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Abstract  

Mobile Ad Hoc Networks (MANETs) are susceptible to a variety of attacks that 

threaten their operation and the provided services. Intrusion Detection Systems 

(IDSs) may act as defensive mechanisms, since they monitor network activities in 

order to detect malicious actions performed by intruders, and then initiate the 

appropriate countermeasures. IDS for MANETs have attracted much attention 

recently and thus, there are many publications that propose new IDS solutions or 

improvements to the existing. This paper evaluates and compares the most 

prominent IDS architectures for MANETs. IDS architectures are defined as the 

operational structures of IDSs. For each IDS, the architecture and the related 

functionality are briefly presented and analyzed focusing on both the operational 

strengths and weaknesses. Moreover, methods/techniques that have been proposed 

to improve the performance and the provided security services of those are 

evaluated and their shortcomings or weaknesses are presented. A comparison of the 

studied IDS architectures is carried out using a set of critical evaluation metrics, 

which derive from: (i) the deployment, architectural, and operational characteristics 

of MANETs; (ii) the special requirements of intrusion detection in MANETs; and 

(iii) the carried analysis that reveals the most important strengths and weaknesses of 

the existing IDS architectures. The evaluation metrics of the IDSs are divided into 

two groups: the first one is related to performance and the second to security. 

Finally, based on the carried evaluation and comparison a set of design features and 

principles are presented, which have to be addressed and satisfied in future research 

of designing and implementing IDSs for MANETs.   

Keywords: Intrusion detection system, IDS architectures, mobile ad hoc networks, MANETs 

security, security attacks, security vulnerabilities.   
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1 Introduction  

A mobile ad hoc network (MANET) is a collection of autonomous nodes that form a 

dynamic, purpose-specific, multi-hop radio network in a decentralized fashion. In a MANET, 

the nodes themselves implement the network management in a cooperative fashion and thus, 

all the network members share the responsibility for this. The wireless - mobile nature of 

MANETs in conjunction with the absence of access points, providing access to a centralized 

authority, make them susceptible to a variety of attacks [1]. An effective way to identify when 

an attack occurs in a MANET is the deployment of an Intrusion Detection System (IDS). The 

IDS is a sensoring mechanism that monitors network activity in order to detect malicious 

actions and, ultimately, an intruder. Upon detecting an intruder, the IDS takes an appropriate 

action ranging from a mere user notification to a more comprehensive defensive action 

against the intruder. An IDS can be divided in two main parts: (i) the architecture, which 

exemplifies the operational structure of the IDS; and (ii) the detection engine, which is the 

mechanism used to detect malicious behavior(s).  

The existing IDS architectures for MANETs fall under three basic categories [3]: (a) 

stand-alone, (b) cooperative, and (c) hierarchical. The stand-alone architectures use an 

intrusion detection engine installed at each node utilizing only the node’s local audit data 

[10][12][15]. However, the fact that these solutions are relying only on local audit data to 

resolve malicious behaviors limits them in terms of detection accuracy and the type of attacks 

that they detect [9] (due to the distributed nature of MANETs). On the other hand, the 

cooperative and hierarchical architectures process each host’s audit data locally (i.e., similarly 

to stand-alone), but they also use collaborative techniques to detect more accurately a wider 

set of attacks. Thus, the majority of the most recent IDSs for MANETs is based on them [9]. 

More specifically, the cooperative architectures include an intrusion detection engine 

installed in every node, which monitors local audit data and exchanges audit data and/or 

detection outcomes with neighboring nodes in order to resolve inconclusive (based on single 

node’s audit data) detections. The hierarchical architectures amount to a multilayer 

approach, by dividing the network into clusters. Specific nodes are selected (based on specific 

criteria) to act as cluster-heads and undertake various responsibilities and roles in intrusion 

detection that are usually different from those of the simple cluster members. The latter 

typically run a lightweight local intrusion detection engine that performs detection only on 

local audit data, while the cluster-heads run a more comprehensive engine that acts as a 

second layer of detection based on audit data from all the cluster members.  

The employed intrusion detection engines are also classified into three main 

categories: (i) signature-based engines, which rely on a predefined set of patterns to identify 

attacks; (ii) anomaly-based engines, which rely on particular models of nodes’ behavior and 
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mark nodes that deviate from these models as malicious; and (iii) specification-based engines, 

which rely on a set of constrains (i.e., description of the correct operation of 

programs/protocols) and monitor the execution of programs/protocols with respect to these 

constraints.  
IDS for MANETs have attracted much attention recently and thus, there are many 

publications that propose new IDS solutions or improvements to the existing focusing on both 

IDS architectures and detection engines. On the other hand, little work has been done in 

evaluating and comparing them revealing their advantages as well as their limitations and 

weakness, which constitute open issues that will drive the next research steps in the area of 

MANET security. Towards this direction, Sun et al. [5] have presented a survey of IDSs for 

MANETs and wireless sensor networks considering on the detection engines employed. 

Similarly, Azer et al. [6] briefly discuss the anomaly-based detection engines used in IDSs for 

MANETs. However, both works mainly focus on solutions published before 2004 (except for 

one [21] in the former).   

Brutch and Ko [4] provide a brief analysis of several proposed IDSs for MANETs 

focusing mainly on their architectures. However, the analyzed solutions have been designed 

to protect the routing mechanism of the dynamic source routing protocol (DSR), operating as 

extensions to it, and thus, they do not address the wide area of intrusion detection in 

MANETs. Mishra et al. [2] present a more detailed analysis of IDSs for MANETs following: 

(i) an outline of the security vulnerabilities of MANETs; (ii) some design characteristics of 

IDSs for MANETs; and (iii) some fundamental requirements that an IDS for MANETs 

should meet. The architectures of the analyzed IDSs are elaborated and briefly compared with 

the set of fundamental requirements introduced by the authors. Li and Wei [7] briefly 

overview some IDS architectures for MANETs and compare them in terms of 

implementation-specific issues. Anantvalee and Wu [3] perform a more comprehensive 

analysis of some IDS architectures for MANETs. Finally, Sen et al. [9] present the latest 

survey of IDSs for MANETs, revealing the weaknesses of each one. However, the studied 

IDS solutions in the aforementioned works have been published before 2006. Moreover, the 

considered architectures are hardly evaluated and compared with respect to performance and 

security factors, such as the consumption of processing and communication resources, the fair 

distribution of the workload among the network nodes, the impact of nodes’ mobility on the 

detection accuracy and the rate of false positives, the vulnerabilities of the architectures to 

attacks, etc. 

This paper evaluates and compares the most prominent IDS architectures for MANETs, 

which represent the most recent developments in this area. For each IDS, the architecture and 

the related functionality are briefly presented and analyzed focusing on both the operational 

strengths and weaknesses. Moreover, methods/techniques that have been proposed to improve 
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the performance and the provided security services of those are evaluated and their 

shortcomings or weaknesses are presented. A comparison of the studied IDS architectures is 

carried out using a set of critical evaluation metrics, which derive from: (i) the deployment, 

architectural, and operational characteristics of MANETs; (ii) the special requirements of 

intrusion detection in MANETs; and (iii) the carried analysis that reveals the most important 

strengths and weaknesses of the existing IDS architectures. The evaluation metrics of the 

IDSs are divided into two groups: the first one is related to performance and the second to 

security. Finally, based on the carried evaluation and comparison a set of design features and 

principles are presented, which have to be addressed and satisfied in future research when 

designing and implementing IDSs for MANETs.  

The rest of this article is organized as follows. Sections 2-4 briefly analyze and evaluate 

the stand-alone, cooperative and hierarchical IDS architectures for MANETs, respectively, 

focusing on their advantages and limitations. Section 5 compares the studied IDS 

architectures, using a set of performance and security metrics. Section 6 highlights some 

design features and principles that are derived from the carried analysis, evaluation, and 

comparison. Finally, section 7 contains the conclusions.  

2 Stand-alone IDS architectures 

The stand-alone IDS architectures are based on a self-contained approach for detecting 

malicious actions at each network node. In this section, we briefly present and evaluate the 

most recent stand-alone IDS architectures for MANET (i.e., battery-based, threshold-based, 

and two-stage IDS architecture) focusing on the strengths and weaknesses of each one, which 

are summarized in Table 1, allowing their comparison.  

Jacoby and Davis have proposed a stand-alone architecture for detecting malicious 

actions in MANETs, by monitoring power consumption in every node’s battery [10]. 

Detection is achieved by comparing a node’s power consumption with a set of power 

consumption patterns induced by known attacks, using smart battery technology. In an 

experimental implementation, the proposed IDS detected 99% of the attacks in cases that only 

one type of them occurred. It also detected multiple attacks, but only in cases that the nodes 

were idle and no other activity was present. The main advantage of this architecture is that it 

is more reliable (i.e., since it is based on hardware operation), compared to other IDSs that 

rely on audit data and anomaly-based detection, as these can be more easily manipulated by 

intruders. On the other hand, it detects only attacks that cause power consumption 

irregularities and only in cases that the nodes are idle, something that rarely occurs in real 

systems.  

