
1

1

Retrieval techniques for high-

dimensional datasets

• The retrieval problem:

– Given a set of objects SS, and a query object S,

– find the objectss that are most similar to S.

• Applications:

– financial, voice, marketing, medicine, video

2

Examples

• Find companies with similar stock prices over a time

interval

• Find products with similar sell cycles

• Cluster users with similar credit card utilization

• Cluster products

2

3

Indexing when the triangle inequality

holds

• Typical distance metric: Lp norm.

• We use L2 as an example throughout:

– D(S,T) = (Σi=1,..,n (S[i] - T[i])2) 1/2

4

Indexing: The naïve way

• Each object is an n-dimensional tuple

• Use a high-dimensional index structure to index the tuples

• Such index structures include

– R-trees,

– kd-trees,

– vp-trees,

– grid-files...

3

5

High-dimensional index structures

• All require the triangle inequality to hold

• All partition either

– the space or

– the dataset into regions

• The objective is to:

– search only those regions that could potentially contain

good matches

– avoid everything else

6

The naïve approach: Problems

• High-dimensionality:

– decreases index structure performance (the curse of

dimensionality)

– slows down the distance computation

• Inefficiency

4

7

Dimensionality reduction

• The main idea: reduce the dimensionality of the space.

• Project the n-dimensional tuples that represent the time

series in a k-dimensional space so that:

– k << n

– distances are preserved as well as possible

8

Dimensionality Reduction

• Use an indexing technique on the new space.

• GEMINI ([Faloutsos et al]):

– Map the query S to the new space

– Find nearest neighbors to S in the new space

– Compute the actual distances and keep the closest

5

9

Dimensionality Reduction

• A time series is represented as a k-dim point

• The query is also transformed to the k-dim space

f2

f1time

query

dataset

10

Dimensionality Reduction

• Let F be the dimensionality reduction technique:

– Optimally we want:

– D(F(S), F(T)) = D(S,T)

• Clearly not always possible.

• If D(F(S), F(T)) ≠ D(S,T)

– false dismissal (when D(S,T) << D(F(S), F(T)))

– false positives (when D(S,T) >> D(F(S), F(T)))

6

11

Dimensionality Reduction

• To guarantee no false dismissals we must be able to prove

that:

– D(F(S),F(T)) < a D(S,T)

– for some constant a

• a small rate of false positives is desirable, but not essential

12

What we achieve

• Indexing structures work much better in lower

dimensionality spaces

• The distance computations run faster

• The size of the dataset is reduced, improving performance.

7

13

Dimensionality Techniques

• We will review a number of dimensionality techniques that

can be applied in this context

– SVD decomposition,

– Discrete Fourier transform, and Discrete Cosine transform

– Wavelets

– Partitioning in the time domain

– Random Projections

– Multidimensional scaling

– FastMap and its variants

14

SVD decomposition - the Karhunen-

Loeve transform

• Intuition: find the axis that

shows the greatest

variation, and project all

points into this axis

• [Faloutsos, 1996]

f2

e1

e2

f1

8

15

SVD: The mathematical formulation

• Find the eigenvectors of

the covariance matrix

• These define the new

space

• The eigenvalues sort them

in “goodness”

order

f2

e1

e2

f1

16

SVD: The mathematical formulation,

Cont’d

• Let A be the M x n matrix of M time series of length n

• The SVD decomposition of A is: = U x L x VT,

– U, V orthogonal

– L diagonal

• L contains the eigenvalues of ATA

x x

M x n

n x n

U L V

n x n

9

17

SVD Cont’d

• To approximate the time

series, we use only the k

largest eigenvectors of C.

• A’ = U x Lk

• A’ is an M x k matrix

0 20 40 60 80 100 120 140

eigenwave 0

X

X'

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

eigenwave 7

18

SVD Cont’d

• Advantages:

– Optimal dimensionality reduction (for linear

projections)

• Disadvantages:

– Computationally hard, especially if the time series are

very long.

– Does not work for subsequence indexing

10

19

SVD Extensions

• On-line approximation algorithm

– [Ravi Kanth et al, 1998]

• Local diemensionality reduction:

– Cluster the time series, solve for each cluster

– [Chakrabarti and Mehrotra, 2000], [Thomasian et al]

20

Discrete Fourier Transform

• Analyze the frequency spectrum of an one dimensional

signal

• For S = (S0, …,Sn-1), the DFT is:

• Sf = 1/√n Σi=0,..,n-1Si e-j2πfi/n

f = 0,1,…n-1, j2 =-1

• An efficient O(nlogn) algorithm makes DFT a practical

method

• [Agrawal et al, 1993], [Rafiei and Mendelzon, 1998]

11

21

Discrete Fourier Transform

• To approximate the time

series, keep the k largest

Fourier coefficients only.

