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Retrieval techniques for high-

dimensional  datasets

• The retrieval problem:

– Given a set of objects SS, and a query object S, 

– find the objectss that are most similar to S.

• Applications:

– financial, voice, marketing, medicine, video
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Examples

• Find companies with similar stock prices over a time 

interval

• Find products with similar sell cycles

• Cluster users with similar credit card utilization

• Cluster products
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Indexing when the triangle inequality 

holds

• Typical distance metric: Lp norm.

• We use L2 as an example throughout:

– D(S,T) = (Σi=1,..,n (S[i] - T[i])2) 1/2
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Indexing: The naïve way

• Each object is an n-dimensional tuple

• Use a high-dimensional index structure to index the tuples

• Such index structures include 

– R-trees, 

– kd-trees, 

– vp-trees, 

– grid-files...
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High-dimensional index structures

• All require the triangle inequality to hold

• All partition either 

– the space or 

– the dataset into regions

• The objective is to:

– search only those regions that could potentially contain 

good matches

– avoid everything else
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The naïve approach: Problems

• High-dimensionality: 

– decreases index structure performance (the curse of 

dimensionality)

– slows down the distance computation

• Inefficiency
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Dimensionality reduction

• The main idea: reduce the dimensionality of the space.

• Project the n-dimensional tuples that represent the time 

series in a k-dimensional space so that:

– k << n

– distances are preserved as well as possible
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Dimensionality Reduction

• Use an indexing technique on the new space.

• GEMINI ([Faloutsos et al]):

– Map the query S to the new space

– Find nearest neighbors to S in the new space

– Compute the actual distances and keep the closest
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Dimensionality Reduction

• A time series is represented as a k-dim point

• The query is also transformed to the k-dim space
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Dimensionality Reduction

• Let F be the dimensionality reduction technique:

– Optimally we want:

– D(F(S), F(T) ) = D(S,T)

• Clearly not always possible.

• If D(F(S), F(T) ) ≠ D(S,T)

– false dismissal (when D(S,T) << D(F(S), F(T) ) )

– false positives (when D(S,T) >> D(F(S), F(T) ) )
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Dimensionality Reduction

• To guarantee no false dismissals we must be able to prove 

that:

– D(F(S),F(T)) < a D(S,T)

– for some constant a

• a small rate of false positives is desirable, but not essential
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What we achieve

• Indexing structures work much better in lower 

dimensionality spaces

• The distance computations run faster

• The size of the dataset is reduced, improving performance.
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Dimensionality Techniques

• We will review a number of dimensionality techniques that 

can be applied in this context

– SVD decomposition,

– Discrete Fourier transform, and Discrete Cosine transform

– Wavelets

– Partitioning in the time domain

– Random Projections

– Multidimensional scaling

– FastMap and its variants
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SVD decomposition - the Karhunen-

Loeve transform

• Intuition: find the axis that 

shows the greatest 

variation, and project all 

points into this axis

• [Faloutsos, 1996]
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SVD: The mathematical formulation

• Find the eigenvectors of 

the covariance matrix

• These define the new 

space

• The eigenvalues sort them 

in “goodness”

order
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SVD: The mathematical formulation, 

Cont’d

• Let A be the M x n matrix of M time series of length n

• The SVD decomposition of A is:  = U x L x VT, 

– U, V orthogonal

– L diagonal

• L contains the eigenvalues of ATA

x x

M x n

n x n 

U L V

n x n
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SVD Cont’d

• To approximate the time 

series, we use only the k 

largest eigenvectors of C.

• A’ = U x Lk

• A’ is an M x k matrix
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SVD Cont’d

• Advantages:

– Optimal dimensionality reduction (for linear 

projections)

• Disadvantages:

– Computationally hard, especially if the time series are 

very long.

