
 1

A Comparative Evaluation of Intrusion Detection Architectures for

Mobile Ad Hoc Networks

Christos Xenakis1, Christoforos Panos2, Ioannis Stavrakakis2
1Department of Digital Systems, University of Piraeus, Greece

2Department of Informatics & Telecommunications, University of Athens, Greece

e-mail: xenakis@unipi.gr, cpanos@di.uoa.gr, ioannis@di.uoa.gr

Abstract

Mobile Ad Hoc Networks (MANETs) are susceptible to a variety of attacks that

threaten their operation and the provided services. Intrusion Detection Systems

(IDSs) may act as defensive mechanisms, since they monitor network activities in

order to detect malicious actions performed by intruders, and then initiate the

appropriate countermeasures. IDS for MANETs have attracted much attention

recently and thus, there are many publications that propose new IDS solutions or

improvements to the existing. This paper evaluates and compares the most

prominent IDS architectures for MANETs. IDS architectures are defined as the

operational structures of IDSs. For each IDS, the architecture and the related

functionality are briefly presented and analyzed focusing on both the operational

strengths and weaknesses. Moreover, methods/techniques that have been proposed

to improve the performance and the provided security services of those are

evaluated and their shortcomings or weaknesses are presented. A comparison of the

studied IDS architectures is carried out using a set of critical evaluation metrics,

which derive from: (i) the deployment, architectural, and operational characteristics

of MANETs; (ii) the special requirements of intrusion detection in MANETs; and

(iii) the carried analysis that reveals the most important strengths and weaknesses of

the existing IDS architectures. The evaluation metrics of the IDSs are divided into

two groups: the first one is related to performance and the second to security.

Finally, based on the carried evaluation and comparison a set of design features and

principles are presented, which have to be addressed and satisfied in future research

of designing and implementing IDSs for MANETs.

Keywords: Intrusion detection system, IDS architectures, mobile ad hoc networks, MANETs

security, security attacks, security vulnerabilities.

 2

1 Introduction

A mobile ad hoc network (MANET) is a collection of autonomous nodes that form a

dynamic, purpose-specific, multi-hop radio network in a decentralized fashion. In a MANET,

the nodes themselves implement the network management in a cooperative fashion and thus,

all the network members share the responsibility for this. The wireless - mobile nature of

MANETs in conjunction with the absence of access points, providing access to a centralized

authority, make them susceptible to a variety of attacks [1]. An effective way to identify when

an attack occurs in a MANET is the deployment of an Intrusion Detection System (IDS). The

IDS is a sensoring mechanism that monitors network activity in order to detect malicious

actions and, ultimately, an intruder. Upon detecting an intruder, the IDS takes an appropriate

action ranging from a mere user notification to a more comprehensive defensive action

against the intruder. An IDS can be divided in two main parts: (i) the architecture, which

exemplifies the operational structure of the IDS; and (ii) the detection engine, which is the

mechanism used to detect malicious behavior(s).

The existing IDS architectures for MANETs fall under three basic categories [3]: (a)

stand-alone, (b) cooperative, and (c) hierarchical. The stand-alone architectures use an

intrusion detection engine installed at each node utilizing only the node’s local audit data

[10][12][15]. However, the fact that these solutions are relying only on local audit data to

resolve malicious behaviors limits them in terms of detection accuracy and the type of attacks

that they detect [9] (due to the distributed nature of MANETs). On the other hand, the

cooperative and hierarchical architectures process each host’s audit data locally (i.e., similarly

to stand-alone), but they also use collaborative techniques to detect more accurately a wider

set of attacks. Thus, the majority of the most recent IDSs for MANETs is based on them [9].

More specifically, the cooperative architectures include an intrusion detection engine

installed in every node, which monitors local audit data and exchanges audit data and/or

detection outcomes with neighboring nodes in order to resolve inconclusive (based on single

node’s audit data) detections. The hierarchical architectures amount to a multilayer

approach, by dividing the network into clusters. Specific nodes are selected (based on specific

criteria) to act as cluster-heads and undertake various responsibilities and roles in intrusion

detection that are usually different from those of the simple cluster members. The latter

typically run a lightweight local intrusion detection engine that performs detection only on

local audit data, while the cluster-heads run a more comprehensive engine that acts as a

second layer of detection based on audit data from all the cluster members.

