
SPARQL Query Optimization on Top of DHTs⋆

Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

Abstract. We study the problem of SPARQL query optimization on top
of distributed hash tables. Existing works on SPARQL query processing
in such environments have never been implemented in a real system, or
do not utilize any optimization techniques and thus exhibit poor perfor-
mance. Our goal in this paper is to propose efficient and scalable algo-
rithms for optimizing SPARQL basic graph pattern queries. We augment
a known distributed query processing algorithm with query optimization
strategies that improve performance in terms of query response time and
bandwidth usage. We implement our techniques in the system Atlas and
study their performance experimentally in a local cluster.

1 Introduction
With interest in the Semantic Web rising rapidly, the problem of SPARQL query
processing and optimization has received a lot of attention. This paper concen-
trates on the optimization of SPARQL queries over RDF data stored on top
of distributed hash tables (DHTs). The first such implemented P2P system is
RDFPeers [1] where only a restricted query class is supported (conjunctive multi-
predicate queries). In [11], we have extended the work of RDFPeers and presented
two algorithms for the distributed evaluation of conjunctions of triple patterns.
The algorithms in [11] have been evaluated only by simulations and no query op-
timization techniques or an implemented system has been presented. Motivated
by [1, 11], our group has been developing Atlas (http://atlas.di.uoa.gr), a
full-blown open source P2P system for the distributed processing of RDF(S) data
stored on top of DHTs. The RDFS reasoning functionality, the architecture and
various applications of Atlas are presented in [7–9].

In this paper, we present for the first time the query optimization techniques
we have developed in Atlas, and evaluate them experimentally. Although query
optimization has been extensively studied and is widely used in the database
area, SPARQL query optimization has been addressed only recently even in
centralized environments [12,13,23]. The first works that dealt with distributed
query optimization of SPARQL queries are [17, 24]. However, the architecture
proposed in these papers is very different from the one offered by a DHT. In [10]
a DHT-based system is presented which supports a SPARQL-like query language
and utilizes optimization techniques complementary to the ones we propose.

In this work, we address SPARQL query optimization over RDF data stored
on top of DHTs and target the minimization of the time required to answer a

⋆ This work was partially supported by the European project SemsorGrid4Env.

query and the network bandwidth consumed during query evaluation. Our work
starts from the QC algorithm of [11] which we enhance with a query graph repre-
sentation to avoid Cartesian products and with a distributed mapping dictionary
(Section 3). Although mapping dictionaries are by now standard in centralized
RDF stores [2, 12, 27], our paper is the first that discusses how to implement
one in a DHT environment. In addition, we fully implement and evaluate a
DHT-based optimizer which is used to find the best ordering of a query’s triple
patterns. We describe three greedy optimization algorithms for this purpose:
two static and one dynamic. These algorithms utilize selectivity estimates to
determine the order with which triple patterns should be evaluated in order to
improve query response time and network bandwidth consumption (Section 4).
We also propose methods for estimating selectivities of SPARQL basic graph
pattern queries utilizing techniques from relational databases (Section 5). We
discuss which statistics should be kept at each peer and use histograms for esti-
mating data distributions. We demonstrate that it is sufficient for a peer to create
and maintain local statistics, i.e., statistics about the data values for which it is
responsible. These statistics can be obtained by other peers by sending low cost
messages (Section 6). We implement all our techniques in the system Atlas and
present an extensive experimental evaluation in a local cluster using the widely
used LUBM benchmark [4] (Section 7).

2 System and Data Model

System Model. We assume a structured overlay network where peers are or-
ganized according to a DHT protocol. DHTs are structured P2P systems which
try to solve the lookup problem; given a data item x, find the peer which holds
x. Each peer and each data item are assigned a unique m-bit identifier by using
a hash function. The identifier of a peer can be computed by hashing its IP
address. For data items, we first have to determine a key k and then hash this
key to obtain an identifier idk. A Lookup(idk) operation returns a pointer to
the peer responsible for the identifier idk. Atlas uses the Bamboo DHT [18] but
our algorithms can be implemented on top of any DHT network. When a peer
receives a Lookup request, it efficiently routes the request to a peer with an
identifier that is numerically closest to idk. This peer is responsible for storing
the data item with key k and we will call it responsible peer for key k.

Data Model and Query Language. We assume that the reader is familiar
with the notions of RDF triple and triple pattern. We deal with RDF triples with
no blank nodes and SPARQL queries of basic graph patterns (BGP). A SPARQL
query with filter expressions involving equality operators can be easily rewritten
to a BGP query. In the following, we define an internal representation of a query
extending the graph-based approach used in [12,23].

Definition 1. A query graph g is a tuple (N,H,E), where N is the set of nodes
in g, H is the set of hypernodes in g and E is the set of undirected edges in g.
Each node in N denotes a single triple pattern and each node in H denotes a
conjunction of triple patterns. Two nodes from N ∪ H are connected with an
edge in E if and only if the triple pattern or the conjunction of triple patterns
represented by these two nodes share at least one variable.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub:<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?x ?y ?z
WHERE {
?x rdf:type ub:Student . (tp1)
?y rdf:type ub:Faculty . (tp2)
?z rdf:type ub:Course . (tp3)
?x ub:advisor ?y. (tp4)
?x ub:takesCourse ?z . (tp5)
?y ub:teacherOf ?z . } (tp6)

(a) SPARQL query

tp1

tp2

tp3

tp4

tp6

tp5

(b) Initial graph

tp2

tp3

tp6H

tp1 tp4 tp5

(c) Intermediate graph

Fig. 1. Query example

Initially, the query graph of a query consists only of simple nodes. During
query processing, evaluated triple patterns are merged into hypernodes. In the
rest of the paper, we focus only on connected graphs. The evaluation of uncon-
nected graphs is straightforward since each connected subgraph can be evaluated
independently, and then the union of the results can be created at the peer that
posed the query. A query plan qg for graph g is a total order of the nodes in
N of g. In Fig. 1(a), we present an example SPARQL query which will be used
throughout the paper (LUBM Q9 [4]). The initial query graph is shown in Fig.
1(b). Figure 1(c) shows an intermediate query graph where the hypernode H
represents the conjunction of triple patterns tp1 ∧ tp4 ∧ tp5 (i.e., triple patterns
tp1, tp4 and tp5 have already been evaluated).