Nadkarni and Mishra [12] have proposed a stand-alone IDS architecture that uses 

compound detection aiming at reducing the amount of false positive alerts, which typically 
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appear in anomaly detection. It employs adjusting thresholds to determine malicious 

behaviors. During initialization, the intrusion detection engine installed in every node creates 

the normalcy profile of the network traffic. Based on this, it estimates threshold values, 

beyond of which there is an indication of possible attacks. Every time a symptom of a known 

attack is detected, a counter called mis-incident is incremented and the node responsible for 

the symptom is marked as suspicious. If the incident repeats and the mis-incident counter 

exceeds the threshold value for the specific attack, the node from where the incident 

originates is labeled as malicious. After a preset period of time in which there are no 

malicious behaviors detected, the threshold is raised; otherwise is lowered.  

The most important strength of this architecture is that it is adaptable to network 

changes, because of the use of variable thresholds. For example, periodic symptoms of 

suspicious behaviors, caused by network topology changes, will remain under the detection 

thresholds; while malicious behaviors that are constant will exceed the thresholds indicating 

the occurrence of attacks. On the other hand, the use of adjusting thresholds introduces new 

security weaknesses, since malicious nodes may exploit this mechanism. More specifically, a 

malicious node may increase the threshold values by performing legitimately for a certain 

period of time. Then, if the threshold values are high enough, it may perform an attack 

considering not exceeding the threshold values and raising alarms. Nodes that might not 

cooperate in the routing process or generate invalid routing updates due to outdated routing 

information (i.e., caused by high mobility) might be falsely characterized as malicious. 

Moreover, coordinated attacks (i.e., such as byzantine attacks) cannot be detected, since 

nodes do not cooperate.  

Finally, Adrian Lauf et al. [15] have proposed a two-stage, stand-alone IDS architecture 

that aims at operating in resource-constrained environments, such as MANETs. It installs two 

different detection engines in every node, where the first one (referred to as the maxima 

detection system (MDS)) is used to rapidly identify a potential threat and calibrate the second 

engine (referred to as the cross-correlative detection system (CCDS)). MDS is an anomaly 

detection engine that identifies statistical oddities in the observed interactions of the 

application layer. This is achieved by maintaining the history of the application layer 

interactions and comparing them with a normalcy profile created offline. If a possible attack 

is identified, MDS activates CCDS that calibrates a threshold value considering the attack. 

Then, calculates average values of the application behavior of every node and compares them 

with the threshold. Behaviors that exceed the threshold are marked as malicious. By 

employing two detection engines at each node, the proposed IDS increases detection 

accuracy, compared to other single engine IDSs because the one engines supplements the 

other. However, CCDS is prone to false positives and negatives, since it calibrates the 
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threshold value only once during startup. Thus, dynamic changes of the network, induced by 

nodes mobility, are note accommodated by CCDS.   
Table 1. Strengths and weaknesses of the stand-alone IDS architectures 

IDS architecture  Strengths Weaknesses 

Battery‐based IDS 
Reliability, since it is based on hardware 

operations 
It detects only attacks that cause power 

irregularities 

Threshold‐based IDS 
Adaptability to network changes using 

adjusting thresholds.  

Introduces new security weaknesses 

It is prone to false positives 

Cannot detect coordinated attacks 

Two‐stage IDS 
Increased detection accuracy by employing 

two detection engines at each node.  
It is prone to false positives and negatives 

 

3 Cooperative IDS architectures 

In the cooperative IDS architectures an intrusion detection engine is installed in every node 

monitoring local audit data and providing intrusion detection. To resolve inconclusive 

intrusion detections and detect more accurately advanced types of attacks, detection engines 

may cooperate with engines of neighboring nodes through the exchange of audit data or 

detection outcomes.  

3.1 A cooperative IDS architecture based on social network analysis  
Wang et al. [14] have proposed a cooperative IDS architecture, which relies on a detection 

engine that utilizes social network analysis methods. In this architecture, each node deploys 

an intrusion detection engine that performs detections using audit data received from its “ego” 

network. An “ego” network consists of a hosting node (“ego”) and the nodes (“alters”) that 

are directly connected to it. The deployed engines operate similarly to anomaly detection, but 

they utilize social relations as metrics of interest, which require less computational overhead 

compared to standard anomaly detection engines [14]. Moreover, a training phase is also 

required to create normal profiles (i.e., as in anomaly detection), and according to the authors, 

the detection engines monitor the Medium Access Control (MAC) and network layers.  

 The proposed IDS is composed of three modules: (a) the data pre-processing module 

that collects and pre-processes audit data; (b) the social analysis module that performs 

intrusion detection; and (c) the response module that integrates local and global (i.e., gathered 

from neighboring nodes) intrusion alerts. During the IDS operation, the data pre-processing 

module collects audit data from its neighboring nodes in intervals of five seconds. The social 

analysis module, then, processes the collected data in order to realize social relations between 

the “ego” network nodes, which represent the behavior of these nodes at a certain time. 
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Subsequently, the realized relations are compared to the normal profile of expected behaviors, 

and any variation from these constitutes an intrusion. If an intrusion is detected, the response 

module notifies the neighboring nodes.  

 The main strength of this architecture is that the employed detection engines incur less 

computation complexity, compared to conventional anomaly detection engines [14]. On the 

other hand, it presents some weaknesses outlined bellow:  

• The rate of false positives may increase and the detection accuracy may drop in cases 

of high nodes’ mobility. In a high mobility scenario, a node would only have a 

limited period of time to create social relations with neighboring nodes, before it 

changes its location. As a result, there would not be enough information for the social 

analysis module to distinguish between normal and malicious behaviors.  

• Audit data exchange may increase the communication load among nodes, causing 

degradation to the network performance. The authors have arbitrarily selected a five-

second interval for audit data exchange within each “ego” network, without any 

evaluation of the impact of this parameter to the network performance.  

• New security risks may arise from the exchange of audit data, since a malicious node 

may either transmit false audit data or avoid transmitting any of them, in order to 

hinder or mislead the detection process.  

3.2 A multi-layer cooperative detection architecture 

Bose et al. [16] have proposed a cooperative IDS architecture that uses three parallel anomaly 

detection engines, reffered as MAC layer detection engine, routing detection engine, and 

application layer detection engine, installed in every node. The use of multi-layer detection 

aims at increasing detection accuracy, since attacks that target upper-layer protocols can be 

seen as legitimate events at lower-layers, and vice versa. The MAC layer detection engine 

monitors both access control and addressing at the data link layer. The routing detection 

engine monitors the network layer and keeps track of the packet delivery and routing 

information. Finally, the application layer engine monitors the application layer. Each engine 

collects the appropriate audit data, processes them and looks for malicious behaviors within 

them. In every node, a local integration module combines the results from the three different 

detection engines, while a global integration module combines the results received from the 

neighboring nodes. A set of simulations has been performed (using the GloMoSim [17]) to 

evaluate the effectiveness of the proposed architecture.  

The multi-layer IDS presents the following strengths:  

• It increases the detection accuracy, compared to other single engine detection 

solutions, as the multiple detection engines supplement each other. In the simulation 

results, the detection accuracy increased up to 20% through integrating the results of 
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all three engines, compared to the results that each detection engine yielded by itself 

(see Fig. 1) [16].  

• Although it uses cooperation between the neighboring nodes, it induces relatively low 

communication overhead, since only the detection results and not the voluminous 

audit data are exchanged.  

The considered IDS architecture also presents some weaknesses:  

• Its operation increases the processing overhead in each node, compared to other 

single engine solutions, since the IDS deploys three detection engines instead of one. 

So far, the authors have not studied or evaluated the processing overhead of the 

proposed architecture.  

• The ratio of false positives and the detection accuracy of the IDS are negatively 

affected by high packet loss and/or high nodes’ mobility. This is because the routing 

detection engine relies on packet delivery and routing information to detect attacks. 

Except for the local integration module, the inaccurate detection results also influence 

the global integration modules of the neighboring nodes.  

• The functionality of cooperation creates new security risks, since a malicious node 

may either transmit false detection results (i.e., “blackmail” attack) or modify 

detection results originating from another cooperating node (i.e., “man in the middle 

attack”) in order to hinder or mislead the detection process in a node or set of nodes.  

 
Fig. 1: Detection accuracy of the multi-layer cooperative detection architecture.  

3.3 Α Friend-assisted intrusion detection architecture for MANETs  

Razak et al. [18] have proposed a cooperative two-tier (i.e., one for local and one for global 

detection) IDS architecture for MANETs, where each tier includes two detection engines, 

respectively. The first-tier uses a local-level detection mechanism that collects local audit data 

and processes them using a signature-based detection engine. If it detects a suspicious activity 

but it cannot determine accurately a specific attack, a second engine is activated (also located 
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in the first-tier) that performs anomaly detection. If both engines at the first-tier cannot 

conclude whether the suspicious activity is malicious, the second-tier of the architecture is 

triggered. The second-tier uses a global detection mechanism that collects audit data from the 

neighboring nodes and first performs a signature-based detection and then an anomaly-based 

detection, similarly to the first-tier. The second-tier also maintains a list of friends (each node 

builds and maintains a list of trustful nodes), which is used to ensure that the nodes sharing 

their audit data with it are trustful.  

