
RDFS Reasoning and Query Answering
on Top of DHTs

Zoi Kaoudi?, Iris Miliaraki??, and Manolis Koubarakis

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

Abstract. We study the problem of distributed RDFS reasoning and
query answering on top of distributed hash tables. Scalable, distributed
RDFS reasoning is an essential functionality for providing the scalabil-
ity and performance that large-scale Semantic Web applications require.
Our goal in this paper is to compare and evaluate two well-known ap-
proaches to RDFS reasoning, namely backward and forward chaining,
on top of distributed hash tables. We show how to implement both al-
gorithms on top of the distributed hash table Bamboo and prove their
correctness. We also study the time-space trade-off exhibited by the al-
gorithms analytically, and experimentally by evaluating our algorithms
on PlanetLab.

1 Introduction

As the Semantic Web has become a reality, there is an emerging need not only
for dealing with a huge amount of distributed metadata, but also for being able
to reason with it. Previous work on centralized RDF stores has considered for-
ward chaining, backward chaining and hybrid approaches to implement RDFS
reasoning and query processing [6, 27, 2, 12]. In the forward chaining approach,
new statements are exhaustively generated from the asserted ones. In contrast,
a backward chaining approach only evaluates RDFS entailments on demand,
i.e., at query processing time. Intuitively, we expect that a forward chaining
approach has minimal requirements during query answering, but needs a sig-
nificant amount of storage. In contrast, the backward chaining approach has
minimal storage requirements, at the cost of an increase in query response time.
There is a time-space trade-off between these two approaches [24], and only by
knowing the query and update workload of an application, we can determine
which approach would suit it better. This trade-off has never been studied in
detail in a distributed Internet-scale scenario, and this is one of the challenges
that we undertake in this paper.

P2P networks and especially distributed hash tables (DHTs) [3] have gained
much attention recently, given the scalability, fault-tolerance and robustness fea-
tures they can provide to Internet-scale applications. Since current centralized
? Supported by project “Peer-to-Peer Techniques for Semantic Web Services” (funded

from the Greek General Secretariat for Research and Technology).
?? Supported by Microsoft Research through its European PhD Scholarship Pro-

gramme.

RDF repositories lack the required scalability and fault tolerance for such ap-
plications [10], DHTs have been proposed for the storage and querying of RDF
data at Internet scale [7, 19, 14, 1]. However, these works are solely concerned
with query processing for RDF data, and pay no attention to RDF Schema
(RDFS) reasoning and query processing. The only DHT-based RDF store that
has dealt with RDFS reasoning in the past is BabelPeers [5, 14]. It is implemented
on top of Pastry [23] and supports a subclass of the SPARQL query language
[21]. BabelPeers uses a forward chaining approach in order to provide the RDFS
inference capability required to answer the supported class of SPARQL queries.

In this paper we design and implement both forward and backward chain-
ing algorithms for RDFS reasoning and query answering on top of the Bamboo
DHT [22]. Our algorithms have been integrated in the RDF query processing
system Atlas (http://atlas.di.uoa.gr) [15] and have been used to enable the
processing of RQL [17] schema queries. To the best of our knowledge, our back-
ward chaining algorithm is the first distributed backward chaining algorithm
proposed on top of DHT-based RDF stores. Another contribution of this work is
proving the correctness of our algorithms and providing a comparative study of
forward and backward chaining algorithms both analytically and experimentally.
In addition, we propose an optimization technique for backward chaining which
decreases query response time and allow us to minimize the response time dif-
ference between the two approaches. For the experimental part of our study, we
deploy our system on PlanetLab to obtain measurements in a realistic large-scale
distributed environment. The results obtained in our experiments agree with the
predictions of our analytical model. An important result of our experiments is
that forward chaining is a very expensive algorithm in terms of storage load,
bandwidth and time and does not scale for a large number of triples.

2 Data and Query Model

In the rest of the paper, we will constantly use the notion of an RDF triple.
RDF data as well as RDFS descriptions (we will further use the term RDF(S)
to refer to both) can be written as triples and constitute an RDF(S) database.

To support RDFS reasoning, the RDFS entailment rules of RDF Semantics
[13] constitute a vital element of our data model. Following a datalog-like no-
tation with extensional database relation (edb) triple and intensional database
relations (idb) subClass, subProperty and type, the RDFS entailment rules can
be written as shown in Table 1. Each rule is indexed by a number that we will
use to refer to it. Rules are also indexed with their symbolic name from [13]
for co-reference reasons. Certain rules are deliberately omitted (such as the ones
with the axiomatic triples) since we are more interested in rules needed for the
computation of the transitive closure. However, our algorithms work with all the
RDFS entailment rules except the ones with blank nodes. We leave it as future
work to consider various implications that these rules might have.

In our notation, arguments beginning with a capital letter (such as X and
Y) denote variables, and arguments starting with a lowercase letter denote con-
stants. Predicate names always start with a lowercase letter. Namespaces rdf

Table 1. RDFS Entailment Rules

Rule Head Body
1 type(X, Y) triple(X, rdf :type, Y)
2 (rdfs2) type(X, Y) triple(X, P, Z), triple(P, rdfs:domain, Y)
3 (rdfs3) type(X, Y) triple(Z, P, X), triple(P, rdfs:range, Y)
4 (rdfs9) type(X, Y) type(X, Z), subClass(Z, Y)
5 subProperty(X, Y) triple(X, rdfs:subPropertyOf, Y)
6 (rdfs5) subProperty(X, Y) triple(X, rdfs:subPropertyOf, Z), subProperty(Z, Y)
7 subClass(X, Y) triple(X, rdfs:subClassOf, Y)
8 (rdfs11) subClass(X, Y) triple(X, rdfs:subClassOf, Z), subClass(Z, Y)

and rdfs are the namespaces of the core RDF and RDFS vocabulary and will
be used throughout the paper. To avoid confusion with the double meaning of
the word predicate, from now on we will refer to the predicate of a triple with
the word property and to a term of a datalog rule with the word predicate.