3 Query Evaluation

We start by first explaining the triple indexing scheme we have adopted from [1],
where each triple is indexed in the DHT three times. The hash values of the
subject, predicate and object of each triple are used to compute the identifiers
that will indicate the peers responsible for storing the triple. The peer that
receives a store request for a set of RDF triples uses a multiSend message as
in [11] to distribute the triples among the peers. Each peer keeps its triples in a
local database consisting of a single relation with four columns (triple relation).
The first three columns correspond to the three components of the triples stored,
while the fourth column indicates which of the three components is the key that
led the triple to this peer.

Query processing. The algorithm we use (QC*) is based on algorithm QC
of [11]. Unlike [11] that uses lists of triple patterns, we employ the query graph
representation, which ensures that no Cartesian product will be computed and
transferred through the network.

When a peer receives a query request, it translates it into a query graph
g. Based on the query plan generated by the optimizer, the peer also marks
the node of the query graph which represents the triple pattern that should be
evaluated first and sends a QEval message to the peer that will start the query
evaluation. Figure 2 shows the pseudocode when such a message arrives at a peer
p. Keyword event is used for handling messages also indicating the peer where
the handler is executed. Keyword sendto prefixed by an identifier declares that
the message should be sent to the peer which is responsible for this identifier. In
this case, a Lookup operation is performed first to discover the peer responsible
for this identifier and then the message is sent directly to this peer.

First, peer p evaluates the triple pattern which correspond to the marked

1 event p.QEval(id, g, interRes, vars, retIP)
2 lR:=MATCH (g.marked_node().triplepattern());
3 if interRes = {} then interRes':=lR;
4 else interRes':=lR join interRes;
5 if interRes' = {} then
6 sendto retIP.queryResp({ });
7 return;
8 end
9 g':=g.MERGE(g.hypernode, g.marked_node);
10 if g'.N={} then //all triple patterns are evaluated
11 answer := project interRes' on vars;
12 sendto retIP.queryResp(answer);
13 return;
14 end
15 project out unnecessary vars from interRes';
16 g'.MARKNEXTNODE();
17 key':=FINDKEY(g'.marked_node().triplepattern());
18 id':=HASH(key');
19 sendto id'.QEval(id',g',inteRes',vars, retIP);
20 end event

Algorithm 1: QC*

Fig. 2. QC* algorithm

node of query graph g and forms a tempo-
rary relation lR by posing a selection query
to its triple relation. If relation interRes,
which holds the intermediate results so far,
is empty, peer p is the first peer of the query
evaluation and assigns lR to interRes′.
Otherwise, p assigns to interRes′ the nat-
ural join of lR and interRes. If the re-
sult of the join is an empty relation, p re-
turns an empty set to the peer that posed
the query (peer with IP address retIP)
and query evaluation terminates. Other-
wise, query evaluation continues and peer
p merges the marked node with the hyper-
node in g creating a new query graph g′. In
case peer p is the first peer participating in the query evaluation, p just trans-
forms the marked node n into a hypernode. If the new graph g′ consists only of
a hypernode, all triple patterns have been evaluated and p computes the projec-
tion of interRes′ on the answer variables vars and sends the answer to the peer
with IP address retIP . Otherwise, query evaluation continues and p projects
out from interRes′ variables that neither appear in vars nor in the rest of the
triple patterns. Then, a new node in g′ is marked as the next triple pattern that
should be evaluated and p sends a new QEval message to the next peer1. Local
procedure MarkNextNode ensures that the chosen node is connected with the
hypernode of g′, so that no Cartesian product will be computed.

Mapping dictionary. QC* utilizes a distributed mapping dictionary which
replaces long strings (URIs and literals) by unique integer values. Triple storage
and query evaluation is, then, performed more efficiently using these integers.

The uniqueness of the integer values used in the mapping dictionary could
be ensured in various ways. We propose the following scheme which is fully
distributed (thus scalable and fault tolerant) and does not require any kind of
coordination between the peers. Each peer keeps a local integer counter consist-
ing of l bits which is initially set to 0. l is incremented by 1 everytime a new
integer value needs to be generated. Each peer that joins the network is assigned
a unique m-bit identifier by hashing its IP address. We create an n-bit identifier
for a triple component by concatenating the m bits of the peer’s unique identifier
with the l bits of the current local counter. Depending on the network setting
and the application requirements, we can determine an appropriate value for l
so that each n-bit identifier is of reasonable space.

When a peer receives a store request, it transforms the given triples into
new triples containing integers. The peer, then, sends the new set of triples to
be stored in the network using multiSend. Together with the new triples, it

1 We assume that each triple pattern has at least one bound component. The case
where all three components of a triple pattern are variables requires a slightly dif-
ferent implementation which we do not discuss here.

also sends the mapping from strings to integers that created these triples. Note
that we use the string values of the triple’s components as keys to create the
identifiers. Each peer that receives a multiSend message, stores in its triple
relation the triples it is responsible for. Each such peer also maintains a two-
column relation which serves as a local dictionary which holds the mappings for
all the components of its local triples (dictionary relation).