The strengths of the friend-assisted IDS architecture are: 

• It provides high detection accuracy since each node contains a two-tier detection 

module and each tier includes two different detection engines (i.e., one that uses 

signature-based detection and another that uses anomaly-based detection) that act 

complementary.  

• It is not susceptible to blackmail attacks since only trustful nodes can send audit data 

to the second-tier of a node (i.e., global detection). Therefore, a malicious node 

cannot provide false audit data in order to mislead the IDS or falsely characterize 

legitimate nodes as malicious. 

The weaknesses of this architecture are: 

• The use of multiple detections (i.e., two tiers each of which contains two different 

detection engines) and the employment of trust management add a considerable 

complexity and processing load.  

• The rate of false positives and the detection accuracy of the IDS are negatively 

affected by the lack of trust relationships among nodes and by nodes’ mobility. In a 

network with limited trust relationships, the IDS might not find enough trustful nodes 

to collect a sufficient amount of audit data to determine whether an event occurring is 

legitimate or not. This also can be the result of trusted nodes that move continually.  

• It imposes extra communication overhead, mainly for three reasons: (i) the second-

tier detection requires the exchange of audit data; (ii) nodes have to exchange trust 

information in order to build lists of friends; and (iii) the use of signature-based 

detection requires the existence of a signature distribution authority that periodically 

transmits new signatures to each node.  

3.4 Fork: A two pronged intrusion detection scheme for MANETs  
Ramachandran et al. have proposed a cooperative IDS architecture [19], which uses 

lightweight modules (agents) able to perform different detection tasks and aim at reducing 

battery consumption. Each network node contains all the modules required to perform the 

detection tasks and is assigned a reputation value, which increases when the node successfully 

assists with intrusion detection tasks, and decreases if the node’s performance during 
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intrusion detection is unsatisfactory. Nevertheless, the authors do not clarify under what 

conditions the node’s performance is deemed unsatisfactory. The employed intrusion 

detection engine relies on anomaly detection and it is installed in every node. When the 

engine of a node detects a suspicious behavior, it initiates an auction scheme to select a set of 

nodes that are most suitable to assist in performing intrusion detection. Nodes with the 

highest amount of battery resources and reputation value are selected and specific tasks are 

assigned to them. These tasks include: (i) the execution of host or network monitoring, (ii) the 

decision making given a set of audit data, and (iii) the activation of defensive actions in case 

that malicious behaviors have been detected. The authors neither elaborate on how nodes’ 

cooperation is achieved nor evaluate the communication overhead imposed by the employed 

cooperation mechanism. Moreover, they did not consider node’s mobility in the performed 

simulations, thus the impact of mobility on the detection accuracy, the rate of false positives 

and the communication overhead cannot be determined.  

The main advantage of the Fork architecture is the distribution of detection tasks among a 

set of nodes, which reduces the processing load for the initiating node and conserves its 

battery power. The selection of assisting nodes also considers - among other criteria - the 

available battery resources thus, nodes with lower battery power are not burdened with 

intrusion detection responsibilities.  

On the other hand, the weaknesses of the architecture are:  

• High nodes’ mobility may increase the communication overhead imposed by the IDS 

architecture. A node assigned with a detection task may move away from the 

initiating node thus, it has to route the results regarding its task through other nodes. 

However, this extra communication overhead has not been quantified through a 

simulation or analytic study.   

• It is vulnerable to man in the middle attacks, since a malicious node, exploiting the 

task allocation mechanism, may capture and modify intrusion detection task 

messages. A malicious node might also cause blackmail attacks, by transmitting false 

detection results to the node that has initiated detection tasks. Finally, a malicious 

node may cause sleep deprivation attacks, by initiating fake tasks to other nodes in 

order to consume their resources.  

3.5 Routing anomaly detection architecture 

Sun et al. [20] have proposed a cooperative IDS architecture that focuses on routing 

disruption attacks. Since all the nodes of a MANET participate in routing, each one maintains 

a table that contains routing information, such as routing paths to reach other nodes and the 

required number of hops. Extensive changes in this table may be a symptom of malicious 

behaviors that attempt to disrupt the routing process. The proposed IDS uses the following 
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two routing features to discover malicious behaviors: (i) the percentage of changes in the 

route entries (PCR), and (ii) the percentage of changes in the number of hops (PCH). PCR 

represents the added/deleted route entries during a certain period of time, while PCH indicates 

the change in the sum of hops of all route entries over the period of time.  

In this IDS, one or several intrusion detection engines that rely on anomaly detection 

are installed in every node. These engines collect and process routing information to detect 

possible intrusions, using a modified Markov Chain anomaly detection method [32]. In case 

that more than one detection engines are deployed in a node, alerts and reports from each 

local engine are combined. Moreover, data reports and alerts from neighboring nodes are also 

correlated in order to reach more accurate decisions. Based on the performed simulations, the 

authors state that this IDS detects more than 90% of the routing disruption attacks, in 

scenarios with relative low nodes’ mobility (i.e., nodes speed ranges from 3m/s to 5m/s).  

The main advantage of this architecture is related to the increased detection accuracy 

that it presents, because of the deployment of multiple detection engines at each node (i.e., 

compared to other single engine solutions). This fact also makes this IDS fault tolerant in 

cases that a detection engine fails or becomes a target of an attack.  

On the other hand, it presents some drawbacks:  

• It cannot be used to detect all the types of possible attacks, since it monitors only for 

routing attacks.  

• It imposes extra communication overhead, since detection engines hosted at 

neighboring nodes have to constantly exchange detection reports and alerts in order to 

reach more accurate decisions. 

• The detection accuracy and the ratio of false positives are negatively affected by 

nodes’ mobility, as illustrated (Routing Anomaly Detection curve) in Fig. 2 and Fig. 

3, respectively. This occurs for two reasons: (i) in a high mobility scenario, a node 

would only notice a few falsified routing changes before changing its location; and 

(ii) in such scenarios, the changes in routing tables are rapid and inconsistent. Thus, 

there is not enough information for the detector to distinguish between normal 

behaviors provoked by nodes’ mobility and abnormal behaviors provoked by 

malicious nodes.  

• It is vulnerable to blackmail attacks, since a malicious node might transmit false 

detection reports or alerts in order to hinder the intrusion detection process and 

falsely accuse a legitimate node(s) as malicious.  

Later on, Sun et al. [21] improved the aforementioned routing anomaly IDS architecture, by 

proposing the incorporation of a new intrusion detection engine with adjustable thresholds. 

This addresses some of the most important drawbacks of this architecture, such as the 
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negative impacts of nodes’ mobility on the detection accuracy and the ratio of false positives. 

The technique of adjustable thresholds ensures that the periodical changes in routing 

information, caused by nodes’ mobility, will remain under the detection threshold; while 

malicious behaviors that are persistent will exceed the thresholds indicating the occurrence of 

attacks. The authors have performed a performance analysis (i.e., based on simulations) 

comparing the enhanced with the initial routing anomaly detection architecture. The enhanced 

architecture preserves the advantages of the initial, and as observed in Fig. 2 and Fig. 3 

(Adaptive Routing Anomaly Detection curves), it reduces the negative impact of high nodes’ 

mobility on the detection ratio and the rate of false positives. On the other hand, the technique 

of adjustable thresholds creates new security risks. More specifically, in case that a malicious 

node notices high mobility, it might act maliciously without being detected.  

Fig. 2: The impact of nodes’ mobility on 
detection accuracy 

Fig. 3: The impact of nodes’ mobility on the 
ratio of false positives 

3.6 LIDF: Layered intrusion detection framework for ad-hoc networks 

Komninos and Douligeris have proposed a cooperative IDS architecture [22], which relies on 

multilayered detection to capture malicious behaviors. In this architecture, every host 

maintains an intrusion detection unit, which is divided into three modules: (i) the collection, 

(ii) the detection, and (iii) the alert module. The collection module is responsible for 

collecting audit data from both the data link and the network layer. By monitoring these two 

layers the IDS has a close view of the networking activities (i.e., nodes’ connectivity and 

routing). The detection module performs anomaly-based detection on the collected audit data 

in two steps, in order to conserve the host’s resources and battery. First, it processes only the 

most recent local audit data. In case that these data are not sufficient to reach an accurate 

decision regarding a suspicious behavior, more audit data are requested from neighboring 

nodes via secure communication channels. However, the authors have not specified when do 

nodes decide to request neighbors’ cooperation, and how this cooperation is achieved (i.e., 

exchange of audit data or detection results). As a result of these, the communication overhead 

imposed by nodes’ cooperation cannot be determined. Finally, in case that a malicious 

behavior is detected, the alert module has the responsibility to notify the neighboring nodes.  
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The strengths of this IDS architecture are:  

• Using multiple layers of detection, it is able to detect attacks at both the network and 

data link layer.  

• The use of secure communication channels for nodes’ cooperation defeats man in the 

middle attacks.  