Rules 1-4 compute all possible instances of a class, rules 5 and 6 compute the
transitive closure of an RDFS property hierarchy, and rules 7 and 8 compute the
transitive closure of an RDFS class hierarchy. We note that all recursive rules
above are linear (with at most one recursive predicate in their body) and safe
(all variables appear as an argument in the rule bodies).

In the rest of the paper, we consider queries consisting of a single edb or
idb predicate with arguments that are constants or variables. A formula of the
form (s, p, o) where s, p and o can be URIs, literals or variables is called a triple
pattern. We will use the equivalence of triple patterns (s, p, o) with p equal to
rdf :type, rdfs:subClassOf , or rdfs:subPropertyOf , and idb predicates type,
subClass and subProperty, to navigate freely among these two representations.

Let DB be an RDF(S) database. The answer to a query is defined as the
answer to the same query posed over the logic program formed by the union of
the triples in DB and the RDFS entailment rules of Table 1. We omit detailed
formal definitions since they are very well understood [20, 9].

3 Distributed RDFS Reasoning

Firstly, let us briefly describe the functionality of DHTs. DHTs are structured
P2P systems which try to solve the lookup problem: given a data item x, find
the node which holds x. Each node and each data item is assigned a unique
m-bit identifier by using a hashing function such as SHA-1. The identifier of
a node can be computed by hashing its IP address. For data items, we first
have to compute a key and then hash this key to obtain an identifier id. The
lookup problem is then solved by providing a simple interface of two requests;
Put(id, x) and Get(id). In Bamboo [22], when a node receives a Put request,
it efficiently routes the request to a node with an identifier that is numerically
closest to id using a technique called prefix routing. This node is responsible for
storing the data item x. In the same way, when a node receives a Get request,
it routes it to the responsible node to fetch data item x. Such requests can be
done in O(logn) hops, where n is the number of nodes in the network.

Although for the implementation of our algorithms we used Bamboo [22],
our algorithms are DHT-agnostic; they can be implemented on top of any DHT.

3.1 Storing protocol

In both approaches, the same protocol is followed for storing RDF(S) triples.
We have adopted the triple indexing algorithm originally presented in [7] where
each triple is indexed in the DHT three times, once for its subject, once for its
property and once for its object. Whenever a node receives a request to store a
triple, it sends three DHT Put requests using as key the subject, property and
object respectively, and the triple itself as the item. The key is hashed to create
the identifier that leads to the responsible node where the triple is stored. We
call that node the responsible node for this key or identifier. Notice that a node
responsible for a key which is a class name C (responsible node for class C), will
have in its local database all triples that contain class C either as a subject or
as an object (class C cannot be a property).

Since an RDF(S) database is actually a graph, we can exploit the fact that
many of the triples share a common key (i.e., they have the same subject, prop-
erty or object) and end up to be stored in the same node. So, instead of sending
different Put messages for each triple, we group them in a list triples based on
the distinguished keys that exist, hash these keys to obtain identifiers and send a
multiPut(id, triples) message for each identifier. The node responsible for the
identifier id, which receives this message, stores in its local database all triples
included in the list triples.

3.2 Forward chaining

The general idea of forward chaining (FC) is that all inferred triples are precom-
puted and stored in the network a priori. Each time a node receives a triple to
be stored in its local database, it computes all inferred triples and sends them
to the network to be stored.

Let us now introduce the notation that will be used in the algorithms de-
scription. Keyword event precedes every event handler for handling messages,
while keyword procedure declares a procedure. In both cases, the name is pre-
fixed by the node identifier in which the handler or the procedure is executed.
Keywords sendto and receive declare the message that we want to send to a
node with known either its identifier (thus DHT routing will be used) or the IP
address, and the message we receive from a node respectively.

Figure 1 shows in pseudocode how the FC algorithm works. Suppose a
put(id, triple) request arrives at node n and a new triple should be stored in
the local database of n. First, node n retrieves from the local database all triples
that have been stored under the identifier id and puts them in list triples. Then,
it computes the inferred triples from this list according to the RDFS entail-
ment rules using local function infer(triples). For all newly inferred triples,
three identifiers are created based on the subject, property and object of each
triple, and three Put requests are sent to the network. Each node holds a list
infTriples with all inferred triples that it has computed, so that it can check
when it reaches a fixpoint where no new triples are generated. The algorithm
terminates when all nodes have reached a fixpoint.

1 event n.PUT(id, triple)
2 triples=GETTRIPLESFROMDB (id);
3 newtriples=INFER (triples);
4 forall t of newtriples not in infTriples do
5 id1 =Hash (t.subject);
6 id2 =Hash (t.property);
7 id3 =Hash (t.object);
8 sendto id1.PUT(id1, t);
9 sendto id2.PUT(id2, t);
10 sendto id3.PUT(id3, t);
11 add t to infTriples;
12 end
13 end event

Algorithm 1: FwdRDFS

Fig. 1. FC algorithm

The following proposition states that the FC
algorithm is sound and complete. By sound we
mean that if t is a new triple produced by FC
and stored in the network, then t is entailed
by the set of logical formulas formed by the
RDF(S) database before the algorithm is exe-
cuted, the input triple that fires the algorithm
and the RDFS entailment rules of Table 1. By
complete we mean that if a triple t is entailed by
the set of logical formulas formed by the triples
stored in the network before FC execution, the
input triple that fires the algorithm and the RDFS entailment rules of Table 1,
then t will eventually be generated by FC and will be stored in the network.

Proposition 1. The FC algorithm is sound and complete.

