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Clustering  DataClustering  Data

•• The The clustering problemclustering problem:

Given a set of objects, find groups of similar objects

•• Cluster:Cluster: a collection of data objects
– Similar to one another within the same cluster

– Dissimilar to the objects in other clusters

•• What is similar?What is similar?
Define appropriate metrics  

•• Applications inApplications in
– marketing, image processing, biology
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Clustering Methods
•• KK--Means and KMeans and K--medoidsmedoids algorithmsalgorithms

– PAM, CLARA, CLARANS [Ng and Han, VLDB 1994] 

•• Hierarchical algorithmsHierarchical algorithms

– CURE [Guha et al, SIGMOD 1998]

– BIRCH [Zhang et al, SIGMOD 1996]

– CHAMELEON [IEEE Computer, 1999]

•• Density based algorithmsDensity based algorithms

– DENCLUE [Hinneburg, Keim, KDD 1998]

– DBSCAN [Ester et al, KDD 96]

•• Subspace ClusteringSubspace Clustering

– CLIQUE [Agrawal et al, SIGMOD 1998]

– PROCLUS [Agrawal et al, SIGMOD 1999]

– ORCLUS: [Aggarwal, and Yu, SIGMOD 2000] 

– DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD, 2002]
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KK--Means and KMeans and K--MedoidsMedoids algorithmsalgorithms

• Minimizes the sum of  square distances of points to cluster 
representative

• Efficient iterative algorithms (O(n))
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1. Ask user how many clusters 
they’d like. (e.g. K=5) 

2. Randomly guess K cluster 
center locations

*based on slides by Padhraic Smyth UC, Irvine
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Each data point finds out 

which center it’s closest to. 

*based on slides by Padhraic Smyth UC, Irvine
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•• Redefine each center Redefine each center 
finding out the set of the finding out the set of the 
points it ownspoints it owns

*based on slides by Padhraic Smyth UC, Irvine
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Problems with KProblems with K--Means type algorithmsMeans type algorithms

�� Advantages Advantages 

- Relatively efficient: O(O(tkntkn), ), 

- where n is the number of objects, k is 
the number of clusters, and t is the 
number of iterations. 

Normally, k, t << nk, t << n..

- Often terminates at a local optimum.

�� ProblemsProblems

– Clusters are approximately spherical

– Unable to handle noisy data and outliers

–– High dimensionalityHigh dimensionality may be a problem

– The value of k is an input parameter
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Spectral Clustering (I)Spectral Clustering (I)

•• Algorithms that cluster points using eigenvectorsAlgorithms that cluster points using eigenvectors of matrices 

derived from the data

• Obtain data representation in the low-dimensional space that 

can be easily clustered

• Variety of methods that use the eigenvectors differently

[Ng, Jordan, Weiss.  NIPS 2001]

[Belkin, Niyogi, NIPS 2001]

[Dhillon, KDD 2001]

[Bach, Jordan NIPS 2003]

[Kamvar, Klein, Manning. IJCAI 2003]

[Jin, Ding, Kang, NIPS 2005]
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Spectral Clustering methodsSpectral Clustering methods

•• Method #1Method #1

– Partition using only one eigenvector at a time

– Use procedure recursively

•• Example:Example: Image Segmentation

•• Method #2Method #2

– Use kk eigenvectors (kk chosen by user)

– Directly compute kk-way partitioning

– Experimentally it has been seen to be “better” ([Ng, 

Jordan, Weiss.  NIPS 2001][Bach, Jordan, NIPS ’03]).
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KernelKernel--based kbased k--means clusteringmeans clustering
((DhillonDhillon et al., 2004)et al., 2004)

• Data not linearly separablelinearly separable

•• Transform data to highTransform data to high--dimensional spacedimensional space using kernel

– φ a function that maps X to a high dimensional space

• Use the kernel trick to evaluate the dot products: 

– a kernel function k (x, y)k (x, y) computes φφ((xx))⋅⋅⋅⋅⋅⋅⋅⋅φφ((y)y)

• cluster kernel similarity matrix using weighted kernel Kweighted kernel K--Means. Means. 