On the other hand, the weaknesses of this architecture are:  

• It focuses only on attacks that target the network and data link layer. Attacks at the 

transport layer - such as a SYN flooding, where a malicious node sends a large 

number of SYN packets, or a session hijacking attack, where a malicious node takes 

control over a session between two nodes - will go undetected.  

• Nodes’ mobility reduces the detection accuracy of the IDS and increases the ratio of 

false positives, since it hinders cooperation as the nodes move away from each other.  

• It is vulnerable to blackmail attacks, since a malicious node that cooperates might 

transmit modified audit data in order to hinder the intrusion detection process, hide 

malicious activities or falsely accuse legitimate nodes as malicious.  

3.7 Strengths and weaknesses of the cooperative IDS architectures  
This section summarizes the basic strengths and weaknesses of the studied cooperative IDS 

architectures (see Table 2) that derive from the curried analysis and evaluation, allowing their 

comparison. Regarding the strengths of the analyzed architectures, we can infer that: (i) the 

majority of them employ multiple detection engines in order to provide increased detection 

accuracy and detect a wide set of possible attacks; (ii) some of them attempt to minimize the 

imposed processing and communication overheads through task distribution or the exchange 

of detection results, instead of voluminous audit data among neighboring nodes; and (iii) a 

few of them try to defeat certain attacks by employing trust or secure communication 

channels. On the other hand, in regard to their weaknesses, we can deduce that: (i) in the 

entire set of the studied architectures the ratio of false positives and detection accuracy are 

negatively affected by high nodes’ mobility; (ii) almost all of them impose extra processing 

and communication overhead (especially in cases that the underlying network presents high 

nodes’ mobility); and (iii) the majority of them are vulnerable to attacks (i.e., man in the 

middle, blackmail, etc.).   
Table 2. Strengths and weaknesses of the cooperative IDS architectures 

IDS architecture  Strengths Weaknesses

Cooperative IDS 
architecture based 
on social network 

analysis 

The employed social‐based detection 
engine incurs less computational 
complexity than the conventional 

anomaly‐based engines.  

The ratio of false positives and detection accuracy are 
negatively affected by high nodes’ mobility. 

Audit data exchange increases the communication load 
among nodes 
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Audit data exchange creates new security risks 

Multi‐layer 
cooperative IDS 
architecture 

The multiple detection engines 
employed provide increased 

detection accuracy.  

The employment of multiple engines at each node 
increases the processing overhead.  

The ratio of false positives and detection accuracy are 
negatively affected by high packet loss and/or high 

nodes’ mobility.  

The exchange of detection results 
among the neighboring nodes 

achieves nodes’ cooperation with the 
minimum communication overhead.  

It is vulnerable to blackmail and man in the middle 
attacks 

Friend‐assisted IDS 
architecture 

The multiple detection engines 
employed provide increased 

detection accuracy. 

The employment of multiple engines and trust 
management at each node increase both the processing 

and communication overhead  

It defeats blackmail attacks by 
employing trust.  

The ratio of false positives and detection accuracy are 
negatively affected by limited trust relationships 
between nodes and/or high nodes’ mobility  

FORK 
It reduces the processing load and 
conserves the battery power of 
nodes through task distribution.  

The communication overhead is increased under high 
nodes’ mobility 

It is vulnerable to blackmail, man in the middle, and 
sleep deprivation attacks 

Routing anomaly 
detection 

architecture 

The multiple detection engines 
employed provide increased 
detection accuracy and a fault 

tolerant solution  

In the initially proposed architecture, the ratio of false 
positives and detection accuracy are negatively affected 

by high nodes’ mobility 

It detects only routing attacks  

It imposes extra communication overhead 

It is vulnerable to blackmail attacks 

LIDF 

It is able to detect attacks at multiple 
layers (i.e. network and data link 

layers) 

It does not detect attacks at the transport layer (i.e. SYN 
flooding, session hijacking etc.).  

The ratio of false positives and detection accuracy are 
negatively affected by high nodes’ mobility 

It defeats man‐in‐the‐middle attacks 
using secure communication 

channels 
It is vulnerable to blackmail attacks 

4 Hierarchical IDS architectures 

In the hierarchical IDS architectures the network nodes are divided into cluster-heads and 

cluster members. The latter typically run a lightweight local intrusion detection engine, while 

the former run a comprehensive engine that processes raw or pre-processed audit data from 

all the cluster members.  

4.1 A cluster-based intrusion detection architecture with adaptive selection event 
triggering 
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The hierarchical IDS architecture, proposed by Ma and Fang [31], follows a modular 

approach based on clusters. The goal is to provide a clustered structure where cluster-heads 

are always hosted by nodes with the highest battery power. During network initialization, 

each node reports its battery power to its neighbors. Then, the node with the highest available 

battery power is elected as cluster-head. A cluster-head re-election process is triggered as 

soon as one the following event occurs: (i) a new node joins the network, (ii) the elected 

cluster-head leaves the network, or (iii) the battery power of the cluster-head is lower than a 

predefined threshold. When a new node joins the network, it should first notify all of its 

neighboring nodes. Likewise, if a cluster-head leaves the network, it broadcasts a packet to 

notify its cluster-member nodes in order to initiate the cluster-head re-election procedure.  

In this IDS architecture, each network node contains four different modules, described 

bellow:  

a. The network detection module that provides network packet monitoring within a cluster. 

It is activated only when the hosting node is elected as cluster-head.  

b. The local detection module that monitors the hosting node and generates local alerts if 

malicious activities are detected. This module is always active at every node.  

c. The resource management module that monitors the energy resources of a node acting as 

cluster-head. When the battery power is lower than a predefined threshold, the module 

first notifies the monitoring state manage module, and then initiates the cluster-head re-

election procedure.  

d. The monitoring state manage module that manages whether the network detection module 

is active (i.e., the hosting node is elected as cluster-head).  

The proposed architecture presents a number of strengths including:  

• The nodes with the highest battery power are elected to serve as cluster-heads.  

• It supports two layers of detection (i.e., local and network) providing increased 

detection accuracy. 

• The cluster-head monitors the network packets exchanged thus, there is no extra 

communication overhead between the cluster-head and the cluster members.  

On the other hand, it also presents some weaknesses:  

• Nodes elected as cluster-heads are unfairly overloaded, since they are responsible for 

running both local and network detection modules.  

• High nodes’ mobility may reduce the detection accuracy of the architecture and 

increase the ratio of false positives, since a number of nodes may move out of the 

range of a cluster-head. This limits the information that the network detection module 

may use to perform detection. 
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• The creation and maintenance of clusters and the election of cluster-heads add extra 

processing and communication overhead.  

• Having a few nodes responsible for intrusion detection may create points of failure, at 

least locally in a cluster. If a cluster-head is attacked, crashes, or leaves the cluster or 

the network without initiating the re-election procedure, only the local detection 

modules will protect the nodes.  

• It is vulnerable to man in the middle and blackmail attacks, since the communication 

channels between the network nodes are not protected. Thus, a malicious node may 

modify the transmitted messages in order to mislead the cluster-head.  

• A malicious node may exploit the election procedure in order to be elected as cluster-

head (i.e., by reporting false values of battery power). Similarly, a selfish node may 

avoid becoming a cluster-head.  

4.2 A hierarchical IDS architecture that uses a game theoretic detection 
mechanism 

Otrok et al. have proposed a hierarchical approach [29] that attempts to balance the 

consumption of resources (which results from intrusion detection tasks) among the nodes of a 

cluster. It encourages network nodes to participate in the election of cluster-heads and tries to 

prevent elected cluster-heads from misbehaving. In the proposed architecture, nodes can 

operate as: (i) cluster-members, which have no intrusion detection responsibilities; (ii) 

cluster-heads, which are responsible for intrusion detection within a cluster; or (iii) checkers, 

which are cluster-members selected randomly to monitor the cluster-head for selfish or 

malicious behavior.  

During initialization, the network nodes report the power of their batteries to their 

neighboring nodes. Thus, every node creates a list composed of its neighbors’ energy power. 

Based on this list, each node votes the node with the highest energy power to be elected as 

cluster-head. Then, the elected cluster-head deploys a detection engine that is based on a zero-

sum, non-cooperative game, where the cluster-head and a possible intruder are players. The 

cluster-head monitors only the nodes that participated in the election process. Depending on 

the battery power of the elected cluster-head, the election process is repeated (after a time-

period elapses) and a new cluster-head is elected. The randomly selected checkers partially 

monitor the cluster-head for selfish or malicious behavior. If a checker has some indications 

of a cluster-head misbehavior, it cooperates with other checkers to conclude to a decision.  

Fig. 4 shows the energy levels of twenty (20) nodes that participate in a carried 

simulation of the proposed architecture, at three distinct time moments (i.e., 0 sec, after 1500 

sec, and after 3000 sec) [29]. At the beginning of the simulation (0 sec), eight (8) nodes have 

energy power between 100% – 80% and twelve (12) nodes between 80% and 60%. After 
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1500 seconds, three (3) of them maintain energy power between 100% – 80%, four (4) 

between 80% and 60%, seven (7) between 60% and 40%, three (3) between 40% and 20%, 

and three (3) bellow 20% (but none runs out of battery). After 3000 seconds, two (2) nodes 

preserve energy power between 100% and 80%, two (2) of them have energy power between 

80% and 60%, none (0) between 60% and 40%, two (2) between 40% and 20%, seven (7) 

between 20% and 0% and seven (7) have run out of battery. Therefore, it can be deduced that 

this architecture imposes unfair power consumption among the network nodes. Moreover, 

since the authors have not taken into account the nodes’ mobility in the carried simulations, 

we cannot determine its impact on the detection accuracy and the rate of false positives of the 

architecture.  