Proof (Sketch). The algorithm is sound since it is based on the RDFS entailment
rules of Table 1. To prove that the algorithm is complete, we need to show that
triples which are used to satisfy the body of a rule and generate a new triple
will meet at the same node. If we check the rules of Table 1, we will see that
predicates of rule bodies always have a common argument. Triples are indexed
three times based on three identifiers, namely the hash values of their subject,
property and object. Therefore, triples with a common part will meet at the
node responsible for the identifier of this common part. ut

Note that the proof of the proposition depends on the assumption that no
messages are lost due to network churn, i.e., nodes joining, leaving voluntarily
or failing. Although the Bamboo DHT has many recovery mechanisms and can
handle churn using various methods [22], we leave it as a subject of future work
how our algorithms can be extended to deal with dynamic networks.

In order to evaluate a triple pattern after FC has taken place, we choose a
key from the triple pattern and then hash it to create the identifier that will
lead to the appropriate node. The key is the constant part of the triple pattern.
When there is more than one constant parts, we select keys in the order “subject,
object, property” based on the fact that we prefer keys with lower selectivity
and the reasonable assumption that subjects or objects have more distinct values
than properties. At the destination node, the triple pattern is checked against
the local database and matching triples are found.

Since the RDFS entailment rules are highly-redundant [18], even a centralized
forward chaining approach can be very expensive. As we will also show in the
experimental evaluation of FC, the distributed version of FC results in generating
more redundancies than expected in a centralized environment and leads to a
significant increase in network traffic and load. Let us demonstrate that with an
example. Figure 2(a) depicts a small RDFS class hierarchy of the cultural domain
[17] with some sample instances populated underneath. Figure 2(b) shows the
indexed triples that concern the subclass relation. Triples that are not in bold
are initially inserted in the network. The key of each triple that led to a specific
node is underlined. After two iterations of FC, both nodes n1 and n2 will result

artist

sculptor

flemish cubist

painter

&r1

&r2
&r3

&r4

 r1: http://www.culture.net#flemish132
 r2: http://www.culture.net#painter33
 r3: http://www.culture.net#cubist12
 r4: http://www.culture.net#scultpor45

instance of

subClassOf

resource

(a) Example RDF(S)

(painter, rdfs:subClassOf, artist)
(sculptor, rdfs:subClassOf, artist)
(artist, rdfs:subClassOf, resource)

(flemish, rdfs:subClassOf, artist)

(artist, rdfs:subClassOf, resource)

(cubist, rdfs:subClassOf, painter)

(sculptor, rdfs:subClassOf, artist)

(painter, rdfs:subClassOf,artist)
(flemish, rdfs:subClassOf, painter)
(cubist, rdfs:subClassOf, painter)

(painter, rdfs:subclass, resource)

(flemish, rdfs:subClassOf, painter)

(flemish, rdfs:subClassOf, artist)
(flemish, rdfs:subClassOf, resource)

n1

n2

n8

n3

n5

n7
n6

n4

key responsible node
artist

painter
scultptor

cubist
flemish

node n1
node n2
node n3
node n4
node n5

resource node n6

(b) Indexed triples before and after (in bold) FC

Fig. 2. Example for forward chaining

in generating the triple (flemish, rdfs:subClassOf, resource). This triple will
be sent twice in the network to be stored. This could have been avoided in a
centralized environment where all triples are stored in one local database.

3.3 Backward chaining
In contrast to the data driven nature of FC, backward chaining (BC) starts from
the given query and tries to find rules that can be used to derive answers. Thus,
each time a node receives a request for evaluating a query, it should also use the
RDFS entailment rules to compute the complete answer.

The challenge here is to construct an algorithm that can process recursive
rules in a distributed environment such as DHTs. To achieve that, considering
the RDFS entailment rules, it is helpful to transform the rules presented in
Section 2 to a set of adorned rules that indicate which variables are bound and
which are free. This is useful for finding the optimal order in which predicates
should be evaluated.

We will extend the concept of rule adornment from recursive query pro-
cessing [26] in order to exploit the distributed philosophy of DHTs. As already
mentioned, in order to evaluate a triple pattern, a key has to be computed and
then hashed to create the identifier that will lead to the responsible node. There-
fore, the corresponding predicate of the triple pattern has an argument that not
only is bound, but it is also the key that led to the responsible node.

Definition 1. An adornment of a predicate p with n arguments is an ordered
string a of k’s, b’s and f ’s of length n, where k indicates an argument which
is the key, b indicates a bound argument which is not the key, and f a free
argument.

Following this definition, a predicate pa indicates which argument of p is
the key, which ones are bound and which are free. Table 2 shows all possible
adornments of the rules presented in Table 1.

Let us now describe the BC algorithm which is shown in Fig. 3. Suppose
that a GetReq request with unique identifier rid arrives at node n and a query
should be evaluated. Node n firstly checks if the predicate corresponding to the
triple pattern tp matches the head of any of the adorned rules. If no rule can be

Table 2. Adorned RDFS Entailment Rules

Head Body

1a typekf (X, Y) triplekbf (X, rdf :type, Y)

1b typefk(X, Y) triplefbk(X, rdf :type, Y)

2a typekf (X, Y) triplekff (X, P, Z), triplefbf (P, rdfs:domain, Y)

2b typefk(X, Y) triplefff (X, P, Z), triplefbk(P, rdfs:domain, Y)

3a typekf (X, Y) tripleffk(Z, P, X), triplefbf (P, rdfs:range, Y)

3b typefk(X, Y) triplefff (Z, P, X), triplefbk(P, rdfs:range, Y)

4a typekf (X, Y) triplekbf (X, rdf :type, Z), subClassff (Z, Y)

4b typefk(X, Y) typeff (X, Z), triplefbk(Z, rdfs:subClassOf, Y)

5a subPropertykf (X, Y) triplekbf (X, rdfs:subPropertyOf, Y)

5b subPropertyfk(X, Y) triplefbk(X, rdfs:subPropertyOf, Y)

6a subPropertykf (X, Y) triplekbf (X, rdfs:subPropertyOf, Z), subPropertyff (Z, Y)