• Parseval’s theorem:

Σi=0,..,n-1Si2 = Σi=0,..,n-1Sf2

• DFT is a linear transform so:

– Σi=0,..,n-1(Si-Ti)2 =
Σi=0,..,n-1(Sf -Tf)2

0 20 40 60 80 100 120 140

0

1

2

3

X

X'

22

Discrete Fourier Transform

• Keeping k DFT coefficients lower bounds the distance:

– Σi=0,..,n-1(S[i]-T[i])2 > Σi=0,..,k-1(Sf -Tf)2

• Which coefficients to keep:

– The first k (F-index, [Agrawal et al, 1993], [Rafiei and

Mendelzon, 1998])

– Find the optimal set (not dynamic) [R. Kanth et al,

1998]

12

23

Discrete Fourier Transform

• Advantages:

– Efficient, concentrates the energy

• Disadvantages:

– To project the n-dimensional time series into a k-

dimensional space, the same k Fourier coefficients must

be store for all series

– This is not optimal for all series

– To find the k optimal coefficients for M time series,

compute the average energy for each coefficient

24

Wavelets

• Represent the time series as a sum of prototype functions

like DFT

• Typical base used: Haar wavelets

• Difference from DFT: localization in time

• Can be extended to 2 dimensions

• [Chan and Fu, 1999]

• Has been very useful in graphics, approximation

techniques

13

25

Wavelets

• An example (using the Haar wavelet basis)

– S ≡ (2, 2, 7, 9) : original time series

– S’ ≡ (5, 6, 0, 2) : wavelet decomp.

– S[0] = S’[0] - S’[1]/2 - S’[2]/2

– S[1] = S’[0] - S’[1]/2 + S’[2]/2

– S[2] = S’[0] + S’[1]/2 - S’[3]/2

– S[3] = S’[0] + S’[1]/2 + S’[3]/2

• Efficient O(n) algorithm to find the coefficients

26

Using wavelets for approximation

• Keep only k coefficients, approximate

the rest with 0

• Keeping the first k coefficients:

– equivalent to low pass filtering

• Keeping the largest k coefficients:

– More accurate representation,

But not useful for indexing

0 20 40 60 80 100 120 140

Haar 0

Haar 1

Haar 2

Haar 3

Haar 4

Haar 5

Haar 6

Haar 7

X

X'

14

27

Wavelets

• Advantages:

– The transformed time series remains in the same

(temporal) domain

– Efficient O(n) algorithm to compute the transformation

• Disadvantages:

– Same with DFT

28

Line segment approximations

• Piece-wise Aggregate Approximation

– Partition each time series into k subsequences (the same

for all series)

– Approximate each sequence by :

• its mean and/or variance: [Keogh and Pazzani, 1999],

[Yi and Faloutsos, 2000]

• a line segment: [Keogh and Pazzani, 1998]

15

29

Temporal Partitioning

• Very Efficient technique

(O(n) time algorithm)

• Can be extended to address

the subsequence matching

problem

• Equivalent to wavelets (when

k= 2i, and mean is used)

0 20 40 60 80 100 120 140

x0

x1

x2

x3

x4

x5

x6

x7

X

X'

30

Random projection

• Based on the Johnson-Lindenstrauss lemma:

• For:

– 0< e < 1/2,

– any (sufficiently large) set S of M points in Rn

– k = O(e-2lnM)

• There exists a linear map f:S→Rk, such that
– (1-e) D(S,T) < D(f(S),f(T)) < (1+e)D(S,T) for S,T in S

• Random projection is good with constant probability

• [Indyk, 2000]

16

31

Random Projection: Application

• Set k = O(e-2lnM)

• Select k random n-dimensional vectors

• Project the time series into the k vectors.

• The resulting k-dimensional space approximately preserves

the distances with high probability

• Monte-Carlo algorithm: we do not know if correct

32

Random Projection

• A very useful technique,

• Especially when used in conjunction with another

technique (for example SVD)

• Use Random projection to reduce the dimensionality from

thousands to hundred, then apply SVD to reduce

dimensionality farther

17

33

Multidimensional Scaling

• Used to discover the underlying structure of a set of items,

from the distances between them.

• Finds an embedding in k-dimensional Euclidean that

minimizes the difference in distances.