The operational strengths of this architecture are:  

• The nodes with the highest battery power are elected to serve as cluster-heads.  

• Misbehaving cluster-heads may be detected from the randomly selected checkers that 

monitor them.  

The main weaknesses of the architecture are:  

• Cluster-heads/checker nodes are unfairly overloaded with intrusion detection 

responsibilities.  

• It creates extra processing and communication overhead due to: (i) the formation and 

maintenance of clusters; and (ii) the operation of checker nodes.  

• It is vulnerable to man in the middle and blackmail attacks, since the communication 

channels between the network nodes are not protected. A malicious node may capture 

and re-transmit modified messages in order to mislead the cluster-head.  

• A cluster-head poses a single point of failure in each cluster. An attack or 

malfunction of the cluster-head hinders intrusion detection at the respective cluster.  

• Selfish nodes may exploit the employed election process by reporting false battery 

power values in order to participate in the process, but avoid being cluster-heads.  

• If a malicious node is selected as a checker, it may falsely accuse a cluster-head for 

misbehaving.  
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Fig. 4: Energy levels of a set of nodes that participate in a carried simulation of the 

hierarchical IDS architecture that uses a game theoretic detection mechanism. 

4.3 A clustered architecture that uses collective decision for intrusion detection 

Marchang and Datta [27] have proposed two intrusion detection architectures that rely on a 

voting scheme to perform intrusion detection, instead of employing an anomaly or signature-

based intrusion detection engine. The difference between the two proposed architectures is 

that the first, called algorithm for detection in a clique (ADCLI), divides the network into 

cliques, while the second, called algorithm for detection in a cluster (ADCLU), divides the 

network into clusters. The concept of a clique is similar to that of a cluster with the difference 

that each member of a clique is a neighbor with all the others members. In each cluster or 

clique, where intrusion takes place independently, a monitoring node is elected using various 

schemes and it is rotated periodically. Upon receiving any suspicious or modified message 

from a member of its clique/cluster, the monitoring node asks the other clique/cluster 

members to initiate the intrusion detection process. During this process, (see Fig. 5) the 

monitoring node (i.e., node 1) sends a message to all the other clique/cluster members (node 

0, 2, 3), which forward this message to their neighboring clique/cluster members. If any of the 

clique/cluster member receives a modified message (or no message at all), it marks the 

corresponding node that transmitted the modified message (or did not transmit anything) as 

suspicious. In Fig. 5, “R” denotes the correct message created by the monitoring node, while 

“W” denotes a modified or tampered message that is transmitted by a malicious node (i.e., 

node 0). Finally, there is a voting stage where every clique/cluster member notifies the 

monitoring node which nodes it believes that are suspicious. The monitoring node then 

decides which nodes are malicious, based on the votes received from the clique/cluster 

members and a threshold value. It is worth noting that the authors have assumed that a 

monitoring node can never be malicious and it is changed periodically in order to prevent 

unfair use of its resources and battery depletion.  
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Fig. 5: Clustered IDS architecture using nodes’ voting  

The main advantage of these architectures is their low processing and communication 

overhead. This is because both of them avoid using bandwidth or computation intensive 

operations, such as sharing audit data or deploying anomaly detection algorithms. The only 

traffic exchanged between the clique/cluster members are the monitoring and voting 

messages of the detection process. On the other hand, both architectures present some 

weaknesses, which are analyzed bellow:  

• In the performed simulations, the ratio of false positives increased substantially when 

packet loss reached or exceeded 9% for the ADCLI and 12% for the ADCLU, 

respectively. Therefore, in an environment that is characterized by high packet loss 

(e.g., due to high nodes’ mobility or the presence of selfish nodes that drop packets), 

both architectures are ineffective.  

• The monitoring node poses a single point of failure in the respective clique/cluster. In 

case of an attack against the monitoring node or node’s failure, the intrusion detection 

process is disabled.  

• Any type of attack that does not modify or drop packets (such as man in the middle, 

replay, flooding, session hijacking, etc) cannot be detected by these architectures.  

• Malicious nodes may exploit the detection scheme by voting legitimate nodes as 

malicious.  

4.4 An optimal hierarchical intrusion detection architecture 

Manousakis et al. [33] have proposed a hierarchical IDS architecture that uses a dynamic tree-

based structure in which detection data are aggregated upwards, from leaf nodes to 

authoritative nodes at the root of the hierarchy (i.e., upper layer nodes), and the latter dispatch 

directives down to the former (i.e., lower-level nodes). The objectives of this architecture are: 

(i) to form a tree-based structure that is robust to network changes and enables the rapid 

aggregation of detection data; and (ii) to detect attacks at a level of the hierarchy where 

enough aggregated detection data are supplied to reach an accurate decision. The tree-based 

structure is established and maintained using two algorithms: the initial solution generation 

and the state transition mechanism. The first creates the initial tree-based structure following 
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two steps. In the first step, a network node is randomly selected to serve as a cluster-head and 

its neighbors are assigned as cluster members to the created cluster. The selected cluster-head 

represents the highest level of the tree-based hierarchy. In the second step, a cluster-member 

of the previously formed cluster(s) is selected as cluster-head and its neighbors that have not 

been previously assigned to another cluster are assigned to it as cluster-members. The second 

step is repeated until all the network nodes are members of the hierarchical structure.  

The state transition mechanism reforms the created tree-based hierarchy, by doing 

some permutations, in order to be robust to network changes and enable the rapid aggregation 

of detection data. More specifically, it reassigns some of the branches of the tree structure 

(i.e., relationships between a cluster-head and cluster members) aiming at two goals: (i) the 

reformed tree should have the shorter possible height; and (ii) it is estimated that the reformed 

structure will last longer than any other, considering the nodes’ location in the network 

topology, the nodes’ speed, and the range of nodes’ transmission. Intrusion detection occurs 

at the lowest possible level of the hierarchy, at which there are enough aggregated data that 

allow for an accurate decision. If the responsible cluster-head in a cluster is not capable of 

detecting an attack accurately, it forwards all the relative detection data to a higher-level 

cluster-head, which in turn attempts to accurately detect the attack.  

The proposed IDS architecture presents the following strengths:  

• It is more robust under high nodes’ mobility, since clusters are selected with the 

objective of “lasting longer”.  

• It provides increased detection accuracy since it supports multiple levels of detection 

(i.e., compared to other single level detection architectures). The collected data are 

forwarded upwards until they reach a certain level where intrusion decision can be 

achieved.  

This architecture also presents some weaknesses:  

• Lower level cluster-heads are unfairly overloaded, since they constantly perform 

detections, while higher-level cluster-heads perform detections only in cases that a 

malicious behavior cannot be resolved at a lower level.  

• It adds extra processing and communication overhead in order to create and maintain 

the hierarchical structure. Moreover, during permutations (i.e., state transition 

mechanism) the several calculations required are performed at each iteration.  

• It is vulnerable to man in the middle and blackmail attacks since the communication 

channels between the network nodes are not protected. A malicious node may capture 

and re-transmit modified messages in order to mislead the cluster-head.  

• If a cluster-head is compromised, it may provide false administrative directives to the 

lower-level nodes (i.e., false alarms) and falsely characterize legitimate nodes as 



 21

malicious, imposing damage to the network. If the randomly elected node at the 

highest level of the hierarchy is malicious, it can hinder intrusion detection 

throughout the entire network.  

• A malicious node or set of nodes may exploit the tree optimization procedure in order 

to elect a malicious node as cluster-head (i.e., by reporting false parameters to the 

state transmission mechanism). Similarly, a selfish node may avoid becoming a 

cluster-head.  

4.5 Clustered anomaly detection architecture 

H. Deng et al. propose a clustered IDS architecture [24] in which only the cluster-heads carry 

out intrusion detection. It focuses on detecting attacks that target the routing infrastructure of 

a network and forms clusters using the “Distributed Efficient Clustering Approach” (DECA) 

protocol. In this protocol, each node votes as cluster-head its neighboring node that has the 

highest number of connections and residual energy. The nodes with the most votes become 

cluster-heads. Cluster-heads are re-elected after a predefined period of time. Each cluster-

head employs an anomaly detection engine that monitors: (i) the propagation of protocol 

specific routing packets (i.e., hello, error, request, reply, etc.), (ii) the changes in routing 

tables, and (iii) the transmission of data packets. These features are monitored either 

randomly by selecting a cluster member that transmits its own set of features to the cluster 

head, or actively by configuring the cluster head to listen to the traffic generated in the 

cluster.  