6b subPropertyfk(X, Y) subPropertyff (X, Z), triplefbk(Z, rdfs:subPropertyOf, Y)

7a subClasskf (X, Y) triplekbf (X, rdfs:subClassOf, Y)

7b subClassfk(X, Y) triplefbk(X, rdfs:subClassOf, Y)

8a subClasskf (X, Y) triplekbf (X, rdfs:subClassOf, Z), subClassff (Z, Y)

8b subClassfk(X, Y) subClassff (X, Z), triplefbk(Z, rdfs:subClassOf, Y)

found, the triple pattern is simply checked against the node’s local database and
the bindings of the triple pattern’s variables are returned to the node that made
the request. In this case no backward chaining takes place. If there are rules
that can be applied, local procedure BwdRDFS is called, which takes as an input
the adorned predicate pa and the request identifier rid and outputs a relation
R which contains the bindings of the free arguments (i.e., the variables) of the
predicate. These bindings form the answer to the query.

When BwdRDFS is called, the input predicate pa is checked against the rules.
Rules that can be applied to the predicate are added to the list adornedRules.
Each rule can have one or two predicates in its body. Rules that have one pred-
icate in their body (e.g., rule 1a) can always be evaluated locally since this
predicate is an edb relation. In this case, node n calls local procedure Match-
Predicate(pa) and assigns to relation R the bindings of the predicate’s variables
that match the triples locally stored in its database.

For rules with two predicates in their body, we have to decide which predicate
should be evaluated first. We select to evaluate first the predicate that can
be processed locally. There always will be one such predicate since one of the
arguments of the head predicate will be the key that led to the specific node.
Therefore, there will be a body predicate (pk) which has an adornment containing
the letter k (always possible as seen in Table 2) and can be processed locally.
Then, pk is checked against the local database to find matching triples and the
variable bindings are returned in a relation R′. By evaluating the first predicate
locally, we have values that can be passed to the second predicate which is
sent to be evaluated remotely at a different node. Notice in Table 2 that all
rule bodies with two predicates have a single common variable (Z). Therefore,
each tuple in relation R′ will include a binding for this common variable Z.
For each of these bindings (Z/vi), node n rewrites the second predicate pf to
a new predicate p′f where it has substituted the variable Z with its value vi

and made the corresponding letter of the adornment equal to k. Then, it sends a
BwdRDFSReq message to the node responsible for the hashed value of key vi. This

8 procedure n.BwdRDFS (pa, rid)
9 if rid in processedRequests return {};
10 add rid to processedRequests ;
11 R=MATCHPREDICATE (pa);
12 adornedRules =APPLYRULE(pa);
13 forall rules in adornedRules do
14 r <-- REMOVEFIRST(adornedRules);
15 if r has one predicate then break;
16 else
17 Let pk be the adorned predicate of r with a

 k element in its adornment and pf the free
 predicate;

18 R' = MATCHPREDICATE (pk);
19 if R' = {} then return R;
20 foreach value vi of the common variable Z in R' do
21 idi =Hash (vi);
22 rewrite pf to p'f ;
23 sendto idi.BwdRDFSReq(p'f)
24 receive BwdRDFSResp (Ri) from idi
25 R = R U R i;
26 end
27 end
28 end
29 return R;
30 end procedure

Algorithm 2: BwdRDFS

1 event n.GETReq (key, tp, rid) from m
2 if no rule can be applied to the predicate of tp then

R=MATCH (tp);
3 else
4 Let pa be the adorned predicate of tp;
5 R=BwdRDFS(pa, rid);
6 sendto m.GetResp(R);
7 end event

31 event n.BwdRDFSReq (pa, rid) from m
32 R=BwdRDFS(pa);
33 sendto m.BwdRDFSResp (R)
34 end event

Fig. 3. BC algorithm

part of the procedure is executed in parallel for each value vi since the messages
are sent to different nodes. Node n sends |R′| number of messages (equal to
the number of bindings found) and receives the responses asynchronously. When
node n has collected all responses BwdRDFSResp(Ri), it adds the tuples of each
Ri to relation R and returns R.

This procedure is recursive and terminates when the node that received the
initial query has collected all responses. A recursion path ends when the predicate
which is evaluated locally returns no bindings and therefore there are no values
to pass to the second predicate. Cyclic hierarchies are handled by keeping a list
of all processed requests (lines 9-10) so that an infinite loop is avoided.

The following proposition states that the BC algorithm is sound and com-
plete. In this case, by sound we mean that if R is the relation with the bindings
of a query q produced by BC and triple t is obtained from replacing the variables
of the query q by their value in R, then t is entailed by the set of logical formulas
formed by the RDF(S) database and the RDFS entailment rules. By complete
we mean that if t is entailed by the set of logical formulas formed by the triples
stored in the network and the RDFS entailment rules, then a relation R will be
eventually produced, such that by replacing the variables of q by their values in
R, triple t will be obtained. Similarly with FC, we make the same assumption
regarding the stability of the network.
Proposition 2. The BC algorithm is sound and complete.
Proof (Sketch). The algorithm is sound since the answers are computed using
the edb relations and the RDFS entailment rules. To prove that the algorithm is
complete, it is important to stress the following. The local database of each node
is part of the edb relation triple. The adorned predicate of a rule body that has
the letter k is always the edb predicate triple. Therefore, these predicates will be
evaluated locally according to the algorithm. Now, it is sufficient to show that
each time an adorned predicate triple is checked against a node’s local database

node n1

node n2

node n4

node n5

typefk(X, artist)

triplefbk(X, rdf:type, artist)