• The goal is to minimize the following objective function:
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Hierarchical ClusteringHierarchical Clustering

Step 0 Step 1 Step 2 Step 3 Step 4
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e
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d e
c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

divisive

••Two basic approaches:Two basic approaches:

• merging smaller clusters into larger ones (agglomerative)(agglomerative),

• splitting larger clusters (divisive)(divisive)

•visualize both via ““dendogramsdendograms””

�shows nesting structure

�merges or splits = tree nodes 
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Hierarchical Clustering: ComplexityHierarchical Clustering: Complexity

•• Quadratic algorithmsQuadratic algorithms

•• Running timeRunning time can be 

improved using sampling

[Guha et al, SIGMOD 1998] 

0r using the triangle 

inequality (when it holds)

*based on slides by Padhraic Smyth UC, Irvine
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DensityDensity--based Algorithmsbased Algorithms

•• ClustersClusters are regions of 
space which have a high 
density of points

• Clusters can have 
arbitrary shapesarbitrary shapes
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Clustering High Dimensional DataClustering High Dimensional Data

• Fundamental to all clustering techniques is the 

choice of distance measure between data points;

•• AssumptionAssumption:: All features are equally importantequally important;;

• Such approaches fail in high dimensional spaces

• Feature selection (Dy and Brodley, 2000)

Dimensionality Reduction
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Applying Dimensionality Reduction TechniquesApplying Dimensionality Reduction Techniques

Dimensionality reduction techniquesDimensionality reduction techniques (such as Singular Value Singular Value 

DecompositionDecomposition) can provide a solution by reducing the 

dimensionality of the dataset:

Drawbacks: Drawbacks: 

• The new dimensions may be difficult to interpret

• They don’t improve the clustering in all cases
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Different dimensions may be relevant to different 
clusters

In General: Clusters may exist in different subspaces, 
comprised of different combinations of features

Applying Dimensionality Reduction TechniquesApplying Dimensionality Reduction Techniques

18

Subspace clusteringSubspace clustering

•• Subspace clusteringSubspace clustering addresses the problems that arise from high 

dimensionality of data

– It finds clusters in subspaces: subsets of the attributes

•• Density based techniquesDensity based techniques

–– CLIQUE:CLIQUE: AgrawalAgrawal, , GehrkeGehrke, , GunopulosGunopulos, , RaghavanRaghavan (SIGMOD(SIGMOD’’98)98)

–– DOC:DOC: ProcopiucProcopiuc, Jones, , Jones, AgarwalAgarwal, and , and MuraliMurali, (SIGMOD, 2002), (SIGMOD, 2002)

•• Iterative algorithmsIterative algorithms

–– PROCLUS:PROCLUS: AgrawalAgrawal, , ProcopiucProcopiuc, Wolf, Yu, Park (SIGMOD, Wolf, Yu, Park (SIGMOD’’99)99)

–– ORCLUS:ORCLUS: AggarwalAggarwal, and Yu (SIGMOD 2000)., and Yu (SIGMOD 2000).

19

Subspace clusteringSubspace clustering

•• Density based clusters:Density based clusters: find dense 

areas in subspaces

• Identifying the right sets of 

attributes is hard

• Assuming a global threshold allows 

bottom-up algorithms

• Constrained monotone search in a 

lattice space 
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Locally Adaptive ClusteringLocally Adaptive Clustering

yxyx wwww 1111   ),,( > xyyx wwww 2222   ),,( >

Each cluster is characterized by different attribute weights
(Friedman and Meulman 2002, Domeniconi 2004)
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Locally Adaptive Clustering : ExampleLocally Adaptive Clustering : Example
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LACLAC
[[C. C. DomeniconiDomeniconi et alet al SDM04]
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 from        

in points of dimension  along distance squared average:

•• Computing the weights:Computing the weights:

 ,,,

:Result

21 kwww L

Exponential weighting schemeExponential weighting scheme

A weight vector for each clusterA weight vector for each cluster
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Convergence of LACConvergence of LAC

The LAC algorithmLAC algorithm converges to a local minimum of the 
error function:    

subject to the constraints 
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SemiSemi--Supervised ClusteringSupervised Clustering
•• ClusteringClustering is applicable in many real life scenarios 

– there is typically a large amount of unlabeled dataunlabeled data available. 

• The use of user inputuser input is critical for

– the success of the clustering process

– the evaluation of the clustering accuracy. 

•• User inputUser input is given as

– Labeled data

– Constraints

Learning approachesLearning approaches that use 

labeledlabeled data/constraints/constraints + unlabeledunlabeled data 

have recently attracted the interest of researchers

25

Motivating semiMotivating semi--supervised learningsupervised learning

•• Data are correlated.Data are correlated. To recognize clusters, a distance function should 

reflect such correlations.

•• Different attributes may have different degree of relevanceDifferent attributes may have different degree of relevance

depending on the application / user requirements

� A clustering algorithm does not provide the criterion to be used.

