have an &-neighbor in its
cluster (another node y such that D(x,y)< &)

5'={x € 5 x does not have an ¢ neighbor}={s;, s}
Each of these should be in their own cluster

X, X, X3 Xy X5 Xg

ML(x,,%,),
ML(x3,%,),

Compute the Transitive Closure on ML={CC; ... CC,} ML(x,,%5)

X X4 X. Xg

Infeasible: iff 3/ j: xe CC, X, € S'

*S. Basu, I. Davidson,turorial ICDM 2005

31
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Clustering based on constraints
+ Algorithm specific approaches
- Incorporate constraints into the clustering algorithm

+ COP K-Means (Wagstaff et al, 2001)
- Hierarchical clustering (I. Davidson, S. Ravi, 2005)

- Incorporate metric learning into the algorithm
© MPCK-Means (Bilenko et al 2004)
* HMRF K-Means (Basu et al 2004)
+ Learning a distance metric (Xing et al. '02)
+ Kernel-based constrained clustering (Kulis et al.05)

COP K-Means (I)
[Wagstaff et al, 2001]

+ Semi-supervised variants of K-Means

+ Constraints: Initial background knowledge

clustering process

Must-link & Cannot-link constraints are used in the

- Generate a partition that satisfies all the given constraints

constraints

constraints (Con,).

When updating cluster assignments,
- we ensure that none of the specified constraints are violated.

COP K-Means (II)
The algorithm takes in K-Means // \\\
adata set (D) Clustering / O \
based on ! !
@ ©

*aset of must-link
constraints (Con.) N
- a set of cannot-link e
Clustering satisfying
user constraints

* Assign each point d; to its closest cluster C;. This will succeed unless a
constraint would be violated.
- If there is another point d, that must be assigned to the same cluster as d, but that is

already in some other cluster, or
- there is another point d. that cannot be grouped with dbut is already in €, then dcannot

be placed in ¢
- Constraints are never broken; if a legal cluster cannot be found for d, the
—

34

empty partition (f,) is returned.
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Hierarchical Clustering based on constraints
[1. Davidson, S. Ravi, 2005]

Instance: A set S of nodes, the (symmetric) distance
d(x,y)20 for each pair of nodes x and y and a collection
C of constraints

- =

* Question: Can we create a dendrogram for S so that
all the constraints in C are satisfied?

Davidson I. and Ravi, S. S. “Hierarchical Clustering with Constraints: Theory and P:

Constraints and Irreducible Clusterings

- A feasible clustering C={C,, C,, .., C,} of aset S is irreducible if no pair
of clusters in C can be merged to obtain a feasible clustering with k-1

clusters.

If mergers are not done
correctly, the dendrogram
may stop prematurely

< X={x,, X,, ... X}, P
Y={y:. Y2o . Y

Z={z,, z,, .., 2}, *Feasible clustering with 2k clusters:

W=lw,, w,, ..., w %2 xg {Xz{ zykz’}w:,{xk, i {zi, wil,

CL-constraints But then get stuck

- VX, Xi}’ '_#J_ - Alternative is:

- Hw;, Wj)'_'%\l | WYL Ya e vid e Wa, 21, 25, 2,
- V{Yi/ Zj}' ISJ, J=si {x3, w3}, ., {xp, w,}

MPCK-Means

[Bilenko et al 2004]
+ Incorporate metric learning directly into

the clustering algorithm

- Unlabeled data influence the metric learning
process

- Objective function

- Sum of total square distances between the
points and cluster centroids

- Cost of violating the pair-wise constraints




Unifying constraints and Metric learning

Generalized K-means distortion
function,
Assumes each cluster is

/ generated by a gaussian with

covariance matrix A,

S petn T z x,—,u,’Hz —log(det(A,’ )+

X Al

Ea

ZvaM(X X )1[1‘.¢1j]

i2 ZW” C(XI’XJ [11:11]
(50 )eM (x,.5,)<C

Violation must-link Violation cannot-link
constraints constraints

Penalty

functions

MPCK-Means approach

Initialization:

- Use neighborhoods derived from constraints to initialize
clusters

Repeat until convergence (not guaranteed):
1. E-step:
- Assign each point x to a cluster fo minimize
+ distance of x from the cluster centroid + constraint violations
2. M-step:
- Estimate cluster centroids ¢ as means of each cluster

- Re-estimate parameters A (dimension weights)to minimize
constraint violations

Learning a distance metric based on user
constraints

The requirement is :

- learn the distance measure to satisfy user constraints.