The employed intrusion detection engines are also classified into three main

categories: (i) signature-based engines, which rely on a predefined set of patterns to identify

attacks; (ii) anomaly-based engines, which rely on particular models of nodes’ behavior and

 3

mark nodes that deviate from these models as malicious; and (iii) specification-based engines,

which rely on a set of constrains (i.e., description of the correct operation of

programs/protocols) and monitor the execution of programs/protocols with respect to these

constraints.
IDS for MANETs have attracted much attention recently and thus, there are many

publications that propose new IDS solutions or improvements to the existing focusing on both

IDS architectures and detection engines. On the other hand, little work has been done in

evaluating and comparing them revealing their advantages as well as their limitations and

weakness, which constitute open issues that will drive the next research steps in the area of

MANET security. Towards this direction, Sun et al. [5] have presented a survey of IDSs for

MANETs and wireless sensor networks considering on the detection engines employed.

Similarly, Azer et al. [6] briefly discuss the anomaly-based detection engines used in IDSs for

MANETs. However, both works mainly focus on solutions published before 2004 (except for

one [21] in the former).

Brutch and Ko [4] provide a brief analysis of several proposed IDSs for MANETs

focusing mainly on their architectures. However, the analyzed solutions have been designed

to protect the routing mechanism of the dynamic source routing protocol (DSR), operating as

extensions to it, and thus, they do not address the wide area of intrusion detection in

MANETs. Mishra et al. [2] present a more detailed analysis of IDSs for MANETs following:

(i) an outline of the security vulnerabilities of MANETs; (ii) some design characteristics of

IDSs for MANETs; and (iii) some fundamental requirements that an IDS for MANETs

should meet. The architectures of the analyzed IDSs are elaborated and briefly compared with

the set of fundamental requirements introduced by the authors. Li and Wei [7] briefly

overview some IDS architectures for MANETs and compare them in terms of

implementation-specific issues. Anantvalee and Wu [3] perform a more comprehensive

analysis of some IDS architectures for MANETs. Finally, Sen et al. [9] present the latest

survey of IDSs for MANETs, revealing the weaknesses of each one. However, the studied

IDS solutions in the aforementioned works have been published before 2006. Moreover, the

considered architectures are hardly evaluated and compared with respect to performance and

security factors, such as the consumption of processing and communication resources, the fair

distribution of the workload among the network nodes, the impact of nodes’ mobility on the

detection accuracy and the rate of false positives, the vulnerabilities of the architectures to

attacks, etc.

This paper evaluates and compares the most prominent IDS architectures for MANETs,

which represent the most recent developments in this area. For each IDS, the architecture and

the related functionality are briefly presented and analyzed focusing on both the operational

strengths and weaknesses. Moreover, methods/techniques that have been proposed to improve

 4

the performance and the provided security services of those are evaluated and their

shortcomings or weaknesses are presented. A comparison of the studied IDS architectures is

carried out using a set of critical evaluation metrics, which derive from: (i) the deployment,

architectural, and operational characteristics of MANETs; (ii) the special requirements of

intrusion detection in MANETs; and (iii) the carried analysis that reveals the most important

strengths and weaknesses of the existing IDS architectures. The evaluation metrics of the

IDSs are divided into two groups: the first one is related to performance and the second to

security. Finally, based on the carried evaluation and comparison a set of design features and

principles are presented, which have to be addressed and satisfied in future research when

designing and implementing IDSs for MANETs.

The rest of this article is organized as follows. Sections 2-4 briefly analyze and evaluate

the stand-alone, cooperative and hierarchical IDS architectures for MANETs, respectively,

focusing on their advantages and limitations. Section 5 compares the studied IDS

architectures, using a set of performance and security metrics. Section 6 highlights some

design features and principles that are derived from the carried analysis, evaluation, and

comparison. Finally, section 7 contains the conclusions.

2 Stand-alone IDS architectures

The stand-alone IDS architectures are based on a self-contained approach for detecting

malicious actions at each network node. In this section, we briefly present and evaluate the

most recent stand-alone IDS architectures for MANET (i.e., battery-based, threshold-based,

and two-stage IDS architecture) focusing on the strengths and weaknesses of each one, which

are summarized in Table 1, allowing their comparison.

Jacoby and Davis have proposed a stand-alone architecture for detecting malicious

actions in MANETs, by monitoring power consumption in every node’s battery [10].