The operational strengths of the clustered anomaly detection architecture can be 

summarized bellow:  

• Processing workload is fairly distributed among the nodes as the cluster-heads rotate 

after a certain period of time.  

• Considering nodes’ connectivity in cluster-heads election ensures that the elected 

cluster-heads monitor large portions of network activities, facilitating IDS to reach 

more accurate decisions.  

The main weaknesses of this IDS architecture are:  

• The employed detection engine is only capable of detecting routing attacks.  

• The basic weaknesses that appear in previously analyzed hierarchical architectures 

are also present: (i) cluster-heads may become points of failure; (ii) malicious or 

selfish nodes that do not cooperate may hinder or mislead intrusion detection; (iii) 

malicious nodes may falsely accuse other legitimate nodes as malicious; (iv) 

malicious nodes may exploit the scheme of electing cluster-heads; and (v) the 

employed election schemes do not take into account the processing capabilities of 

nodes.  
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4.6 Strengths and weaknesses of the hierarchical IDS architectures 

This section summarizes the basic strengths and weaknesses of the studied hierarchical IDS 

architectures (see Table 3) that derive from the carried analysis and evaluation, allowing their 

comparison. In regard to their strengths, we can deduce that: (i) the majority of them attempts 

to increase the detection accuracy (either by employing multiple layers of detection, or by 

employing one cluster-head to monitor large portions of a network, or by monitoring the 

elected cluster-heads); (ii) some of them focus on the fair distribution of the processing 

workload among nodes (either by considering nodes battery power, or by rotating cluster-

heads); and (iii) a few of them try to eliminate the imposed processing and communication 

overhead (either by employing a detection mechanism based on voting or by selecting cluster-

heads with the objective of “last longer”). On the other hand, regarding their weaknesses, it 

can be realized that: (i) the entire set of the studied hierarchical IDSs is vulnerable to a variety 

of attacks (i.e., man in the middle, blackmail, exploitation of the employed election scheme, 

malicious nodes may hinder or mislead detection, etc.); (ii) in the majority of them cluster-

heads may become points of failure; (iii) many of them create extra processing and 

communication overhead because of the creation and maintenance of clustered structures; (iv) 

in some of them the elected cluster-heads are unfairly overloaded; and (v) a few of them 

detect only specific types of attacks and are negatively affected by high nodes’ mobility.  

Table 3. Strengths and weaknesses of the hierarchical IDS architectures 

IDS architecture  Strengths Weaknesses

Cluster‐based IDS 
architecture with 
adaptive selection 
event triggering 

Nodes with the highest battery 
power are elected as to serve as 

cluster‐heads.  
 

Nodes elected as cluster‐heads are unfairly overloaded 

The ratio of false positives and detection accuracy are 
negatively affected by high nodes’ mobility 

The creation and maintenance of clusters mainly 
creates extra processing and communication overhead 

Multiple layers of detection provide 
increased detection accuracy 

Cluster‐heads may become points of failure.  

It is vulnerable to man in the middle and blackmail 
attacks 

A malicious node may exploit the election scheme to be 
elected as cluster‐head 

Hierarchical IDS 
architecture that uses 

a game theoretic 
detection mechanism 

Nodes with the highest battery 
power are elected as to serve as 

cluster‐heads. 

Nodes elected as cluster‐heads or checkers are unfairly 
overloaded 

The creation and maintenance of clusters mainly 
creates extra processing and communication overhead 

It is vulnerable to man in the middle and blackmail 
attacks 

Cluster‐heads are also monitored 
for malicious behavior 

Cluster‐heads may become points of failure.  
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A selfish node may avoid being a cluster head.  

A malicious nodes operating as a checker may falsely 
accuse legitimate cluster‐heads for misbehaving 

Cluster‐based 
architecture that a 
uses collective 

decision detection 
mechanism 

It induces relatively low processing 
and communication overhead, as it 

relies on a voting scheme to 
perform detection.  

 

The ratio of false positives and the detection accuracy 
are negatively affected by high packet loss and/or high 

nodes’ mobility 

The monitoring node may become point of failure 

It detects only specific types of attacks 

Malicious nodes may exploit the detection scheme by 
voting legitimate nodes as malicious 

Optimal hierarchical 
IDS architecture 

It is more robust under high nodes’ 
mobility as cluster‐head are 

selected with the objective of “last 
longer” 

Lower level cluster‐heads are unfairly overloaded 

The creation and maintenance of clusters mainly 
creates extra processing and communication overhead 

It is vulnerable to man in the middle and blackmail 
attacks  

Multiple levels of detection provide 
increased detection accuracy 

Compromised cluster‐heads may falsely characterize 
legitimate nodes as malicious 

A malicious node or set of nodes may elect a malicious 
node as cluster‐head hindering or misleading intrusion 

detection 

Clustered anomaly 
detection architecture 

Fair distribution of the processing 
workload among nodes, as cluster‐

heads rotate.   

It detects only routing attacks 

Cluster‐heads may become points of failure 

Malicious or selfish nodes that do not cooperate may 
hinder or mislead intrusion detection 

The elected cluster‐heads monitor 
large portions of the network 

activities reaching more accurate 
decisions 

Malicious nodes may falsely accuse other legitimate 
nodes as malicious 

A malicious node or set of nodes may elect a malicious 
node as cluster‐head hindering or misleading intrusion 

detection 

The employed election schemes do not take into 
account the processing capabilities of nodes 

 

5 A comparative evaluation of the IDS architectures  

This section provides a comparative evaluation of the studied IDS architectures using a set of 

critical evaluation metrics, which are elaborated bellow. These metrics derive from: (i) the 

deployment, architectural, and operational characteristics of MANETs; (ii) the special 

requirements of intrusion detection in MANETs; and (iii) the carried analysis that reveals the 

most important strengths and weaknesses of the existing IDS architectures.   

5.1 Evaluation metrics  
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MANETs retain a number of differences from traditional wireless networks. First of all, 

MANET nodes can be a variety of mobile devices (such as laptops, handheld devices, or 

mobile phones), which typically rely on the use of battery power and present various 

computational and bandwidth capabilities. The mobile nature of these nodes creates a 

dynamic network topology, in which nodes may independently join, leave, or change their 

position within the network. Moreover, there is no fixed infrastructure that manages the 

network nodes, routing or any other network operation, and thus, network management is 

done by the nodes themselves in a cooperative fashion. The nodes that are within radio range 

may communicate with each other directly (i.e., one-hop communication); or use intermediate 

nodes (i.e., multi-hop communication). Ad-hoc routing protocols, such as DSR and the Ad-

Hoc On-demand Distance Vector (AODV), rely on nodes’ cooperation and trust, and thus, do 

not take into account any security precautions [1][9]. In addition, the absence of access points 

that connect the nodes to any centralized authority does not leave much room for a clear line 

of defense or for a high level of trust between nodes. As a result, MANET nodes are 

susceptible to a variety of attacks, which mainly target the transport, network, and data-link 

layers of the protocol stack, since these layers are responsible for the most critical 

functionality of MANETs (i.e., one-hop/multi-hop communication, routing, etc.) [1].  

Since MANETs are typically formed by devices with limited processing and 

communication capabilities, IDSs for MANETs should eliminate the processing and 

communication overheads that they impose on the network nodes. Moreover, an IDS should 

not equally overwhelm network nodes with intrusion detection responsibilities and tasks, 

since the later may have a variety of available resources. Therefore, IDS architectures have to 

fairly distribute the processing workload among the network nodes. Finally, as the majority of 

MANET nodes are mobile, nodes’ mobility should not negatively affect the detection 

accuracy and the ratio of false positives of the IDS.  

Regarding security, IDSs for MANETs have to satisfy two main objectives that 

derive from the definition of IDSs and the operational characteristics of MANETs: (i) detect 

all possible attacks, and (ii) do not introduce new security vulnerabilities. The first objective 

is more related to the employed detection engine(s) and less to the IDS architectures that we 

primarily focus on this paper. The second objective stems from fact that the deployment of 

new applications/protocols in a MANET should not augment the existing vulnerabilities of 

the network. However, from the carried analysis and evaluation (see sections 2, 3, 4), we can 

deduce that the application of the majority of existing IDS architectures for MANETs 

introduce new security vulnerabilities. These are mainly associated with the employed 

clustering, data exchange, task assignment, and detection mechanisms, which may be 

exploited by adversaries and lead to a variety of attacks (i.e., blackmail, man in the middle, 

byzantine, etc.) that either mislead or hinder intrusion detection. 
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Based on the above, we infer the following evaluation metrics for MANET IDSs, 

which we divided into two groups: the first group of metrics relates to performance and the 

second to security. The performance metrics include: (i) the processing overhead imposed by 

an architecture on each network node, (ii) the imposition of communication overhead on the 

links that connect the network nodes, (iii) the fair distribution of the processing workload 

among the network nodes and (iv) the impact of nodes’ mobility on the detection accuracy 

and the ratio of false positives. The security metrics are: (i) the detection of a limited set of 

possible attacks, (ii) the occurrence of points of failure, and the vulnerability of an 

architecture to (iii) byzantine, (iv) man in the middle and (v) blackmail attacks. Sections 5.2 

(also see Table 4) and 5.3 (also see Table 5) present the evaluation of the studied IDS 

architectures with respect to the performance and security metrics, respectively. The 

performance evaluation takes into account the experimental/simulation results published by 

the authors of the studied IDS architectures. However, these results are used to justify the 

advantages and drawbacks of the studied IDSs and not to evaluate their performance on a 

common basis. Since many details of the proposed algorithms are missing, we could not 

perform an experimental analysis of our own. Moreover, methods/techniques that have been 

proposed to improve the performance and the provided security services of the considered 

architectures are also commented.  