+ To simplify the problem consider the weighted Euclidean
distance:
- different weights are assigned to different dimensions

- Other formulations that map the points to a new space
can be considered, but are significantly more complex to
optimize

13



Distance Learning as Convex Optimization
[Xing et al. '02]

*+ Goal: Learn a distance metric between the points
in X that satisfies the given constraints

* The problem reduces to the following optimization
problem :

. 2
min , Z X‘—XJHA
(x;.%,)eML

given that

2

x—x,| 21 A0

(x;.%))eCL

/

. /
R A /
ce®e b //Space
b FYRNE T L LI /. Transformed by
N / Learned Function
. .
.
N o o
. .l . . . LY .
. ..l .l-l . * o .
. . o« L,
. -” wsw  Cannot-link

s Must-link

Learning Mahalanobis distance

Mahalanobis distance =
Euclidean distance parameterized by matrix A

llx=ylli=(x-y) A(x—y)

Typically A is diagonal

14



The Diagonal 4 Case

+ Considering the case of learning a diagonal A

* we can solve the original optimization problem using
Newton-Raphson to efficiently optimize the following

- Tpsoxf - Th-s),
(x;.x))eML (x;.%))eCL

Use Newton Raphson Technique:
X' = x-g(x)/g(x)
A'=A-g(A).JY(A)

A20

Kernel based Semi-supervised clustering
[Kulis et al.'05]

A non-linear transformation, ¢
+ maps data to a high dimensional space
+ the data are expected to be more separable

+ a kernel function k (x, y) computes ¢(x)-9(y)

)= Thoc)-mf - Zwir T, *~/

‘ Reward for 4//' - LS
constraint
satisfaction L

Semi-Supervised Kernel-KMeans
[Kulis et al."05]

Algorithm:
- Constructs the appropriate kernel matrix from data and constraints
- Runs weighted kernel K-Means

Input of the algorithm: Kernel matrix
- Kernel function on vector data or

- Graph affinity matrix

Benefits:
- HMRF-KMeans and Spectral Clustering are special cases
- Fast algorithm for constrained graph-based clustering

- Kernels allow constrained clustering with non-linear cluster
boundaries

15



Graph-based constrained clustering

+ Constrained graph clustering:
- minimize cut in input graph while
maximally respecting a given set

of constraints

Clustering using constraints and cluster
validity criteria

Different distance metrics may satisfy the same number of
constraints

One solution is to apply a different criterion that evaluates
the resulting clustering to choose the right distance metric
A general approach should:

- Learn an appropriate distance metric to satisfy the constraints

- Determine the best clustering w.r.t the defined distance metric.

Cluster Validity

A problem we face in clustering is to
v define the “best" partitioning of a data set, i.e.
v'number of clusters that fits a data set,
v'capture the shape of clusters presenting in underlying
data set

*The clustering results depend on
= the data set (data distribution)
= Initial clustering assumptions, algorithm input parameters values

16
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S_wa cluster Validity index [Halkidi, Vazirgiannis, ICDM'01]

= SDbw: a relative algorithm-independent validity index, based on
= Scattering and Density between clusters

Main features of the proposed approach
Validity index S_Dbw. Based on the features of the clusters:

v evaluates the resulting clustering as defined by the
algorithm under consideration.

v selects for each algorithm the optimal set of input
parameters with regards to the specific data set.

S_Dbw definition: Inter-cluster Density (ID)

Dens_bw: Average density in the area among clusters in relation
with the density of the clusters

1 | & density (u,)

PDY

(c=1) 5| 5 max{density (v,), density (v,)} |

Dens _bw(c) =
c

density(u )=zf(xlgu )’f(x,u) _Jo, if d(x, ‘u) > stdev
=1 1, otherwise

where n;; =number of tuples that belong to the clusters ¢; and ¢, i, x; e ¢;Uc; =S

G
ReeEeEeee
R,

R
S
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S_Dbw definition: Intra-cluster variance

Average scattering of clusters:

2ol

ol

Scat(c) =

1
where o, ==
n =i

- = I
P. . . —_
where  x is the p  dimension  of X == z X X
n

S_Dbw(c) = Scat(c) + Dens bw(c)
(SEENERE)

= |
%W@‘

Scat A & Dens_bw ~

A Y

Scat A & Dens_bw A Scat A & Dens_bw A

54

Scat ~N & Dens_bw A

Multi-representatives vs. Single

a single representative point
cannot efficiently represent the
shape of clusters in DS4

36 46 DS4 56
80
1
75 4 -
X
N
70 3 L]
2
65
60 +
36 41 46 51 56
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Respective Closest Representative points

For each pair of clusters (C;, C;) we find the set of closest representatives
of C; with respect to C;:

for each vy in C; = {(vi. vy)l v € C; and min(dist(v;., v;, )}
RCR;; = pruning( CRY)

Neighbouthood
of

Respective Closest Representative points. The set of respective representative points of the
clusters C; and C; is defined as the set of mutual closest representatives of the clusters under
concern, i.e. RCR;; = {(vy, vyl vy = closest_rep; (v;) and v = closest_rep; (v;)} i.e. RCRy “CR| N CR]

Pruning maintains only the meaningful pairs of representative points

56

Inter cluster density

Clusters' separation implies low density among them

d(clos _rep})
— = V7. densitylu?
2-stdev enst y(uu)

:

Dens(C‘,CJ):

c

1
Inter _ dens (C) = —- max
- © c Z j=1

e

foens 1)

e
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