During query evaluation, each string appearing in the triple patterns of a
query is transformed into the corresponding unique integer. This transformation
is performed during the lookup operation as follows. Whenever peer y wants to
send a QEval message for triple pattern tp, it first sends a Lookup request to
determine the peer responsible for this triple pattern (peer p). Peer p, which
receives the Lookup request, retrieves the integers corresponding to the strings
of tp from its local dictionary relation and sends them to y together with its IP
address. Then, peer y replaces the strings of tp with the integers sent from peer p
and continues query processing. In case any of the strings has no assigned integer,
the answer to the query is empty and query processing terminates. Finally, the
peer which computes the answer to the query is responsible for replacing integers
in the triples of the answer set with their string values. To achieve this, it contacts
the least possible number of peers that have already participated in the query
evaluation and have the appropriate values in their dictionary relation. During
query evaluation, the IP address of these peers is appended within the QEval

message (using an extra parameter).

4 Query Optimization Algorithms

The goal of query optimization is to find a query plan that optimizes the per-
formance of a system with respect to a metric of interest. In our work, we are
interested in improving the time required to answer a query (query response
time) and the network bandwidth consumed. The query response time of our
algorithm can be improved if the time spent for query evaluation locally by each
peer and the time required for network messages to reach relevant peers is im-
proved. One way to accomplish this is by minimizing the size of intermediate
relations produced during query evaluation (interRes′ in QC*). In this case,
we benefit in two ways: first, we achieve lower bandwidth consumption and sec-
ond, we accomplish the computation of joins with smaller intermediate relations
locally at peers. Lessons learned from earlier versions of Atlas persuaded us to
concentrate on optimizing these metrics to improve the scalability of our system.

In the following, we present three greedy optimization algorithms which try
to minimize the size of intermediate relations produced by the query process-
ing algorithm utilizing selectivity-based heuristics. We describe both static and
dynamic optimization algorithms. The two static query optimization algorithms
are completely executed by the peer that receives the initial query request and
output a fully specified query plan (an ordered list of triple patterns). In the dy-
namic query optimization algorithm, optimization decisions take place at each
step of the query processing algorithm. Using standard terminology from rela-
tional systems, the selectivity of a triple pattern tp, sel(tp), is the fraction of the
total number of triples in the network that match tp. Similarly, if H is a con-

junction of triple patterns, the selectivity of the conjunction of triple patterns,
sel(H), is the fraction of total number of triples in the network that match H.
We later discuss how we can estimate these selectivities (Section 5).

Naive static algorithm. The naive algorithm (NA) orders triple patterns
based on their selectivity (from the most selective to the least selective) and
in a fashion where a Cartesian product computation will not be required. The
optimization algorithm works as follows. Using the initial query graph repre-
sentation, each node is assigned with the selectivity of the corresponding triple
pattern. The algorithm firstly selects the query graph node n0 with the mini-
mum selectivity and adds it to the query plan. Then, it marks the nodes that
are connected with n0 and removes n0 from the graph. The algorithm iteratively
chooses the node nmin with the minimum selectivity, selecting only from the
marked ones, adds it to the query plan, marks the nodes connected with nmin

and removes nmin from the graph. The algorithm terminates when no nodes are
left in the graph. NA is based on the assumption that after joining two very
selective triple patterns, the joining result will also be selective. Certainly, this
assumption is not always true, but the algorithm often performs in a satisfactory
way, as we will see in the experimental section.

Semi-naive static algorithm. The semi-naive algorithm (SNA) is a vari-
ation of the minimum selectivity algorithm [22] and has also been used in [23].
SNA goes beyond NA by taking into account the selectivity of pairs of triple
patterns. Besides assigning each node of the graph with the selectivity of its
triple pattern, each edge of the graph is also assigned with the selectivity of the
conjunction of the connected triple patterns. The algorithm begins by selecting
the edge with the minimum selectivity, orders its nodes based on their selectivity
and adds them to the query plan. Then, SNA iteratively chooses the edge that
has the minimum selectivity, but also has one of its nodes in the query plan,
and adds the other node to it. SNA terminates when all nodes have been added
to the query plan. In case of a tie between the selectivities of two edges, the
algorithm chooses the one that has the node with the smaller selectivity.

Dynamic algorithm. Finally, we propose a dynamic optimization algo-
rithm (DA) which seeks to construct query plans that minimize the number of
intermediate results during query evaluation. Initially, the peer that received the
query request, assigns all edges and nodes of the query graph with the corre-
sponding selectivities and chooses the first triple pattern to be evaluated as in
SNA. Then, the optimization step is carried out at each peer p which receives
a QEval message. After the new query graph g′ with the new hypernode H ′

has been created at peer p, p selects the triple pattern that should be evaluated
next. The candidate triple patterns are the triple patterns of the query graph
nodes which are directly connected with the hypernode H ′. In this way, the
computation of a Cartesian product is avoided. Peer p estimates the selectivity
of the join between the intermediate results so far (which correspond to H ′) and
each candidate triple pattern and assigns the corresponding edges. Then, peer p
selects the node which is connected to H ′ with the minimum edge selectivity. In
case a tie between the selectivities of two edges emerges, p chooses the node with