Z/painter Z/sculptor

Z/cubist
Z/flemish

triplefbk(Z, rdfs:subClassOf, artist)
typeff(X,Z)

typefk(X, painter)

triplefbk(X, rdf:type, painter) triplefbk(Z, rdfs:subClassOf, painter)
typeff(X,Z)

typefk(X, cubist)

triplefbk(X, rdf:type, cubist)

triplefbk(Z, rdfs:subClassOf, cubist)

typefk(X, sculptor)

triplefbk(X, rdf:type, sculptor)

triplefbk(Z, rdfs:subClassOf, sculptor)

typefk(X, flemish)

triplefbk(X, rdf:type, flemish)
triplefbk(Z, rdfs:subClassOf, flemish)

node n3

key responsible node
artist

painter
scultptor

cubist
flemish

node n1
node n2
node n3
node n4
node n5

n1

n2

n8

n3

n5

n7
n6

n4

Fig. 4. Distribution of proof tree for backward chaining

all triples needed are found at this node. The adornment letter k indicates an
argument of the predicate triple which is the key that was hashed and led to
the specific node. This node is the responsible node for this key. Based on our
indexing scheme all triples that contain this key either as a subject, property or
object were sent to be stored to this node. As a result the edb relation of this
node will include all triples that contain the specific key. ut

Figure 4 shows how the proof tree of backward chaining is distributed in
the various nodes of the network using the example RDF(S) hierarchy of Fig.
2(a). We want to pose the query “Find all the instances of class artist”, which is
expressed as (X, rdf :type, artist). Node n1 responsible for key artist receives a
request for evaluating this triple pattern. Now BC should take place by starting
from the adorned predicate typefk(X, artist).

4 An Analytical Cost Model

In this section, we present an analytical cost model for both FC and BC. We will
show in the experimental evaluation that our implementation follow the predic-
tions of this cost model. We focus on a frequently used type of queries which asks
for all the instances of a certain class in an RDFS hierarchy. Intuitively, this type
of queries is the most expensive and most frequently used in RDFS reasoning,
so we regard it as the most representative one for comparing our algorithms.
However, the algorithms are able to answer any type of queries considered in
the paper. Our results for class hierarchies trivially hold for property hierarchies
too. We consider as future work the evaluation of more complex queries such as
the ones of the LUBM benchmark [11].

We assume a complete tree-shaped RDFS class hierarchy of depth d and
branching factor b as our RDF Schema (i.e., (bd+1 − 1)/(b − 1) classes) with
instances distributed under classes following either a uniform or a Zipfian dis-
tribution. RDF Schema triples are of the form (Ck, rdfs:subClassOf,Cl) while
RDF data triples are of the form (rj , rdf :type, Ck). In the analytical calculations
presented below we start with an RDF(S) database. Then, we apply the FC and

BC algorithms to answer a query of the type mentioned above, and estimate its
cost. We will denote the number of RDF data triples (i.e., also total number of
instances) in our initial database by Td. Similarly, we use Ts to denote the num-
ber of RDF Schema triples in the initial database. For a uniform distribution,
given the total number of instances (i.e., Td), the number of instances under
each class is Iu = (Td ∗ (b − 1))/(bd+1 − 1). Considering a Zipfian distribution
of instances with a skew parameter of 1, a class with rank r has Ir = Td/(r ∗ h)
instances where h =

∑N
j=1 1/j for N classes (N = (bd+1 − 1)/(b − 1)). Leaf

classes are given a lower rank.
In the following, we constantly use the fact that the total number of subclasses

of class C including itself is (bd−`+1 − 1)/(b− 1) where ` is the level of the class.
The proof is omitted due to space limitations. Furthermore, we utilize the fact
that the reasoning and query answering algorithms for the type of queries we
consider are essentially transitive closure computations.
4.1 Storage cost model

We first estimate analytically the costs associated with the storage of triples by
both algorithms.
Storage load. We define as storage load the total number of triples that are
stored in the network. In BC, the storage load (SLb) is three times the number of
RDF(S) triples that were inserted in the network based on our indexing scheme.
In FC, it is sufficient to compute the total number of triples that result from the
transitive closure computations of the hierarchy (triples initially in the database
plus inferred ones). Then, the storage load incurred in FC (SLf) is three times
this total number of triples.
Lemma 1. The total number of triples generated after the computation of the
transitive closure of the RDFS class hierarchy is Ts+

∑d
i=1 bi(i−1)+[(bd+1)/(b−

1)] − 2.
Proof. For each level i of the tree, we have bi classes, and for each class we infer
i − 1 triples of the form (Ck, rdfs:subClassOf,Cl) for the upper levels of the
tree. Furthermore, we have the inferred triples (which are [(bd+1−1)/(b−1)]−1)
that state that all classes are subclasses of the rdfs:Resource class. ut
Lemma 2. The total number of triples generated after the computation of the
transitive instances of the RDFS class hierarchy is Td + Iu ∗

∑d
i=0 bi(i + 1).

Proof. Each class has Iu direct instances. For each level i of the tree, we have bi

classes, and for each class we infer i triples of the form (rj , rdf :type, Ck) for its
superclasses plus the triple (rj , rdf :type, rdfs:Resource). ut

Based on these two lemmas, the sum of the formulas computed above is the
total number of triples that result from the transitive closure computations of
FC. Depending on the distribution of instances, the storage load of FC changes
based on the number of instances per class (i.e., Iu and Ir). Table 3 summarizes
the storage load of FC and BC for both kinds of instance distributions. For the
Zipfian distribution we also made use of the following proposition. The proof is
omitted due to space limitations.
Proposition 3. Given a class with rank r in a Zipfian distribution of instances,
the level of the class in the hierarchy is `r = blogb((b− 1) ∗ [(bd+1 − 1)/(b− 1)−
r + 1])c.

Store messages. We define as store messages the number of DHT messages
sent for storing triples. In BC, the number of store messages sent (SMb) is three
times the number of triples stored and therefore it is equal to the storage load
incurred. It is also independent from the instance distribution.