5.2 Performance evaluation  
Ιt is evident that the processing overhead, imposed by the IDS architectures to the underlying 

network nodes, should be kept to a minimum. However, in almost all of the evaluated 

architectures, one or more comprehensive detection engines (which are based on signature or 

anomaly detection) are employed in every node, without considering the limited processing 

capabilities. Exceptions are: (i) the architecture that is based on social network analysis [14]; 

and (ii) FORK [19] that distributes the required detection tasks in order to conserve 

processing and battery resources. However, both of them impose extra communication 

overhead (another limitation of MANETs), since nodes have to frequently communicate and 

exchange audit data with each other. Moreover, the employed cooperation process and the 

mechanism of tasks’ distribution create new security vulnerabilities. Finally, in the first 

architecture the rate of false positives and the detection accuracy are negatively affected by 

nodes’ mobility.  

The hierarchical IDS architectures attempt to minimize the processing overhead by 

employing comprehensive or multi-layer detection engines only at some key nodes (i.e., 

cluster-heads), while the remaining nodes use lightweight engines. However, the creation and 

maintenance of clustered/hierarchical structures adds extra processing load to the network 

nodes, which increases under conditions of relatively high nodes’ mobility. This overhead is 
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produced by the continuous execution of the clustering functionality, due to the constant 

change of cluster members within a cluster. An exception is the clustered architecture that 

uses collective decisions for intrusion detection [27], which relies on a voting scheme to 

perform detections, instead of an anomaly or signature-based engine. Nevertheless, the ratio 

of false positives in this architecture is negatively affected by packet loss and it cannot detect 

attacks that do not modify or drop packets.  

Stand-alone IDS architectures do not incur any communication overhead, since no 

cooperation between IDSs takes place. However, this characteristic limits them in terms of 

detection accuracy and the type of attacks that they detect [9]. On the other hand, in both the 

cooperative and the hierarchical IDS architectures nodes have to exchange alerts, audit data, 

and detection results that impose extra communication overhead to the underlying network. In 

the cooperative architectures, cooperation and the related overhead takes place only when a 

suspicious behavior cannot be resolved as malicious using only local audit data. The 

employment of multiple detection engines per node (either multi-layer detection [16] [22] or 

multiple detections [18]) attempts to reduce the communication overhead, since more attacks 

are identified locally. However, this approach increases the processing workload at each 

node. Moreover, the exchange of detection results, instead of voluminous audit data, also 

reduces the communication load among nodes [16]. On the other hand, in the hierarchical IDS 

architectures the communication overhead cannot be reduced and takes place when 

clustered/hierarchical structures are formed, a cluster-head is elected (or re-elected), the 

cluster members move and change clusters, or a cluster-head and the cluster-members 

exchange audit data.  

The hierarchical architectures impose unfair workload distribution among the network 

nodes, since the nodes elected as cluster-heads are overloaded with detection responsibilities. 

Election schemes that consider the processing capabilities and battery power of the nodes 

attempt to establish a fair distribution of detection responsibilities between nodes. Towards 

this direction, the rotation of cluster-heads also tries to minimize the disparity of the workload 

distribution among the nodes. On the other hand, this increases both the processing and the 

communication overhead, since it entails re-elections of the cluster-heads and the conveyance 

of the related detection information (i.e., audit data and detection results) from the old cluster-

heads to the newly elected.  

In all the types of IDS architectures (i.e., stand-alone, cooperative, and hierarchical) 

nodes’ mobility decreases the detection accuracy and increases the rate of false positives. 

Mobility changes the network topology, the clusters’ structure, the routing information 

maintained at each node, the created social and trusted relationships among the nodes, etc., 

influencing in that way the intrusion detection process. Moreover, a mobile node may move 

away from its neighboring nodes or from a detection engine that resides in a cluster-head, 
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making cooperation for detection purposes or thorough inspection of the node unavailable. In 

order to limit the negative impacts of nodes’ mobility on intrusion detection, adjustable 

thresholds have been proposed for stand-alone and cooperative IDS architectures. Moreover, 

hierarchical structures robust to network changes have been proposed for hierarchical IDS 

architectures. However, the later increases the processing and communication overhead to the 

underlying network. Finally, both of the above mentioned solutions create new security risks, 

making the respective IDS architectures vulnerable to attacks that are analyzed in the 

following section.  

Table 4. Performance evaluation 

Issue  Processing overhead  Communication overhead 
Unfair workload 
distribution 

Impacts of nodes’ 
mobility 

Stand‐
Alone 

Problem 
Every node maintains 

one or more 
comprehensive engines 

N/A  N/A 

Decreases the 
detection accuracy 

Increases the rate 
of false positives 

Solution / 
optimization 

‐  N/A  N/A 
Use of adjustable 

thresholds 

Open issues  ‐  N/A   N/A 

Adjustable 
thresholds create 
new security 
weaknesses 

Cooperative 

Problem 
Every node maintains 

one or more 
comprehensive engines 

Cooperation and exchange 
of audit data among 
neighboring nodes 

N/A 

Decreases the 
detection accuracy 

Increases the rate 
of false positives 

Solution / 
optimization 

Detection based on 
social network analysis  

 
Distribution of detection 

tasks among nodes  

Use more than one or 
multi‐layer detection 

engines 
 

Exchange of detection 
results instead of audit 

data 

N/A 
Use of adjustable 

thresholds 

Open issues 

Extra communication 
overhead  

New security 
vulnerabilities  

Social network analysis 
is negatively affected by 

nodes’ mobility 

Multiple or multi‐layer 
engines increase 

processing overhead 

The exchange of audit data 
also imposes 

communication overhead  

N/A 

Adjustable 
thresholds create 
new security 
weaknesses 

Hierarchical 

Problem 

The creation and 
maintenance of 

clustered / hierarchical 
structures  

 

The formation of clustered 
/ hierarchical structures; 

The election of cluster‐
heads 

The movement of cluster 
members   

The exchange of audit data 
between a cluster‐head 
and the cluster‐members  

Cluster‐heads 
are unfairly 
overloaded 

Decreases the 
detection accuracy 

Increases the rate 
of false positives 

Increases the 
processing and 
communication 

overhead 

Solution / 
optimization 

Use of collective 
decisions for intrusion 

detection  
‐ 

Election schemes 
that consider the 
processing and 
battery power of 

nodes  

The rotation of 
cluster‐heads 

Use of hierarchical 
structures that are 
robust to network 

changes 

Open issues  Negatively affected by  Communication overhead  The rotation of  The hierarchical 
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packet loss

It cannot detect attacks 
that do not modify or 

drop packets  

remains  cluster‐heads 
increases the 
processing and 
communication 

overhead 

structures that are 
robust to network 
changes create 

new security risks 
and increase 
further the 

processing and 
communication 

overhead  

 

5.3 Security evaluation  
The stand-alone IDS architectures detect a limited set of attacks, since they rely only on local 

audit data to resolve malicious behaviors. More specifically, the battery-based IDS [10] 

detects only the attacks that cause power irregularities; while the threshold-based IDS [12] 

cannot detect any coordinated attack. On the other hand, the majority of both cooperative and 

hierarchical architectures are capable of detecting wider sets of possible attacks. This is 

achieved by employing multiple (or multi-layer) detection engines and by enabling 

cooperation between neighboring nodes. Exceptions are the routing anomaly detection 

architecture [20] (cooperative) and the clustered anomaly detection architecture [24] 

(hierarchical) that only detect routing attacks. Moreover, LIDF [22] (cooperative) only detects 

attacks that target the network and data link layers; while the cluster architecture that uses 

collective decision for intrusion detection [27] (hierarchical) only detects attacks that modify 

or drop packets.  

The hierarchical IDS architectures present points of failure, since they place the 

responsibility of intrusion detection in a subset of elected nodes (i.e., cluster-heads). This fact 

makes these nodes potential targets of attacks, and if an attack succeeds then points of failure 

occur. Moreover, the hierarchical architectures are vulnerable to byzantine attacks. Such an 

attack can take place during the election phase of a cluster-head, where a number of malicious 

nodes attempt to elect a malicious node as cluster-head. A malicious cluster-head may hinder 

intrusion detection or falsely accuse legitimate nodes as malicious. To address such events, 

the game-theoretic IDS [29] uses randomly selected checker nodes to monitor the cluster-

heads for selfish/malicious behaviors. However, such an approach increases the processing 

and communication load, since one or more checkers are activated in every cluster. Similarly, 

the stand-alone architectures are vulnerable to byzantine attacks, since attacks against a node 

by a coordinated group of attackers cannot be determined, due to the lack of cooperation. 