H1

at query requestor peer at peer responsible for tp1 at peer responsible for tp4

at peer responsible for tp6 at peer responsible for tp2
at peer responsble

for tp3
at peer responsible

for tp5

tp1

tp2

tp3

tp4

tp6

tp5

0,01

0,06

0,03

0,04

0,05

0,02

0,1

0,2 0,2
0,5

0,3

0,4

0,3
0,1

0,2

tp2

tp3

tp4

tp6

tp5

0,06

0,03

0,04

0,05

0,02

0,1

0,2

H2

tp2

tp3

tp6

tp5

0,030,05

0,02

0,35

0,25

0,3

0,06

tp2

tp3tp5
0,030,05

0,06
0,1

0,2
0,3

tp5

0,030,05

0,1

0,2

tp5
0,050,1

tp3

H3 H4 H5 H6

tp1 tp4 tp6 tp2 tp3 tp5

tp1 tp4

tp1 tp4 tp6 tp2

tp1 tp4 tp6 tp2 tp3

tp1

tp1 tp4 tp6

Fig. 3. Dynamic query optimization example

the smaller selectivity. Figure 3 shows an example execution of DA. The query
requestor peer assigns the edges and nodes of the query graph and chooses tp1
as the first node. At each query processing step, each peer finds the edge with
the minimum selectivity from the set of edges connected to the hypernode and
marks the corresponding node (shown with a double circle). In the last step, the
query graph consists only of the hypernode.

5 Selectivity Estimation
In this section, we propose methods for estimating the selectivity of single triple
patterns as well as the selectivity of a conjunction of triple patterns. To achieve
this, we need to compute statistics from the data stored in the network. Section
6 describes how these statistics are generated.

5.1 Single triple patterns

We present two ways to estimate the selectivity of a single triple pattern; one
based on a simple heuristic also presented in [23] and one based on an analytical
estimation technique using the attribute value independence assumption [20].

Bound-is-easier heuristic. We consider a simple variation of the standard
bound-is-easier heuristic of relational and datalog query processing [25], also used
in [23], and assume that the more bound components a triple pattern has, the
more selective it is. We further enrich this heuristic by considering the position
of the bound components of a triple pattern, if two triple patterns have the same
number of bound components. In this case, we assume that subjects are more
selective than objects, which in turn are more selective than predicates.

Analytical estimation.Given a triple pattern tp = (s, p, o), where s, p, o are
variables or constants, the selectivity of tp using the attribute value independence
assumption [20] is computed by the formula sel(tp) = sel(s) × sel(p) × sel(o),
where sel(s), sel(p), sel(o) are the selectivities of the triple pattern’s components.
We assume a selectivity of 1.0 for the triple pattern components which are vari-
ables as well as for the predicate value rdf:type. The selectivity of the other
components depends on the frequency with which their value appears in the set
of triples stored in the network. We define the frequency of a triple component
c with value v (denoted by freqc(v) where c ∈ {S, P,O}) as the total number
of occurrences of value v as a triple component c in the set of triples stored in

the network. For example, freqS(ub:zoi) is the number of occurrences of value
ub:zoi as a subject, while freqO(ub:zoi) denotes the number of occurrences of
value ub:zoi as an object in the set of triples stored in the network.

The selectivity of a triple pattern component c ∈ {S, P,O} with value v

can now be computed by the formula selc(v) =
freqc(v)

T , where freqc(v) is the
frequency of value v as a component c and T is the total number of triples. Al-
though in [23], the attribute value independence assumption is also used, their
method assumes a uniform distribution for subjects and requires a bound predi-
cate for the objects. In Section 6, we describe how freqc(v) is computed. For the
computation of the total number of triples indexed in the network (T), we use a
broadcast protocol. More elegant solutions for distributed counting in P2P are
proposed in [14], but adopting such a method is out of the scope of the paper.

5.2 Conjunction of triple patterns

The selectivity of the conjunction of two triple patterns tp1 and tp2 is
joinCard(tp1,tp2)

T 2 ,
where joinCard is the number of tuples (cardinality) of the relation that results
from joining tp1 and tp2 and T is the number of triples stored in the network.

To compute the expression joinCard, we adopt a method proposed for re-
lational systems in [25]. Assume that we have two triple patterns tp1 and tp2
and the corresponding relations R1 and R2 which contain all the tuples formed
with values existing in the triples stored in the network that satisfy tp1 and
tp2. Relations R1 and R2 have as attributes the variables of triple patterns tp1
and tp2, respectively. Since we deal with triple patterns that have at least one
constant component, two triple patterns can share at most two variables. The
cardinality of joining R1 with R2 is computed by the formula:

joinCard(R1, R2) =
TR1 × TR2

max(IR1(?x1), IR2(?x1)) × max(IR1(?x2), IR2(?x2))

where TR1 and TR2 are the number of tuples of R1 and R2 respectively, ?x1 and
?x2 are the variables shared by tp1 and tp2, and IRi(?xj) is the size of the domain
of attribute ?xj of relation Ri. In other words, TRi is the number of triples that
match tpi, and IRi(?xj) is the number of distinct values that variable ?xj has in
the bindings of tpi. This formula can easily be adapted to the case that tp1 and
tp2 share less than two variables. In [23], the authors propose to precompute the
join cardinality by executing the actual SPARQL queries which can become a
very expensive operation, especially in a distributed environment.

We can easily determine the number of triples TR that match a triple pattern
tp. If tp has one bound component c with value v, then the number of triples
that match tp is equal to the number of occurrences of value v as a component
c, i.e., TR = freqc(v). If a triple pattern tp has two bound components, then we
compute the number of triples that match tp using the selectivity of the triple
pattern as explained earlier, i.e., TR = sel(tp)× T , where T is the total number
of triples stored in the network. For the computation of the size of the domain of
a variable ?x in a triple pattern tp, namely IR(?x), we distinguish two cases. If tp
has one variable, then IR(?x) is equal to the number of bindings of variable ?x.
Since no duplicate triples exist in the network and ?x is the only variable in the
triple pattern, each binding will be unique. In this case, we have IR(?x) = TR.