However, the total number of messages sent by FC is much larger than the
storage load incurred as it was already illustrated in Section 3.2. Each node
responsible for a certain class C that is in the i level of the class hierarchy
generates for each instance i triples of the form (rj , rdf :type, Ck), where Ck is
a superclass of class C, and one triple of the form (rj , rdf :type,Resource), and
i− 1 triples of the form (C, rdfs:subClassOf,Cl), where Cl is an ancestor class
of class C. Note that messages are sent not only for each direct instance of each
class but also for the instances of its subclasses. The number of messages sent
in FC is depicted in Table 3 for both kinds of instance distribution.

Table 3. Storage cost summary table

Storage cost Uniform Zipfian

SLb 3 ∗ (Ts + Td) 3 ∗ (Ts + Td)

SLf 3∗ [Ts + Td +
d∑

i=1
b
i(i− 1)+ [(b

d+1)/(b− 1)]−

2 + Iu ∗
d∑

i=0
b
i(i + 1)]

3 ∗ [Ts + Td +
d∑

i=1
b
i(i − 1) +

N∑
r=1

Ir ∗ `r]

SMb 3 ∗ (Ts + Td) 3 ∗ (Ts + Td)

SMf 3∗ [Ts +Td +
d∑

i=1
b
i(i−1)∗ ((b

d−i+1−2)/(b−

1))+Iu∗
d∑

i=1
b
i∗(i+1)∗((b

d−i+1−1)/(b−1))]

3 ∗ [Ts + Td +
N∑

r=1
Ir ∗ `r ∗ (`r + 1)/2]

4.2 Querying cost model

In this section, we calculate the cost of answering the query (X, rdf :type, C)
where class C is at level ` of the hierarchy.

Query processing load. We define as query processing load of a node the
number of triples that this node retrieves from its local database in order to
answer a query.

The FC algorithm generates query processing load (QLf) only at the node
that is responsible for class C. This load is equal to the total number of instances
of class C: QLf = ((bd−`+1−1)∗Iu)/(b−1). On the other hand, BC will generate
load at (bd−`+1 − 1)/(b − 1) nodes, namely the nodes that are responsible for
the subclasses of class C including C. The load of each of these nodes (QLb) is
simply Iu. Note that the total query load is the same for both approaches.

For a Zipfian distribution, the number of instances of the class would be
Ir = Td/(h ∗ r), where the rank of the class is in the interval [(bd − 1)/(b− 1) +
1, (bd+1 − 1)/(b − 1)].

Query messages. We define as query messages the messages sent while an-
swering a query. The case of FC is straightforward since just one message is
sent to the node responsible for class C. In BC, the number of messages sent
(QMb) is as many as the number of the subclasses of class C. Therefore, we
have: QMb = [(bd−`+1 − 1)/(b − 1)] − 1. The distribution of the instances does
not affect the number of messages sent for the query answering.

5 Experimental Evaluation

In this section, we present an experimental evaluation of both FC and BC as we
have implemented them on top of the Bamboo DHT [22]. Our goal is to evaluate
the performance of FC and BC in a real distributed system and compare it
with the analytical cost model of the previous section. We used as a testbed the
PlanetLab network (http://www.planet-lab.org/) with 123 nodes that were
available and lightly loaded at the time of the experiments.

The RDF(S) data we used was produced synthetically from the RBench gen-
erator[25]. The generator produces binary-tree-shaped RDFS class hierarchies
parameterized on three different aspects: the depth of the tree, the total number
of instances under the tree, and the distribution of the instances under the nodes
of the tree. The queries we measure are queries that ask for all the transitive
instances of the root class of the RDFS hierarchy. We used both uniform and
Zipfian distribution of instances under the RDFS class hierarchy. In the Zipfian
distribution, we used a skew parameter of value 1. Leaf classes were given a lower
rank and therefore more instances of the lower level classes were generated.

Storing RDF(S) data. In this section, we measure the performance of both
algorithms while storing RDF(S) data. Unless otherwise specified, in the ex-
periments below we have generated and inserted in the network 104 instances
uniformly distributed under an RDFS class hierarchy of varying depth.

Initially, we present results concerning the network traffic that is generated
by the system measured in terms of both total number of messages sent in the
network and bandwidth usage. As shown in Fig. 5(a), the number of messages
sent by FC increases exponentially with the tree-depth while it remains constant
in BC. In this experiment, we used the multiPut functionality described in Sec-
tion 3.1 for both approaches and thus the number of messages measured in the
experiment is less than the number of messages computed by the analytical cost
model. By using this functionality, we decrease significantly the number of mes-
sages sent by FC. Figure 5(b) shows how bandwidth is increasing exponentially
with the tree-depth in FC while remaining constant in BC. When we increase
the number of initially inserted triples from 103 to 104, we observe a huge in-
crease in FC’s bandwidth consumption which is also affected by the tree depth.
Finally, in Fig. 5(c) the difference between a uniform and a Zipfian distribution
of instances is depicted for both bandwidth (left y-axis) and messages (right
y-axis). BC is not affected by the distribution and as a consequence the num-
ber of messages sent as well as the bandwidth consumption remain unchanged.
However, FC’s bandwidth usage deteriorates when a Zipfian distribution is used.
The more skewed the instances are to the lower level classes, the more triples
are needed to be sent to the upper level classes and thus the more bandwidth is
spent.