– Does not work for subsequence indexing



10

19

SVD Extensions

• On-line approximation algorithm

– [Ravi Kanth et al, 1998]

• Local diemensionality reduction:

– Cluster the time series, solve for each cluster

– [Chakrabarti and Mehrotra, 2000], [Thomasian et al]
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Discrete Fourier Transform

• Analyze the frequency spectrum of an one dimensional 

signal

• For S = (S0, …,Sn-1), the DFT is:

• Sf = 1/√n Σi=0,..,n-1Si e-j2πfi/n

f = 0,1,…n-1, j2 =-1

• An efficient O(nlogn) algorithm makes DFT a practical 

method

• [Agrawal et al, 1993], [Rafiei and Mendelzon, 1998]
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Discrete Fourier Transform

• To approximate the time 

series, keep the k largest 

Fourier coefficients only.

• Parseval’s theorem:

Σi=0,..,n-1Si2 = Σi=0,..,n-1Sf2

• DFT is a linear transform so:

– Σi=0,..,n-1(Si-Ti)2 = 
Σi=0,..,n-1(Sf -Tf)2
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Discrete Fourier Transform

• Keeping k DFT coefficients lower bounds the distance: 

– Σi=0,..,n-1(S[i]-T[i])2 >  Σi=0,..,k-1(Sf -Tf)2  

• Which coefficients to keep:

– The first k (F-index, [Agrawal et al, 1993], [Rafiei and 

Mendelzon, 1998])

– Find the optimal set (not dynamic) [R. Kanth et al, 

1998]
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Discrete Fourier Transform

• Advantages:

– Efficient, concentrates the energy

• Disadvantages:

– To project the n-dimensional time series into a k-

dimensional space, the same k Fourier coefficients must 

be store for all series

– This is not optimal for all series

– To find the k optimal coefficients for M time series, 

compute the average energy for each coefficient
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Wavelets

• Represent the time series as a sum of prototype functions 

like DFT

• Typical base used: Haar wavelets 

• Difference from DFT: localization in time

• Can be extended to 2 dimensions

• [Chan and Fu, 1999]

• Has been very useful in graphics, approximation 

techniques
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Wavelets

• An example (using the Haar wavelet basis)

– S   ≡ (2,           2,          7,         9)  : original time series

– S’ ≡ (5,           6,          0,         2)  : wavelet decomp.

– S[0] = S’[0] - S’[1]/2 - S’[2]/2

– S[1] = S’[0] - S’[1]/2 + S’[2]/2

– S[2] = S’[0] + S’[1]/2            - S’[3]/2

– S[3] = S’[0] + S’[1]/2            + S’[3]/2

• Efficient O(n) algorithm to find the coefficients

26

Using wavelets for approximation

• Keep only k coefficients, approximate 

the rest with 0

• Keeping the first k coefficients:

– equivalent to low pass filtering

• Keeping the largest k coefficients:

– More accurate representation,

But not useful for indexing
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Wavelets

• Advantages: 

– The transformed time series remains in the same 

(temporal) domain

– Efficient O(n) algorithm to compute the transformation

• Disadvantages:

– Same with DFT
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Line segment approximations

• Piece-wise Aggregate Approximation 

– Partition each time series into k subsequences (the same 

for all series)

– Approximate each sequence by :

• its mean and/or variance: [Keogh and Pazzani, 1999], 

[Yi and Faloutsos, 2000]

• a line segment:  [Keogh and Pazzani, 1998]
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Temporal Partitioning

• Very Efficient technique 

(O(n) time algorithm)

• Can be extended to address 

the subsequence matching 

problem

• Equivalent to wavelets (when 

k= 2i, and mean is used)
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Random projection

• Based on the Johnson-Lindenstrauss lemma:

• For:

– 0< e < 1/2, 

– any (sufficiently large) set S of M points in Rn

– k = O(e-2lnM)

• There exists a linear map f:S→Rk, such that
– (1-e) D(S,T) < D(f(S),f(T)) < (1+e)D(S,T) for S,T in S

• Random projection is good with constant probability

• [Indyk, 2000]
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Random Projection: Application

• Set k =  O(e-2lnM)

• Select k random n-dimensional vectors

• Project the time series into the k vectors.

• The resulting k-dimensional space approximately preserves 

the distances with high probability

• Monte-Carlo algorithm: we do not know if correct
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Random Projection

• A very useful technique,

• Especially when used in conjunction with another 

technique (for example SVD)

• Use Random projection to reduce the dimensionality from 

thousands to hundred, then apply SVD to reduce 

dimensionality farther
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Multidimensional Scaling

• Used to discover the underlying structure of a set of items, 

from the distances between them.