SemiSemi--supervised algorithms: supervised algorithms: Define clusters taking into account

•• labeledlabeled data or constraintsor constraints

if we have ““labelslabels”” we will convert them to ““constraintsconstraints””
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Clustering under constraintsClustering under constraints

• Use constraintsconstraints to

– learn a distance functiondistance function

• Points surrounding a pair of must-link/cannot-link

points should be close to/far from each other

–– guide the algorithm to a useful solutionguide the algorithm to a useful solution

• Two points should be in the same/different clusters

28

Defining the constraintsDefining the constraints

• A set of points X = {x1, …, xn} on which sets of mustmust--link(Slink(S)) and 

cannotcannot--link link constraints(Dconstraints(D)) have been defined. 

•• MustMust--link constraintslink constraints

–– S:S: {(xi, xj) in X }: xi and xj should belong to the same cluster

•• CannotCannot--link constraintslink constraints

–– D:D: {(xi, xj) in X} : xi and xj cannot belong to the same cluster

•• Conditional constraintsConditional constraints

– δ-constraint and ε-constraint
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Clustering with constraints: Feasibility issuesClustering with constraints: Feasibility issues

•• ConstraintsConstraints provide information that should be satisfied.

• Options for constraintconstraint--based clusteringbased clustering

–– Satisfy all constraintsSatisfy all constraints

•• Not always possible:Not always possible: A with B, B with C, C not with A.

–– Satisfy as many constraints as possibleSatisfy as many constraints as possible

30

Clustering with constraints: Feasibility issuesClustering with constraints: Feasibility issues

–Any combination of constraints involving 

cannot-link constraints is generally 

computationally intractable (Davidson & Ravi, 

ISMB 2000), 

• Reduction to k-colorability problem:

Can you cluster (color) the graph 

with the cannot-link edges 

using k colors (clusters)?

31

Feasibility under Feasibility under ML ML and and εεεεεεεε

S’ = {x ∈ S : x does not have an εεεε neighbor}={s5, s6}
Each of these should be in their own cluster

Compute the Transitive ClosureTransitive Closure on ML={CC1 … CCr} 

Infeasible:Infeasible: iff ∃i, j : xi∈ CCj, xi ∈ S’

ML(xML(x11,x,x22), ), 
ML(xML(x33,x,x44), ), 
ML(xML(x44,x,x55))

εε--constraint:constraint: Any node x should have an ε-neighbor in its 
cluster (another node y such that D(x,yD(x,y))≤≤≤≤≤≤≤≤ εε))

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

*S. Basu, I. Davidson,turorial ICDM 2005
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Clustering based on constraintsClustering based on constraints

•• Algorithm specific approachesAlgorithm specific approaches

–– Incorporate constraints into the clustering algorithmIncorporate constraints into the clustering algorithm

•• COP KCOP K--Means (Means (WagstaffWagstaff et al, 2001et al, 2001))

•• Hierarchical clustering (Hierarchical clustering (I. Davidson, S. Ravi, 2005)I. Davidson, S. Ravi, 2005)

–– Incorporate metric learning into the algorithmIncorporate metric learning into the algorithm

•• MPCKMPCK--Means (Means (BilenkoBilenko et al 2004)et al 2004)

•• HMRF KHMRF K--Means (Means (BasuBasu et al 2004)et al 2004)

•• Learning a distance metric Learning a distance metric (Xing et al. (Xing et al. ’’02)02)

•• KernelKernel--based constrained clustering based constrained clustering ((KulisKulis et al.et al.’’05)05)

33

COP KCOP K--Means (I)Means (I)
[[WagstaffWagstaff et al, 2001]et al, 2001]

• Semi-supervised variants of K-Means

•• Constraints:Constraints: Initial background knowledge 

•• MustMust--linklink & CannotCannot--linklink constraints are used in the 

clustering process 

– Generate a partition that satisfies all the given constraints

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In ICML, 

pages 577–584, 2001.

34

COP KCOP K--Means (II)Means (II)

• When updating cluster assignments,
– we ensure that none of the specified constraints are violated. 

• Assign each point di to its closest cluster Cj. This will succeed unless a 
constraint would be violated. 
– If there is another point d= that must be assigned to the same cluster as d, but that is 

already in some other cluster, or 

– there is another point d≠ that cannot be grouped with d but is already in C, then d cannot 
be placed in C. 

• Constraints are never broken; if a legal cluster cannot be found for d, the 
empty partition (fg) is returned.

The algorithm takes in 
a data set (D)

• a set of mustmust--link link 
constraints (Con=)

• a set of cannotcannot--linklink
constraints (Con≠).