Figure 5(d) shows the total storage load incurred in the network. BC’s storage
load is significantly lower than FC and is independent of the tree-depth. However,
FC’s storage load is increasing linearly with the tree-depth. In the same graph,
we have included the total number of triples that are sent to be stored at various
nodes during FC including the redundant ones generated as we have discussed in

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6

depth

m
e
s
s
a
g
e
s
 (

x
1
0
0
0
)

bwd
bwd model
fwd
fwd model

(a) messages

0

20

40

60

80

100

120

2 3 4 5 6
depth

M
B

y
te

s

bwd 1000 instances
fwd 1000 instances
bwd 10000 instances
fwd 10000 instances

(b) bandwidth

0

20

40

60

80

100

120

140

160

2 3 4 5 6
depth

M
B

y
te

s

0

50

100

150

200

250

m
e
s
s
a
g
e
s
 (

x
1
0
0
0
)

bwd bytes uniform/zipf
fwd bytes uniform
fwd bytes zipf
fwd msg uniform
fwd msg zipf
bwd msg uniform/zipf

(c) uniform vs. Zipfian

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6

depth

tr
ip

le
s
 (

x
1
0
0
0
)

bwd load
bwd load model
fwd actual load
fwd load model
fwd generated load

(d) storage load

1

10

100

1000

10000

100000

1000000

2 3 4 5 6
depth

ti
m

e
 (

s
e
c
)

bwd 1000 instances
fwd 1000 instances
bwd 10000 instances
fwd 10000 instances

(e) storage time

1

10

100

1000

2 3 4 5 6
depth

ti
m

e
 (

s
e

c
)

bwd uniform
bwd zipf
fwd uniform
fwd zipf

(f) uniform vs. Zipfian

Fig. 5. Storing RDF(S) data

Section 3.2. The difference between these two measurements, named fwd actual
load and fwd generated load, shows that the redundant information generated
by FC is remarkable and increases significantly with the tree-depth. Figure 5(d)
also shows that our cost model (bwd load model and fwd load model in the
graph) precisely predicts the results obtained in the experiments.

In Fig. 5(e) and 5(f), we show the time needed by each approach to complete
the insertion of 103 and 104 triples that either follow a uniform or a Zipfian
distribution. In BC, this time represents the time needed until all inserted triples
are stored at the respective nodes. In FC, we also take into account the time
spent for the inferred triples to be stored in the network. We observe here that
when we go from 103 to 104 initial triples, there is a blow up in FC’s storage
time (y-axis is in logarithmic scale). Generally, FC needs an enormous amount
of time to reach a fixpoint and makes the measurement of inserting 105 initial
triples infeasible. Our experiment for inserting this number of triples using FC
was active for 16 hours and still a fixpoint had not been reached.

Finally, we conducted some measurements concerning the storage load distri-
bution in both algorithms. The results showed that as the depth of the hierarchy
increases, the number of classes increases exponentially and more nodes share
the load resulting in a more balanced distribution. Furthermore, BC distributes
the load slightly better than FC for larger tree depths. This is a result of a char-
acteristic property of FC, namely that classes of higher levels of the hierarchy
have more instances than classes from lower levels (since each class keeps all the
instances of its subclasses). Therefore nodes that are responsible for classes of
higher levels are more loaded with triples than nodes responsible for classes of

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6

depth

M
B

yt
e

s

0

20

40

60

80

100

120

140

m
e

ss
a

g
e

s

bwd bytes uniform
bwd bytes zipf
fwd bytes uniform/zipf
bwd msg
bwd msg model

(a) bandwidth and messages

0

5

10

15

20

25

30

35

40

2 3 4 5 6

depth

K
b

y
te

s

bwd

bwd cache

(b) bandwidth

0

2

4

6

8

10

12

14

16

2 3 4 5 6

depth

ti
m

e
 (

s
e
c
)

bwd
bwd cache
fwd

(c) query response time

Fig. 6. Querying 104 instances

lower levels. Due to space limitations we are not presenting these graphs and
we consider as future work further improvements [16, 4] in both approaches that
will distribute the storage load more evenly among nodes.

Querying RDFS class hierarchies. In this experiment, we present results
while evaluating queries of the form “give me all instances of the root class”. We
generated and stored 104 instances for both uniform and Zipfian distributions
under an RDFS class hierarchy of varying depth. We run 100 queries of the
above form and averaged the measurements taken.

Figure 6(a) shows two metrics concerning the network traffic; bandwidth
(left y-axis) and messages sent (right y-axis). Since FC sends a single message
regardless of the tree-depth, we do not depict it in the graph. In BC, the num-
ber of messages sent in the network is analogous to the number of classes in
the RDFS hierarchy since it sends one message for each class. Therefore, as the
hierarchy becomes deeper, the number of classes increases and the total num-
ber of messages sent also increases. This was also shown by the analytical cost
model of Section 4.2 and is depicted in the graph as well. Figure 6(a) also shows
the bandwidth used in the network for both approaches and for both types of
instance distribution. FC bandwidth consumption is limited to the number of
bytes sent for the delivery of the results of the query and is independent of both
the tree-depth and the instance distribution. In comparison, the bandwidth of
BC increases with the tree-depth as a result of the increasing number of mes-
sages that are sent in the network. Furthermore, a skewed instance distribution
slightly affects the bandwidth used since more instances belong to lower classes
and need to be sent towards the root class.

We also experimented with the query load. As already shown in the analytical
evaluation the total query load occurred is similar for both approaches and only
the distribution differs. While FC involves a single node in the query processing,
in BC the load is shared among the nodes that are responsible for the subclasses
of the root class. Due to space limitations we have omitted these graphs. As
ongoing work, we are exploring various load balancing techniques [16, 4] for both
approaches.

Optimizations. In this section, we measure the effect of a caching optimization
technique for the BC algorithm. Since there is a need to traverse the subclass
hierarchy quite often, we could take advantage of the first time it is traversed and
cache useful routing information. Assuming that different nodes are responsible

for different classes in a hierarchy, we need to make d∗O(logn) hops to reach from
a node responsible for the root class of the hierarchy to the nodes responsible for
the leaf classes, where d is the depth of the hierarchy tree and n the number of the
nodes in the network. We can minimize this by adding extra routing information
to each node x which is responsible for a certain class C of the hierarchy. The
first time a node x contacts a node y which is responsible for a subclass of C,
it keeps the IP address of y and uses it for further communication. In this way,
a direct subclass is found in just 1 hop and the whole hierarchy is traversed in
d hops. This technique minimizes network traffic and decreases query response
time, while the overhead of maintaining such a table is not significant and it is
only kept in memory.