In the case where tp has two variables, the corresponding domain size for the
shared variable can be determined using the techniques of Section 6.

We now discuss the use of the above selectivity estimation techniques by
the optimization algorithms of Section 4. While NA requires only the selectivity
of single triple patterns and thus both the bound-is-easier heuristic and the
analytical estimation can be applied, SNA and DA require also the selectivity of
conjunctions of triple patterns and hence only the analytical estimations will be
used. Especially in DA, the estimation of the selectivity of the join between the
intermediate results (R1) and one triple pattern (R2) is required. The formulas
are the same as described above with the exception that relation R1 is already
formed. Therefore, the number of tuples of R1 and the domain size of any variable
in the attributes of R1 can be computed on the fly by examining relation R1.

6 Statistics for RDF

In this section, we present an efficient DHT-based scheme for collecting and
using the statistics that enable the estimation of the selectivities described in
Section 5. These statistics are the frequency of a triple component and the size of
the domain of a variable in a triple pattern. Peers keep statistics only from their
local data and specifically for the data values for which they are responsible (i.e.,
values that are the keys that led a triple to a specific peer). These turn out to be
global statistics required by the optimization algorithms and can be obtained by
sending low cost messages. This is a very good property of the indexing scheme
and has not been pointed out in the literature before.

Creating statistics. Let us first introduce some new notation which is
useful for keeping statistics for the sizes of the domain of the variables ap-
pearing in a query. We will denote by dsc(v) (dpc(v) and doc(v), respectively)
the total number of distinct subject (predicate and object, respectively) values
that exist in the triples stored in the network which contain value v as compo-
nent c. For example, let tp be the triple pattern (?x,ub:advisor,?y). Then,
dsp(ub:advisor) denotes the number of the distinct subject values in the triples
with predicate ub:advisor, i.e., the size of the domain of variable ?x. Similarly,
dop(ub:advisor) denotes the number of the distinct object values in the triples
with predicate ub:advisor, i.e., the size of the domain of variable ?y.

The following observation allows us to collect local statistics at each peer of
a DHT. Let v be the value of a bound subject of a triple pattern and pv the peer
responsible for key v. Then, peer pv is capable of computing the exact frequency
of v as a subject, (freqs(v)), the exact number of the distinct predicate values
with subject v (dps(v)), and the exact number of the distinct object values with
subject v (dos(v)) in the set of triples stored by looking only in its local database.
Given that peer pv is responsible for key v, our indexing scheme forces all triples
that contain v either as a subject, predicate or object to be stored at peer pv.
Therefore, peer pv can retrieve from its local triple relation all triples that contain
v as a subject and hence it can compute the occurrences of v as a subject in the
set of all triples stored in the network, i.e., freqs(v). In addition, peer pv can
compute the number of the distinct predicate values and object values for subject
v by projecting the triples that contain v as subject on the predicate and object

subject predicate object object-class

 freqs freqp freqo freqc

 dps dsp dso
 _

 dos dpp dpo
 _

Fig. 4. Statistics kept at each peer

attribute respectively. The same holds for a
triple pattern’s bound predicate or object.
Following that, it is sufficient for each peer
to create and maintain statistics of its locally
stored RDF data only, and more precisely
only of the triple components’ values which
are the keys that led to the peer.

For each triple component, a peer keeps the statistics shown in Fig. 4. A
data structure which would keep the exact distribution of each triple compo-
nent would require excessive memory space for very large amount of data. A
commonly used method dating back from relational systems is estimating the
frequency distribution of an attribute by creating histograms [16]. Given a space
budget B for each statistical structure, each peer decides if the exact distri-
bution can be kept in memory or an estimation of the distribution is required
by creating a histogram. We use v-optimal-end-biased histograms [16] which we
experimentally found to be more suitable. As shown in Fig. 4, we differentiate
between objects of triples of the form (s,rdf:type,o), which are classes, and
objects of triples (s,p,o) with p ̸= rdf:type since we discovered that a more
accurate estimation for the objects statistics can be achieved in this way.

Retrieving statistics. Whenever the query optimizer of peer x needs statis-
tics for the selectivity estimation of one triple pattern or a conjunction of triple
patterns, it sends a StatsReq(vi, ci) message for each bound component value
vi appearing in the triple patterns to the peer responsible for key vi specifying
also the type ci of the component value (i.e., subject, predicate, object or class).
The peer that receives such a message retrieves the required statistics for value
vi from the corresponding statistical structure (depending on the value ci) and
sends them back to peer x. The time required to retrieve the statistics is negli-
gible compared to the time required for evaluating a query, as we will see in the
experimental section. The cost of sending these messages is very low since: (a)
messages are small in size, (b) messages are sent in parallel, (c) each message
requires only O(logn) hops to reach the destination peer, and (d) the statistics
at the destination peer are kept in main memory.

7 Experimental Evaluation

In this section, we present an experimental evaluation of our optimization tech-
niques. All algorithms have been implemented as an extension to our prototype
system Atlas. In the latest version of Atlas, we have adopted SQLite as the local
database of each peer since the Berkeley DB included in the Bamboo implemen-
tation was inefficient. For our experiments, we used as a testbed both the Plan-
etLab network as well as a local shared cluster (http://www.grid.tuc.gr/).
Although we have extensively tested our techniques on both testbeds, here we
present results only from the cluster where we achieve much better performance.
The cluster consists of 41 computing nodes, each one being a server blade ma-
chine with two processors at 2.6GHz and 4GB memory. We used 30 of these
machines where we run up to 4 peers per machine, i.e., 120 peers in total.