Detection is achieved by comparing a node’s power consumption with a set of power

consumption patterns induced by known attacks, using smart battery technology. In an

experimental implementation, the proposed IDS detected 99% of the attacks in cases that only

one type of them occurred. It also detected multiple attacks, but only in cases that the nodes

were idle and no other activity was present. The main advantage of this architecture is that it

is more reliable (i.e., since it is based on hardware operation), compared to other IDSs that

rely on audit data and anomaly-based detection, as these can be more easily manipulated by

intruders. On the other hand, it detects only attacks that cause power consumption

irregularities and only in cases that the nodes are idle, something that rarely occurs in real

systems.

Nadkarni and Mishra [12] have proposed a stand-alone IDS architecture that uses

compound detection aiming at reducing the amount of false positive alerts, which typically

 5

appear in anomaly detection. It employs adjusting thresholds to determine malicious

behaviors. During initialization, the intrusion detection engine installed in every node creates

the normalcy profile of the network traffic. Based on this, it estimates threshold values,

beyond of which there is an indication of possible attacks. Every time a symptom of a known

attack is detected, a counter called mis-incident is incremented and the node responsible for

the symptom is marked as suspicious. If the incident repeats and the mis-incident counter

exceeds the threshold value for the specific attack, the node from where the incident

originates is labeled as malicious. After a preset period of time in which there are no

malicious behaviors detected, the threshold is raised; otherwise is lowered.

The most important strength of this architecture is that it is adaptable to network

changes, because of the use of variable thresholds. For example, periodic symptoms of

suspicious behaviors, caused by network topology changes, will remain under the detection

thresholds; while malicious behaviors that are constant will exceed the thresholds indicating

the occurrence of attacks. On the other hand, the use of adjusting thresholds introduces new

security weaknesses, since malicious nodes may exploit this mechanism. More specifically, a

malicious node may increase the threshold values by performing legitimately for a certain

period of time. Then, if the threshold values are high enough, it may perform an attack

considering not exceeding the threshold values and raising alarms. Nodes that might not

cooperate in the routing process or generate invalid routing updates due to outdated routing

information (i.e., caused by high mobility) might be falsely characterized as malicious.

Moreover, coordinated attacks (i.e., such as byzantine attacks) cannot be detected, since

nodes do not cooperate.

Finally, Adrian Lauf et al. [15] have proposed a two-stage, stand-alone IDS architecture

that aims at operating in resource-constrained environments, such as MANETs. It installs two

different detection engines in every node, where the first one (referred to as the maxima

detection system (MDS)) is used to rapidly identify a potential threat and calibrate the second

engine (referred to as the cross-correlative detection system (CCDS)). MDS is an anomaly

detection engine that identifies statistical oddities in the observed interactions of the

application layer. This is achieved by maintaining the history of the application layer

interactions and comparing them with a normalcy profile created offline. If a possible attack

is identified, MDS activates CCDS that calibrates a threshold value considering the attack.

Then, calculates average values of the application behavior of every node and compares them

with the threshold. Behaviors that exceed the threshold are marked as malicious. By

employing two detection engines at each node, the proposed IDS increases detection

accuracy, compared to other single engine IDSs because the one engines supplements the

other. However, CCDS is prone to false positives and negatives, since it calibrates the

 6

threshold value only once during startup. Thus, dynamic changes of the network, induced by

nodes mobility, are note accommodated by CCDS.
Table 1. Strengths and weaknesses of the stand-alone IDS architectures

IDS architecture Strengths Weaknesses

Battery‐based IDS
Reliability, since it is based on hardware

operations
It detects only attacks that cause power

irregularities

Threshold‐based IDS
Adaptability to network changes using

adjusting thresholds.

Introduces new security weaknesses

It is prone to false positives

Cannot detect coordinated attacks

Two‐stage IDS
Increased detection accuracy by employing

two detection engines at each node.
It is prone to false positives and negatives

3 Cooperative IDS architectures

In the cooperative IDS architectures an intrusion detection engine is installed in every node

monitoring local audit data and providing intrusion detection. To resolve inconclusive

intrusion detections and detect more accurately advanced types of attacks, detection engines

may cooperate with engines of neighboring nodes through the exchange of audit data or

detection outcomes.