• Finds an embedding in k-dimensional Euclidean that 

minimizes the difference in distances.

• Has been applied to clustering, visualization, information 

retrieval…
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Algorithms for MS 

• Input: M time series, their pairwise distances, the desired 

dimensionality k.

• Optimization criterion: 

stress = (∑ij(D(Si,Sj) - D(Ski, Skj) )
2 / ∑ijD(Si,Sj) 

2) 1/2

– where  D(Si,Sj) be the distance between time series Si, 

Sj, and D(Ski, Skj) be the Euclidean distance of the k-

dim  representations

• Steepest descent algorithm:

– start with an assignment (time series to k-dim point)

– minimize stress by moving points
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Multidimensional Scaling

• Advantages:

– good dimensionality reduction results (though no 

guarantees for optimality

• Disadvantages: 

– How to map the query?  O(M) obvious solution..

– slow conversion algorithm
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FastMap
[Faloutsos and Lin, 1995]

• Maps objects to k-dimensional points so that distances are 

preserved well

• It is an approximation of Multidimensional Scaling

• Works even when only distances are known

• Is efficient, and allows efficient query transformation
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How FastMap works

• Find two objects that are far away

• Project all points on the line the two objects define, to get 

the first coordinate

• Project all objects on a hyperplane perpendicular to the line 

the two objects define

• Repeat k-1 times
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MetricMap
[Wang et al, 1999]

• Embeds objects into a k-dim pseudo-metric space

• Takes a random sample of points, and finds the 

eigenvectors of their covariance matrix

• Uses the larger eigenvalues to define the new k-

dimensional space.

• Similar results to FastMap
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Dimensionality techniques: Summary

• SVD: optimal (for linear projections), slowest

• DFT: efficient, works well in certain domains

• Temporal Partitioning: most efficient, works well

• Random projection: very useful when applied with another 

technique

• FastMap: particularly useful when only distances are 

known
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An experimental comparison of the 

techniques [Keogh et al, 2000]

• Accuracy:

• Speed of building the index:
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Indexing Techniques

• We will look at:

– R-trees and variants

– kd-trees

– vp-trees and variants

– sequential scan

• R-trees and kd-trees partition the space, 

vp-trees and variants partition the dataset,

there are also hybrid techniques
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R-trees and variants

[Guttman, 1984], [Sellis et al, 1987], [Beckmann et al, 1990]

• k-dim extension of B-trees

• Balanced tree

• Intermediate nodes are rectangles that cover lower levels

• Rectangles may be overlapping or not depending on 

variant (R-trees, R+-trees, R*-trees)

• Can index rectangles as well as points
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L4
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kd-trees

• Based on binary trees

• Different attribute is used for partitioning at different 

levels

• Efficient for indexing points

• External memory extensions: hBΠ-tree

f1

f2

44

Grid Files

• Use a regular grid to partition the space

• Points in each cell go to one disk page

• Can only handle points

f2

f1
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vp-trees and pyramid trees
[Ullmann], [Berchtold et al,1998], [Bozkaya et al1997],...

• Basic idea: partition the dataset, rather than the space

• vp-trees: At each level, partition the points based on the 

distance from a center

• Others: mvp-, TV-, S-, Pyramid-trees

R1

R2

c1

c2
c3 The root level of a vp-tree 

with 3 children
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Sequential Scan

• The simplest technique:

– Scan the dataset once, computing the distances

– Optimizations: give lower bounds on the distance 

quickly

– Competitive when the dimensionality is large.
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High-dimensional Indexing Methods: 

Summary

• For low dimensionality (<10), space partitioning 

techniques work best

• For high dimensionality, sequential scan will probably be 

competitive with any technique

• In between, dataset partitioning techniques work best
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Open problems

• Indexing non-metric distance functions

• Similarity models and indexing techniques for higher-

dimensional time series

• Efficient trend detection/subsequence matching algorithms