0

20

40

60

80

Q2 Q4 Q7 Q8 Q9
LUBM Query

Q
R

T
 (

s
e

c
)

QG NA¯ NA SNA DA

(a) Total query response time

0

5

10

15

20

25

30

Q2 Q4 Q7 Q8 Q9

LUBM Query

B
a

n
d

w
id

th
 (

M
B

)

QG NA¯ NA SNA DA

(b) Total bandwidth usage

1

10

100

1000

Q2 Q4 Q7 Q8 Q9

LUBM Query

O
p

ti
m

iz
a

ti
o

n
 (

m
s

e
c

)

NA SNA DA

(c) Optimization time

Fig. 5. Query optimization performance for LUBM-50

For our evaluation, we use the Lehigh University benchmark (LUBM) [4]. In
each experiment we first infer all triples and then store them in the network.
We present results only for queries with more than 4 triple patterns so that the
benefits of the proposed optimizations can be clearly demonstrated. We omit
query Q12 since it always produces an empty result set and does not exhibit
interesting results. All measurements are averaged over 10 runs using the geo-
metric mean which is more resilient to outliers. In the following, QG denotes
that the query graph is used to avoid Cartesian products but no other opti-
mization is utilized. The naive algorithm using the bound-is-easier heuristic is
denoted by NA−, while the naive and semi-naive algorithm using the analytical
estimation is denoted by NA and SNA, respectively. Finally, DA denotes the
dynamic optimization algorithm.

7.1 Comparing the optimization algorithms

In this section, we compare and evaluate the optimization algorithms described
in Section 4. For this set of experiments, we store all the inferred triples of the
LUBM-50 dataset (9, 437, 221 triples) in a network of 120 peers. Then, using each
optimization algorithm, we run the queries. In all graphs of Fig. 5, the x-axis
shows the LUBM queries while the y-axis depicts the metric of interest. Figure
5(a) shows the query response time (QRT) for the different LUBM queries. QRT
is the total time required to answer a query and it also includes the time required
by the query optimizer for determining a query plan (optimization time). Figure
5(b) shows the total bandwidth consumed during query evaluation.

Queries Q2 and Q9 consist of 6 triple patterns having only their predicates
bound. In both queries, there exists a join among the last three triple patterns
(in the order given by the benchmark) and the combination of all three triple
patterns is the one that yields a small result set. DA finds a query plan that
combines these three triple patterns earlier than the other algorithms. This re-
sults in producing smaller intermediate result sets, as it is also shown by the
bandwidth consumption in Fig. 5(b), and thus results in better QRT. Although
NA and SNA perform close to DA for query Q2, they fail to choose a good
query plan for Q9 affecting both the QRT and the bandwidth consumption. At
this point, we should note that QG and NA− depend on the initial order of a
query’s triple patterns. For this reason, both algorithms choose a relatively good

DA

NA
SNA

QG

NA-

0

2

4

6

8

10

12

1 21 41 61 81 101 121141 161181 201 221241 261281 301321

Query plan

Q
R

T
 (

se
c)

(a) LUBM Q2 query plan space

LUBM Query Min QRT Max QRT DA QRT

 Q2 0.91 s 10.06 s 0.96 s

 Q4 2.54 s 17.39 s 2.89 s

 Q7 1.53 s 16.62 s 1.55 s

 Q8 2.88 s 10.20 s 3.06 s

 Q9 3.30 s 64.06 s 4.41 s

(b) QRT of LUBM query plans

Fig. 6. Exploring the query plan space for LUBM-10

query plan for query Q9 since the order in which its triple patterns are given by
the benchmark is a good one. Q4 is a star-shape query with all its triple pat-
terns sharing the same subject variable, while only the first two triple patterns
have two bound components. Therefore, since these two triple patterns are the
more selective ones, all optimization algorithms choose the same query plan and
perform identically in terms of both QRT and bandwidth. The same holds for
query Q7 where QRT is significantly reduced when using either optimization
technique compared to QG. Q8 is a query similar to Q7.

In Fig. 5(c), we show the total optimization time in msec on a logarithmic
scale. For QG and NA− the optimization overhead is negligible and is not shown
in the graph. The optimization time contains the time for retrieving the required
statistics from the network, the time for the selectivity estimation and the time
spent by the optimization algorithm. As expected, DA spends more time than
the other optimization algorithms since it runs at each query processing step.
However, the optimization time is still one order of magnitude smaller than the
time required by the query evaluation process. Therefore, although DA requires
more time than the other optimization algorithms, the system manages to per-
form efficiently for all queries whenDA is used. We observe similar results for the
bandwidth consumed by the query optimizer. NA and SNA consume ∼ 2KB
while DA consumes ∼ 7KB, still one order of magnitude less than the bandwidth
spent during query evaluation. We omit this graph due to space limitations.

7.2 Effectiveness of query optimization

In this section, we explore the query plan space of the LUBM queries to show
how effective the optimization algorithms are. The size of the query plan space
of a query consisting of N triple patterns is N !. Since query plans that involve
Cartesian products are very inefficient to evaluate in a distributed environment,
we consider only triple pattern permutations which do not produce any Cartesian
product. In this experiment, we store the LUBM-10 dataset in a network of 120
peers and run all possible query plans for several LUBM queries. In Fig. 6(a),
we depict the QRT of all possible query plans for query Q2 in ascending order.
The query plan space of Q2 consists of 335 query plans which do not involve any

0

4

8

12

16

20

0 2 4 6 8 10

Triples stored (x1000000)

Q
R

T
 (

se
c)

QG NA¯ NA SNA DA

(a) Varying dataset size for query Q2

0

2

4

6

8

10

0 20 40 60 80 100 120
Network size (#peers)

Q
R

T
 (

se
c)

QG NA¯ NA SNA DA

(b) Varying network size for query Q2

Fig. 7. Varying dataset and network size

Cartesian product. In this figure, we highlight the position of the query plans
chosen by the different optimization algorithms. We observe that DA chooses
one of the best query plans, while NA and SNA perform worse choosing the
27th best query plan. NA− performs poorly choosing one the worst query plans.
Similar results are observed for the other queries as well. In Fig. 6(b), we list
the QRT for all queries of the best and the worst query plan together with the
QRT when using DA. We observe that the QRT when using DA is very close to
the QRT of the optimal query plan for all queries. Note that without the query
plans that involve Cartesian products, the difference between the min and the
max QRT of all queries is not very large.