In Fig. 6(b), we show how the bandwidth of BC is decreased when using this
caching technique. Finally, Figure 6(c) shows the query response time. A query
needs an almost constant time to be evaluated when in FC. This is reasonable,
considering that only one node participates in the query processing, although the
query processing it needs to handle is quite heavy. On the contrary, BC response
time increases with the tree-depth. However, using the caching technique we
manage to improve query response time at a satisfying degree.

6 Related Work
A representative centralized RDF store that supports the forward chaining ap-
proach is Sesame [6]. Each time an RDF Schema is uploaded in Sesame, an
inference module computes the schema closure of the RDFS and asserts the in-
ferred RDF statements. Jena [27] can support both approaches depending on
the underlying rule engine. RSSDB [2] follows a totally different approach in
which the taxonomies are stored using the underlying DBMS inheritance ca-
pabilities so that retrieval is more efficient. Nevertheless, this approach is still
an on demand approach and resembles the backward chaining evaluation algo-
rithm. 3store [12] follows a hybrid approach in order to gain from the advantages
of both approaches. Finally, in Oracle RDBMS [8], RDFS inference is done at
query execution time using appropriate SQL queries.

From the distributed point of view, RDFPeers [7], GridVine [1], and [19]
consider RDF query processing on top of structured overlay networks, such as
DHTs. [7] and [19] consider no RDFS reasoning while [1] provides semantic in-
teroperability through schema mappings. The only DHT-based RDF store that
is closely related with our work is BabelPeers [5] which enables RDFS reasoning.
It is implemented on top of Pastry [23] and only a forward chaining approach
is supported. The reasoning process runs in regular intervals on each node and
checks for new triples that have arrived to the node. Then, it exhaustively gener-
ates new inferred triples based on the RDFS entailment rules and sends them to
be stored in the network. [5] presents no experimental evaluation of the forward
chaining algorithm. However, the results of our experiments show how expensive
FC is in terms of storage load, time and bandwidth.

7 Conclusions and Future Work
We presented and evaluated both analytically and experimentally two algo-
rithms, namely forward and backward chaining, that enable RDFS reasoning

on top of DHTs. We proposed the first distributed backward chaining algorithm
on top of DHT-based RDF stores together with an optimization which improves
significantly query response time. A main result of our experiments is that a
simple forward chaining implementation as it is also supported in BabelPeers [5]
cannot scale and thus related optimizations should be considered.

In future work, we plan to evaluate exhaustively the query processing algo-
rithms of Atlas [15, 19] taking into account RDFS reasoning as presented in this
paper and examine how various load balancing techniques [4, 16] can be applied
to our algorithms. We also plan to investigate how forward chaining can be made
more efficient as well as hybrid approaches that combine forward and backward
chaining.

References

1. K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. V. Pelt. GridVine: Building Internet-Scale
Semantic Overlay Networks. In WWW 2004.

2. S. Alexaki, V. Christophides, G. Karvounarakis, and D. Plexousakis. On Storing Voluminous
RDF Descriptions: The case of Web Portal Catalogs. In WebDB 2001.

3. H. Balakrishnan, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Looking up data in
P2P systems. Communications of the ACM (2003).

4. D. Battre, F. Heine, A. Hoing, and O. Kao. Load-balancing in P2P based RDF stores. In SSWS
2006.

5. D. Battre, A. Hoing, F. Heine, and O. Kao. On Triple Dissemination, Forward-Chaining, and
Load Balancing in DHT based RDF stores. In DBISP2P 2006.

6. J. Broekstra and A. Kampman. Sesame: A Generic Architecture for Storing and Querying RDF
and RDF Schema. In ISWC 2002.

7. M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based on a structured
peer-to-peer network. In WWW 2004.

8. E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An Efficient SQL-based RDF Querying
Scheme. In VLDB 2005.

9. R. Cyganiak. A relational algebra for SPARQL, 2005. Technical Report.
10. Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large OWL

Datasets. In ISWC 2004.
11. Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems. J.

Web Sem., 3(2-3):158–182, 2005.
12. S. Harris and N. Gibbins. 3Store: Efficient Bulk RDF Storage. In PSSS 2003.
13. P. Hayes. RDF Semantics. W3C Recommendation, February 2004.
14. F. Heine, M. Hovestadt, and O. Kao. Processing Complex RDF Queries over P2P Networks.

In P2PIR 2005, November 2005.
15. Z. Kaoudi, I. Miliaraki, M. Magiridou, E. Liarou, S. Idreos, and M. Koubarakis. Semantic Grid

Resource Discovery in Atlas. Knowledge and Data Management in Grids, 2006.
16. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer systems.

In SPAA 2004.
17. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A Declar-

ative Query Language for RDF. In WWW 2002.
18. O. Lassila. Taking the RDF Model Theory Out For a Spin. In ISWC 2002.
19. E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple Pattern Queries over

Large Structured Overlay Networks. In ISWC 2006.
20. A. Polleres. From SPARQL to Rules (and back). In WWW 2007.
21. E. Prud’hommeaux and A. Seaborn. SPARQL Query Language for RDF.
22. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In USENIX

Annual Technical Conference, 2004.
23. A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing for

Large-Scale- Peer-to-Peer Storage Utility. In Middleware 2001.
24. H. Stuckenschmidt and J. Broekstra. Time-Space Trade-offs in Scaling up RDF Schema Rea-

soning. In WISE Workshop 2005.
25. Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking Database Representa-

tions of RDF/S Stores. In ISWC 2005. http://athena.ics.forth.gr:9090/RDF/RBench/.
26. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Computer

Science Press, 1988.
27. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Raynolds. Efficient RDF Storage and Retrieval

in Jena2. In SWDB 2003.