K-Means 
Clustering 
based on 
constraints

Clustering satisfying 
user constraints
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Hierarchical Clustering based on constraintsHierarchical Clustering based on constraints
[I. Davidson, S. Ravi, 2005][I. Davidson, S. Ravi, 2005]

•• Question:Question: Can we create a dendrogram for S so that 

all the constraints in C are satisfied? 

Instance:Instance: A set S of nodes, the (symmetric) distance 

d(x,y)d(x,y)≥≥00 for each pair of nodes x and y and a collection 

C of constraints

Davidson I. and Ravi, S. S. “Hierarchical Clustering with Constraints: Theory and Practice”, In PKDD 2005

36

Constraints and Irreducible Constraints and Irreducible ClusteringsClusterings

• A feasible clustering C={Cfeasible clustering C={C11, C, C22, , ……, C, Ckk}} of a set S is irreducible if no pair 

of clusters in C can be merged to obtain a feasible clustering with k-1 

clusters.

•• X={xX={x11, x, x22, , ……, , xxkk}, }, 
Y={yY={y11, y, y22, , ……, , yykk}, }, 
Z={zZ={z11, z, z22, , ……, , zzkk}, }, 
W={wW={w11, w, w22, , ……, w, wkk}}

•• CLCL--constraintsconstraints

– ∀{xi, xj}, i≠j

– ∀{wi, wj}, i≠j

– ∀{yi, zj}, i≤j, j ≤i

••Feasible clustering with 2k clusters: Feasible clustering with 2k clusters: 
{x{x11, y, y11}, {x}, {x22, y, y22}, }, ……, {, {xxkk, , yykk}, {z}, {z11, w, w11}, }, 
{z{z22,w,w22}, }, ……, {, {zzkk, w, wkk}}

But then get stuck

•Alternative is: 

• {x1, w1, y1, y2, …, yk}, {x2, w2, z1, z2, …, zk}, 

{x3, w3}, …, {xk, wk}

If mergers are not done 
correctly, the dendrogram
may stop prematurely

If mergers are not done 
correctly, the dendrogram
may stop prematurely

37

MPCKMPCK--MeansMeans
[[BilenkoBilenko et al 2004]et al 2004]

•• Incorporate metric learning directly into Incorporate metric learning directly into 
the clustering algorithmthe clustering algorithm
– Unlabeled data influence the metric learning 
process

•• Objective functionObjective function
– Sum of total square distances between the 
points and cluster centroids

– Cost of violating the pair-wise constraints

M. Bilenko, S. Basu, R. Mooney. “Integrating Constraints and Metric Learning in Semi-supervised clustering. In 

Proceedings of the 21st ICML Conference, July 2004.
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Unifying constraints and Metric learningUnifying constraints and Metric learning
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MPCKMPCK--Means approachMeans approach

Initialization:Initialization:
– Use neighborhoods derived from constraints to initialize 

clusters

Repeat until convergence (not guaranteed):Repeat until convergence (not guaranteed):

1. EE--step:step:

–– AssignAssign each point x to a cluster to minimize

• distance of xx from the cluster centroid + constraint violations

2. MM--step: step: 

–– Estimate Estimate cluster centroids C  as means of each cluster

–– ReRe--estimateestimate parameters A (dimension weights) to minimize 
constraint violations

40

Learning a distance metric based on user Learning a distance metric based on user 

constraintsconstraints

• The requirement is :

–– learn the distance measurelearn the distance measure to satisfy user constraintsuser constraints.

•• To simplify the problem consider the weighted Euclidean To simplify the problem consider the weighted Euclidean 

distance:distance:

– different weightsweights are assigned to different dimensionsdifferent dimensions

- Other formulations that map the points to a new space 

can be considered, but are significantly more complex to 

optimize
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•• Goal:Goal: Learn a distance metricLearn a distance metric between the points 

in X that satisfies the given constraints

• The problem reduces to the following optimization optimization 
problem :problem :
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Distance Learning as Convex OptimizationDistance Learning as Convex Optimization
[Xing et al. [Xing et al. ’’02]02]

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering 

with side-information. In NIPS, December 2002.