7.3 Varying the dataset and network size

In these sets of experiments, we study the performance of our system when
varying the number of triples stored in the network and the number of peers.
We show results only for Q2 which involves a join among three triple patterns.

Figure 7(a) shows the behavior of our system using each optimization algo-
rithm as the dataset stored in the network grows. In a network of 120 peers, we
stored datasets from LUBM-1 to LUBM-50. Every time we measured the QRT
of query Q2 using each optimization algorithm. As expected, QRT increases as
the number of triples stored in the network grows. This is caused by two factors.
Firstly, the local database of each peer grows and as a result local query process-
ing becomes more time-consuming. Secondly, the result set of query Q2 varies as
the dataset changes. For example, for LUBM-1 the result set is empty, while for
LUBM-50 the result set contains 130 answers. This results in transferring larger
intermediate result sets through the network which also affects the QRT of the
query. Besides, this experiment brings forth an interesting conclusion regarding
the optimization techniques. While query plans chosen by NA, SNA and DA
perform similarly up to approximately 1.8M triples stored (i.e., LUBM-10), we
observe that for bigger datasets the query plan chosen by DA outperforms the
others. This shows that the system becomes more scalable with respect to the
number of triples stored in the network when using DA. Similar results are ob-
served for Q9, while for the rest queries all optimization algorithms choose the
same query plan independently of the dataset size.

In the next set of experiments, we start networks of 5, 10, 30, 60, 90 and
120 peers and store the LUBM-10 dataset. We then run the queries using all

Statistics Min size Max size Avg size

histograms (x6) 580 580 580

 predicate 44 448

 object-class 44 288

71.47

61.80

(a) Size of statistics per peer (bytes)

0.0

0.5

1.0

1.5

2.0

2.5

1 21 41 61 81 101

Network size (#peers)

A
vg

 A
b

so
lu

te
 E

rr
o

r

freq_s histogram
freq_o histogram
dp_s histogram
do_s histogram
ds_o histogram
dp_o histogram

(b) Histograms error

Fig. 8. Statistics

optimization techniques. In Fig. 7(b), we show the QRT for Q2 as the network
size increases. We observe that QRT improves significantly as the network size
grows up to 60, while it remains almost the same for bigger network sizes. The
decrease in the QRT for small networks is caused by the fact that the more peers
join the network the less triples are stored in each peer’s database and thus local
processing load is reduced. The same result was observed in other queries where
QRT either improved or remained unaffected as the number of peers increased.

7.4 Statistics

We present measurements concerning the size of the statistics kept by each peer.
We set a space budget of 500 bytes per statistical structure per peer leading
to using histograms of 10 buckets only for values appearing in the subjects and
objects of triples. Each statistical structure for the subjects and objects is kept
in a separate histogram resulting in a total of six histograms per peer. For the
predicates and object classes, we keep the exact distributions of their values.
This is typical of a large DHT network where a peer is responsible for very few
predicate or class values. Figure 8(a) shows the size of the generated statistics
for each peer for the LUBM-50 dataset in a network of 120 peers. Histograms
always occupy the same amount of space, while the exact statistics for predicate
and object-class vary depending on the amount of values the peer is responsible
for. The total statistics kept at each peer result in a total amount of memory of
4K in average which is negligible compared to today’s powerful machines.

In order to show that it is sufficient to maintain local statistics at each peer
and only for the values for which the peer is responsible, we have computed
the average absolute error for each histogram for different network sizes ranging
from 1 to 120 peers for LUBM-5. A network consisting of a single peer resembles
a centralized system where a global histogram is created from all data stored.
For every value vi appearing in the dataset as a component c, we have measured
its real frequency freqc(vi) and the estimated frequency fr̂eqc(vi) taken from
the corresponding histogram of the peer responsible for value vi. The absolute
error for vi equals to eabs(vi) = |freqc(vi)− fr̂eqc(vi)|. If N is the total number
of distinct values of component c in the dataset, the average absolute error
is computed as 1

N

∑N
i=1 e

abs(vi). The same holds for the estimated number of
distinct subjects, predicates and objects. Results for each statistical structure
that is estimated by a histogram are shown in Fig. 8(b). We observe that as
the number of peers increases the error drops significantly. This shows that the
values of each triple component are independent and hence the more peers join
the network (i.e., more histograms created), the better the estimation becomes.

7.5 Discussion
We have also experimented with different datasets using the SP2B benchmark
[19] as well as a real world dataset of the US Congress vote results presented in
[26]. The results were similar to the ones observed using LUBM. For all datasets,
DA consistently chooses a query plan close to the optimal regardless of the
query type or dataset stored and without posing a significant overhead neither
to the total time for answering the query nor to the bandwidth consumed. On
the contrary, the static optimization methods are dependent on the type of
the query and the dataset, which make them unsuitable in various cases (as
shown earlier for query Q9). In addition, we have also tested indexing all possible
combinations of the triples’ components, as proposed in [11]. In this case, we have
used histograms at each peer for combinations of triples’ components as well.
However, we did not observe any difference in the choice of the query plan and
thus, showed results only with the triple indexing algorithm. This results from
the nature of the LUBM queries which mostly involve bound predicates and
object-classes for which we kept an exact distribution in both cases.