Another security weakness that is common for both collaborative architectures (i.e., 

cooperative and hierarchical) is that they are exposed to man in the middle and blackmail 

attacks. Both architectures rely on the exchange of intrusion detection information, either 

between cooperating nodes or between a cluster-head and the cluster-members, in order to 

perform detections. This information might be captured, modified, and retransmitted by a 
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malicious node resulting in a man in the middle attack. This vulnerability can be avoided by 

using encryption on the communication links among nodes. Nevertheless, a malicious node 

may transmit false information when requested upon by a cooperating neighbor or by a 

cluster-head, resulting in a blackmail attack. The friend-assisted IDS architecture [18] 

counters this vulnerability by deploying a trust mechanism. This mechanism denies 

cooperation between nodes that have not previously established trusted relationships. 

Although this solves the problem of blackmail attacks, it is likely to have an impact on the 

IDS’s detection accuracy, especially in case of a network with limited trusted relationships 

among nodes. In such a scenario, an IDS might not find enough trustful nodes to collect a 

sufficient amount of audit data to detect an attack.  

Table 5. Security evaluation 

Issue 
Detection of a 
limited set of 

attacks 

Points of 
failure 

Byzantine attack 
Man in the middle 

attack 
Blackmail 
attack 

Stand‐alone 

Problem 

Detects a limited 
set of attacks due 
to the lack of 
cooperation 

N/A 

Coordinated 
attacks by multiple 
attackers are not 

detectable 

N/A  N/A 

Solution / 
optimization 

‐  N/A  ‐  N/A  N/A 

Open issues  ‐  N/A  ‐  N/A   N/A 

Cooperative 

Problem 
Some solutions 
detect a limited 
set of attacks 

N/A  N/A 
Nodes’ 

communication is 
susceptible to attacks 

A malicious 
node may 

transmit false 
information 
upon request 

Solution / 
optimization 

Use more than one 
or multi‐layer 

detection engines 
N/A  N/A 

Encrypt 
communication links 

among nodes 

Deploy a trust 
mechanism 

Open issues 

Multiple or multi‐
layer engines 
increase 
processing 
overhead 

N/A  N/A  None  

It may 
decrease the 
detection 
accuracy 

Hierarchical 

Problem 
Some solutions 
detect a limited 
set of attacks 

Cluster‐heads 
become 
targets of 
attacks  

A malicious node 
may be elected as 

cluster‐head 

Nodes’ 
communication is 

susceptible to attacks 

A malicious 
node may 

transmit false 
information 
upon request 

Solution / 
optimization 

Use more than one 
or multi‐layer 

detection engines 
‐ 

Use randomly 
selected checker 

nodes that 
monitor cluster‐

heads for 
malicious behavior  

Encrypt 
communication links 

among nodes 
‐ 

Open issues 

Multiple or multi‐
layer engines 
increase 
processing 
overhead 

Cluster‐heads 
become 
targets of 
attacks 

The use of checker 
nodes increases 

the processing and 
communication 

overhead  

None 
Realization of 
blackmail 
attacks 
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6 Design principles for MANET IDSs 

Based on the carried evaluation and comparison, this section presents a set of features and 

principles, which have to be addressed and satisfied in future research, when designing and 

implementing IDSs for MANETs. It may not be feasible for an IDS to deal with all of them, 

but their objective is to stimulate and drive research activities in this area. 

IDSs for MANETs should consider the limited resources available in them and aim at 

limiting the related processing and communication overheads. Although these limitations are 

common to all the types of application/services deployed in MANETs, they become more 

critical for IDSs, which require: (a) uninterrupted monitoring of nodes’ and network 

activities; and (b) endless processing of audit data in order to detect malicious behaviors. A 

possible solution is to assign detection responsibilities to a subset of network nodes (i.e., 

similarly to the hierarchical architectures), instead of operating an individual detection engine 

at each network node. However, the creation and maintenance of the employed structure (e.g., 

clustered, tree-based, etc.) should minimize the imposed extra processing and communication 

overheads. Moreover, the assigned nodes that perform detection tasks should rotate 

periodically, avoiding the unfair workload distribution among nodes.  

The detection engines employed in IDSs for MANETs should use sophisticated 

algorithms that can detect a variety of possible attacks, avoiding the introduction of high 

computational load. A single detection engine should be able to detect attacks at the three 

most important layers (e.g., transport, network and data-link) of the protocol stack, since the 

majority of attacks in MANETs occur at these layers [1]. If a detection engine focuses only 

on one layer, then several attacks (i.e., that occur at the other layers) can go undetected. 

Otherwise, the employment of multiple engines (e.g., one for each layer) is required; but this 

increases the consumption of the available resources (i.e., battery, processing power, etc). The 

more attacks detected locally, the less communication overhead imposed to the underlying 

network. Nevertheless, if cooperation is required, then it is better to exchange detection 

results, instead of voluminous audit data.  

Nodes’ mobility should not negatively affect the detection accuracy and the rate of false 

positives of an IDS. However, these negative effects occur in the majority of the existing 

IDSs, since their architectures primarily inherited from static or mobile networks, which 

differ radically from MANETs with respect to the network topology. The architecture of an 

IDS for MANETs should be independent of the underlying network topology. Moreover, 

frequent changes in the topology should not cause repeated and extensive changes to the 

employed IDS architecture/structure, eliminating thus the execution of the required 

grouping/formation functionality, as well as the exchange of the related messages. The latter 
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interrupt the intrusion detection process, and increase the processing and communication 

overhead imposed to the underlying nodes and network.  

The deployment of IDSs on MANETs should not introduce new security vulnerabilities 

and weaknesses. However, the assignment of detection tasks to a subset of nodes (i.e., cluster-

heads) presents points of failure, in cases that these nodes become targets of attacks, crash, 

leave the network, or run out of battery. Moreover, the hierarchical/clustering and election 

algorithms used may be exploited by adversaries, either hindering or misleading intrusion 

detection. Similarly, the cooperation/communication among detection engines may be 

captured or modified. Therefore, the IDSs for MANETs should be fault/attack tolerant, and 

the nodes assigned with detection responsibilities should be robust, expendable, and 

replaceable. In addition, the employed algorithms and cooperation between detection engines 

should be resilient to attacks.  

Finally, a proposed IDS should be evaluated and tested under realistic conditions, 

which include a variety of nodes’ mobility scenarios and type of attacks, helping us to deduce 

certain results about its effectiveness and accuracy. Table 6 summarizes proposed design 

principles of IDS for MANETs grouped by the related MANETs characteristics.  

Table 6. Proposed design principles of IDS for MANETs grouped by the related MANETs 
characteristics  

Characteristics of  MANETs Proposed design principles  

Limited available resources (processing 
power, bandwidth, battery power) 

Assign intrusion detection responsibilities to a subset of nodes, instead of 
operating an individual detection engine at each node 

The employed clustering or hierarchical algorithms should minimize the 
imposed processing and communication overheads 

Detection engines should not introduce high computational overhead 

Avoid multiple detection engines at each node 

Detect most attacks locally at a node 

If required, exchange detection results instead of audit data 

Diverse range of devices Fair workload distribution among nodes 

Dynamic topology/node’s mobility The architecture of an IDS should be independent of the underlying network 
topology 

Susceptible to a variety of attacks 

A single sophisticated engine should detect a wide range of possible attacks at 
the tree most important protocol layers (i.e., transport, network and data link) 

IDSs should be fault/attack tolerant 

The nodes assigned with detection responsibilities should be robust, 
expendable, and replaceable 
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A proposed IDS should be evaluated and tested under realistic conditions 

 

7 Conclusions 

IDSs for MANETs have attracted much attention recently and thus, there are many 

publications that propose new IDS solutions or improvements to the existing, focusing on 

both IDS architectures and detection engines. This paper has evaluated and compared the 

latest and most prominent IDS architectures for MANETs, classified as: (i) stand-alone, (ii) 

cooperative, and (ii) hierarchical. Based on the carried analysis, it can be deduced that the 

existing IDS architectures for MANETs present significant limitations and weaknesses. This 

mainly occurs since the majority of the IDS architectures is inherited from static or mobile 

networks, which differ radically from MANETs with respect to the network topology, 

available resources and variety of nodes, nodes’ mobility, security vulnerabilities and possible 

attacks. The studied IDS architectures were comparatively evaluated using a set of 

performance and security metrics. It was concluded that all types (i.e., stand-alone, 

cooperative, and hierarchical) strain the limited processing and energy power of the nodes. 

Moreover, both the cooperative and the hierarchical architectures deplete the scarce 

bandwidth resources of the network. The detection accuracy and the ratio of false positives of 

the IDSs are negatively affected by nodes’ mobility, encountered in MANETs. In addition, 

many of them are vulnerable to security attacks, which might: (i) hinder the network 

operation and the intrusion detection process, (ii) mislead detection, or (iii) falsely 

characterize legitimate nodes as malicious. Finally, some of the evaluated IDS architectures 

cannot detect all types of attacks, since they focus only on specific types of intrusions.  
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