42

Example: Learning Distance FunctionExample: Learning Distance Function

Cannot-link

Must-link

Space Space 
Transformed by Transformed by 
Learned FunctionLearned Function

43

Learning Learning MahalanobisMahalanobis distancedistance

MahalanobisMahalanobis distancedistance ==

Euclidean distance parameterized by matrix AEuclidean distance parameterized by matrix A

)yx(A)yx(||yx|| T2

A −−=−   

Typically AA is diagonal
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The Diagonal The Diagonal AA CaseCase

• Considering the case of learning a diagonala diagonal A

• we can solve the original optimization problemoptimization problem using 

Newton-Raphson to efficiently optimize the following 
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A ≥ 0
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Kernel Kernel basedbased SemiSemi--supervised clusteringsupervised clustering

The user gives constraints 

The appropriate kernel is created 
based on constraints
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A nonnon--linear transformation,linear transformation, φ

• maps data to a high dimensional space

• the data are expected  to be more separable

• a kernel function k (x, y)k (x, y) computes φφ((xx))⋅⋅⋅⋅⋅⋅⋅⋅φφ((y)y)

[[KulisKulis et al.et al.’’05]05]

46

SemiSemi--Supervised KernelSupervised Kernel--KMeansKMeans
[Kulis et al.[Kulis et al.’’05]05]

•• Algorithm:Algorithm:

– Constructs the appropriate kernel matrix from data and constraints

– Runs weighted kernel K-Means 

•• Input of the algorithm:Input of the algorithm: Kernel matrix

– Kernel function on vector data or

– Graph affinity matrix

•• Benefits:Benefits:

– HMRF-KMeans and Spectral Clustering are special cases

– Fast algorithm for constrained graph-based clustering

– Kernels allow constrained clustering with non-linear cluster 

boundaries
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GraphGraph--based constrained clusteringbased constrained clustering

•• Constrained graph clustering:Constrained graph clustering:

– minimize cut in input graph while 

maximally respecting a given set 

of constraints

48

Clustering using constraints and cluster Clustering using constraints and cluster 

validity criteriavalidity criteria

•• Different distance metrics may satisfy the same number of Different distance metrics may satisfy the same number of 

constraintsconstraints

•• One solution is to apply a different criterion that evaluates One solution is to apply a different criterion that evaluates 

the resulting clustering to choose the right distance metricthe resulting clustering to choose the right distance metric

•• A general approach should:A general approach should:

–– Learn an appropriate distanceLearn an appropriate distance metricmetric to satisfy the constraints

–– Determine the best clusteringDetermine the best clustering w.r.t the defined distance metric.

49

Cluster ValidityCluster Validity

A problem we face in clustering is to 

� define the ““bestbest”” partitioningpartitioning of a data set, i.e. 

�number of clusters that fits a data set, 

�capture the shape of  clusters presenting in underlying 

data set

•The clustering results depend on
�� the data setthe data set (data distribution)

�� Initial Initial clustering assumptionsclustering assumptions, , algorithmalgorithm input parameters valuesinput parameters values
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S_DbwS_Dbw cluster validity index cluster validity index [Halkidi, Vazirgiannis, ICDM’01]

�� SDbwSDbw: a relative algorithm-independent validity index, based onbased on

�� SScattering and cattering and DDensity ensity bbetetwween clusterseen clusters

Main features of the proposed approachMain features of the proposed approach

Validity index S_DbwS_Dbw. Based on the features of the clusters:

� evaluates the resulting clustering as defined by the 
algorithm under consideration. 

� selects for each algorithm the optimal set of input 
parameters with regards to the specific data set.

52

S_DbwS_Dbw definition: definition: InterInter--cluster Density (ID)cluster Density (ID)
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S_DbwS_Dbw definition: definition: IntraIntra--cluster variancecluster variance

Average scattering of clustersAverage scattering of clusters::
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MultiMulti--representatives vs. Single representatives vs. Single 
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Respective  Closest Representative pointsRespective  Closest Representative points

For each pair of clusters (Ci, Cj) we find the set of closest representatives 
of Cj with respect to Ci :

for each for each vvikik in in CCii = {(= {(vvikik, , vvjljl)| )| vvjxjx ∈∈∈∈∈∈∈∈ CCjj and and min(dist(vmin(dist(vikik, , vvjxjx))}))}

RCRij = pruning(      )
j
iCR

RRespective espective CClosest losest RRepresentative pointsepresentative points.. The set of respective representative points of the 

clusters Ci and Cj is defined as the set of mutual closest representatives of the clusters under 

concern, i.e. RCRij = {(vik, vjl)| vik = closest_repi (vjl) and vjl = closest_repj (vik)} i.e. RCRij =         ∩

Pruning maintains only the meaningful pairs of representative points
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Inter cluster densityInter cluster density

ClustersClusters’’ separationseparation implies low density among them
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