8 Related Work
Earlier works that consider SPARQL query processing on top of DHTs such
as [1, 6, 7, 11] lack optimization techniques resulting in handling very small
datasets (only thousands of triples). Another DHT-based system is UniStore
where a triple-based model and a SPARQL-like query language is supported [10].
In UniStore, a cost-based optimizer is implemented which estimates the cost of
physical operators in terms of the number of hops and messages required for each
operator. The evaluation presented in [10] is conducted in PlanetLab and hence
only small datasets are used. The work of [10] is complementary to ours and the
two approaches could actually be combined by an appropriate cost model. Early
works that studied query optimization in a distributed environment, although
not a DHT, are [17, 24]. In [17], the authors present an engine for federated
SPARQL databases and make use of query rewriting and cost-based optimiza-
tion techniques. For the cost-based optimization, they use iterative dynamic
programming but fail to estimate the selectivity of conjunctions of triple pat-
terns and set it to a fixed value instead. Other works in the area of distributed
SPARQL query processing are studied in [3, 5, 15]. However, these papers fo-
cus on distributed computing platforms based on powerful clusters and do not
discuss any optimization techniques.

Finally, a lot of attention has been given to SPARQL query optimization in
centralized environments [12, 13, 23]. In [23], the authors present a selectivity-
based framework for optimizing SPARQL BGP queries. In RDF-3X [12], the
authors propose two kinds of statistics for the selectivity estimation of the joins:
specialized histograms which can handle both triple patterns and joins by lever-
aging the aggregated indexes built, and the computation of frequent join paths in
the RDF graphs. In [13], the authors of RDF-3X go one step further to propose
more accurate selectivity estimations by precomputing exact join cardinalities
for all possible choices of one or two constants in a triple pattern and material-
izing the results in additional indexes. This can be a very expensive operation in

a distributed setting such as a DHT. Finally, a method for the cardinality esti-
mation of SPARQL queries using a probability distribution is presented in [21].

9 Conclusions and Future Work
We studied the problem of distributed SPARQL query optimization on top of
DHTs. We discussed the query optimization techniques we have developed in
our system Atlas, and presented an experimental evaluation. Our current re-
search is focused on the implementation and evaluation of algorithm SBV [11],
which achieves a better load balancing, in the presence of the query optimization
framework that we have developed.

References

1. M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A Subscribable Peer-to-Peer RDF Repos-
itory for Distributed Metadata Management. Journal of Web Semantics, 2004.

2. E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An Efficient SQL-based RDF Querying
Scheme. In VLDB 2005.

3. O. Erling and I. Mikhailov. Towards Web Scale RDF. In SSWS 2008.
4. Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics, 2005.
5. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A Federated Repository for Querying

Graph Structured Data from the Web. In ISWC/ASWC 2007.
6. F. Heine. Scalable P2P based RDF Querying. In InfoScale 2006.
7. Z. Kaoudi, M. Koubarakis, K. Kyzirakos, M. Magiridou, I. Miliaraki, and A. Papadakis-Pesaresi.

Publishing, Discovering and Updating Semantic Grid Resources using DHTs. In CoreGRID
Workshop on Grid Programming Model, Grid and P2P Systems Architecture 2006.

8. Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and A. Papadakis-Pesaresi.
Atlas: Storing, Updating and Querying RDF(S) Data on Top of DHTs. Journal of Web Se-
mantics, System paper, 2010.

9. Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS Reasoning and Query Answering on Top of
DHTs. In ISWC 2008.

10. M. Karnstedt. Query Processing in a DHT-Based Universal Storage - The World as a Peer-to-
Peer Database. PhD thesis 2009.

11. E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple Pattern Queries over
Large Structured Overlay Networks. In ISWC 2006.

12. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. In VLDB 2008.
13. T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF Graphs. In SIGMOD

2009.
14. N. Ntarmos, P. Triantafillou, and G. Weikum. Distributed Hash Sketches: Scalable, Efficient,

and Accurate Cardinality Estimation for Distributed Multisets. ACM TOCS, 2009.
15. A. Owens, A. Seaborne, N. Gibbins, and mc schraefel. Clustered TDB: A Clustered Triple Store

for Jena. Technical Report (Unpublished), 2008.
16. V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved Histograms for Selectivity Esti-

mation of Range Predicates. In ACM SIGMOD 1996.
17. B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In ESWC

2008.
18. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In USENIX

Annual Technical Conference 2004.
19. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Performance

Benchmark. In ICDE 2009.
20. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access Path

Selection in a Relational Database Management System. In SIGMOD, 1979.
21. E. P. Shironoshita, M. T. Ryan, and M. R. Kabuka. Cardinality Estimation for the Optimization

of Queries on Ontologies. SIGMOD Record, 2007.
22. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and Randomized Optimization for the

Join Ordering Problem. VLDB Journal, 1997.
23. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL Basic Graph

Pattern Optimization using Selectivity Estimation. In WWW 2008.
24. H. Stuckenschmidt, R. Vdovjak, J. Broekstra, G. jan Houben, T. Eindhoven, and A. Amersfoort.

Towards Distributed Processing of RDF Path Queries. Int. J. Web Eng. and Tech., 2005.
25. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I and II. Com-

puter Science Press, 1988.
26. M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Mart́ınez, J. Sierra, and A. Polleres. Efficiently Joining

Group Patterns in SPARQL Queries. In ESWC 2010.
27. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic Web Data

Management. In VLDB 2008.