• Has been applied to clustering, visualization, information

retrieval…

34

Algorithms for MS

• Input: M time series, their pairwise distances, the desired

dimensionality k.

• Optimization criterion:

stress = (∑ij(D(Si,Sj) - D(Ski, Skj))
2 / ∑ijD(Si,Sj)

2) 1/2

– where D(Si,Sj) be the distance between time series Si,

Sj, and D(Ski, Skj) be the Euclidean distance of the k-

dim representations

• Steepest descent algorithm:

– start with an assignment (time series to k-dim point)

– minimize stress by moving points

18

35

Multidimensional Scaling

• Advantages:

– good dimensionality reduction results (though no

guarantees for optimality

• Disadvantages:

– How to map the query? O(M) obvious solution..

– slow conversion algorithm

36

FastMap
[Faloutsos and Lin, 1995]

• Maps objects to k-dimensional points so that distances are

preserved well

• It is an approximation of Multidimensional Scaling

• Works even when only distances are known

• Is efficient, and allows efficient query transformation

19

37

How FastMap works

• Find two objects that are far away

• Project all points on the line the two objects define, to get

the first coordinate

• Project all objects on a hyperplane perpendicular to the line

the two objects define

• Repeat k-1 times

38

MetricMap
[Wang et al, 1999]

• Embeds objects into a k-dim pseudo-metric space

• Takes a random sample of points, and finds the

eigenvectors of their covariance matrix

• Uses the larger eigenvalues to define the new k-

dimensional space.

• Similar results to FastMap

20

39

Dimensionality techniques: Summary

• SVD: optimal (for linear projections), slowest

• DFT: efficient, works well in certain domains

• Temporal Partitioning: most efficient, works well

• Random projection: very useful when applied with another

technique

• FastMap: particularly useful when only distances are

known

40

An experimental comparison of the

techniques [Keogh et al, 2000]

• Accuracy:

• Speed of building the index:

0

.5

1

SVD

20
16

12
8

64
128

256
512

1024
10

14
18

0

.5

1

SDFT

20
16

12
8

64
128

256
512

1024
10

14
18

0

.5

1

DWT(Haar)

0

.5

1

PAA

20
16

12
8

64
128

256
512

1024
10

14
18 20

16
12

8

64
128

256
512

1024
10

14
18

0

500

1,000

SVD EM SVD DWT (Haar) PAA

40K
80K

160K
320K

640K

32
128

512
1024

256
6440K

80K
160K

320K
640K

32
128

512
1024

256
64

DFT

40K
80K

160K
320K

640K

32
128

512
1024

256
6440K

80K
160K

320K
640K

32
128

512
1024

256
6440K

80K
160K

320K
640K

32
128

512
1024

256
64

21

41

Indexing Techniques

• We will look at:

– R-trees and variants

– kd-trees

– vp-trees and variants

– sequential scan

• R-trees and kd-trees partition the space,

vp-trees and variants partition the dataset,

there are also hybrid techniques

42

R-trees and variants

[Guttman, 1984], [Sellis et al, 1987], [Beckmann et al, 1990]

• k-dim extension of B-trees

• Balanced tree

• Intermediate nodes are rectangles that cover lower levels

• Rectangles may be overlapping or not depending on

variant (R-trees, R+-trees, R*-trees)

• Can index rectangles as well as points

L1
L2

L3

L4
L5

22

43

kd-trees

• Based on binary trees

• Different attribute is used for partitioning at different

levels

• Efficient for indexing points

• External memory extensions: hBΠ-tree

f1

f2

44

Grid Files

• Use a regular grid to partition the space

• Points in each cell go to one disk page

• Can only handle points

f2

f1

23

45

vp-trees and pyramid trees
[Ullmann], [Berchtold et al,1998], [Bozkaya et al1997],...

• Basic idea: partition the dataset, rather than the space

• vp-trees: At each level, partition the points based on the

distance from a center

• Others: mvp-, TV-, S-, Pyramid-trees

R1

R2

c1

c2
c3 The root level of a vp-tree

with 3 children

46

Sequential Scan

• The simplest technique:

– Scan the dataset once, computing the distances

– Optimizations: give lower bounds on the distance

quickly

– Competitive when the dimensionality is large.

24

47

High-dimensional Indexing Methods:

Summary

• For low dimensionality (<10), space partitioning

techniques work best

• For high dimensionality, sequential scan will probably be

competitive with any technique

• In between, dataset partitioning techniques work best

48

Open problems

• Indexing non-metric distance functions

• Similarity models and indexing techniques for higher-

dimensional time series

• Efficient trend detection/subsequence matching algorithms