3.1 A cooperative IDS architecture based on social network analysis
Wang et al. [14] have proposed a cooperative IDS architecture, which relies on a detection

engine that utilizes social network analysis methods. In this architecture, each node deploys

an intrusion detection engine that performs detections using audit data received from its “ego”

network. An “ego” network consists of a hosting node (“ego”) and the nodes (“alters”) that

are directly connected to it. The deployed engines operate similarly to anomaly detection, but

they utilize social relations as metrics of interest, which require less computational overhead

compared to standard anomaly detection engines [14]. Moreover, a training phase is also

required to create normal profiles (i.e., as in anomaly detection), and according to the authors,

the detection engines monitor the Medium Access Control (MAC) and network layers.

 The proposed IDS is composed of three modules: (a) the data pre-processing module

that collects and pre-processes audit data; (b) the social analysis module that performs

intrusion detection; and (c) the response module that integrates local and global (i.e., gathered

from neighboring nodes) intrusion alerts. During the IDS operation, the data pre-processing

module collects audit data from its neighboring nodes in intervals of five seconds. The social

analysis module, then, processes the collected data in order to realize social relations between

the “ego” network nodes, which represent the behavior of these nodes at a certain time.

 7

Subsequently, the realized relations are compared to the normal profile of expected behaviors,

and any variation from these constitutes an intrusion. If an intrusion is detected, the response

module notifies the neighboring nodes.

 The main strength of this architecture is that the employed detection engines incur less

computation complexity, compared to conventional anomaly detection engines [14]. On the

other hand, it presents some weaknesses outlined bellow:

• The rate of false positives may increase and the detection accuracy may drop in cases

of high nodes’ mobility. In a high mobility scenario, a node would only have a

limited period of time to create social relations with neighboring nodes, before it

changes its location. As a result, there would not be enough information for the social

analysis module to distinguish between normal and malicious behaviors.

• Audit data exchange may increase the communication load among nodes, causing

degradation to the network performance. The authors have arbitrarily selected a five-

second interval for audit data exchange within each “ego” network, without any

evaluation of the impact of this parameter to the network performance.

• New security risks may arise from the exchange of audit data, since a malicious node

may either transmit false audit data or avoid transmitting any of them, in order to

hinder or mislead the detection process.

3.2 A multi-layer cooperative detection architecture

Bose et al. [16] have proposed a cooperative IDS architecture that uses three parallel anomaly

detection engines, reffered as MAC layer detection engine, routing detection engine, and

application layer detection engine, installed in every node. The use of multi-layer detection

aims at increasing detection accuracy, since attacks that target upper-layer protocols can be

seen as legitimate events at lower-layers, and vice versa. The MAC layer detection engine

monitors both access control and addressing at the data link layer. The routing detection

engine monitors the network layer and keeps track of the packet delivery and routing

information. Finally, the application layer engine monitors the application layer. Each engine

collects the appropriate audit data, processes them and looks for malicious behaviors within

them. In every node, a local integration module combines the results from the three different

detection engines, while a global integration module combines the results received from the

neighboring nodes. A set of simulations has been performed (using the GloMoSim [17]) to

evaluate the effectiveness of the proposed architecture.

The multi-layer IDS presents the following strengths:

• It increases the detection accuracy, compared to other single engine detection

solutions, as the multiple detection engines supplement each other. In the simulation

results, the detection accuracy increased up to 20% through integrating the results of

 8

all three engines, compared to the results that each detection engine yielded by itself

(see Fig. 1) [16].

• Although it uses cooperation between the neighboring nodes, it induces relatively low

communication overhead, since only the detection results and not the voluminous

audit data are exchanged.

The considered IDS architecture also presents some weaknesses:

• Its operation increases the processing overhead in each node, compared to other

single engine solutions, since the IDS deploys three detection engines instead of one.

So far, the authors have not studied or evaluated the processing overhead of the

proposed architecture.

• The ratio of false positives and the detection accuracy of the IDS are negatively

affected by high packet loss and/or high nodes’ mobility. This is because the routing

detection engine relies on packet delivery and routing information to detect attacks.

Except for the local integration module, the inaccurate detection results also influence

the global integration modules of the neighboring nodes.

• The functionality of cooperation creates new security risks, since a malicious node

may either transmit false detection results (i.e., “blackmail” attack) or modify

detection results originating from another cooperating node (i.e., “man in the middle

attack”) in order to hinder or mislead the detection process in a node or set of nodes.

Fig. 1: Detection accuracy of the multi-layer cooperative detection architecture.

3.3 Α Friend-assisted intrusion detection architecture for MANETs

Razak et al. [18] have proposed a cooperative two-tier (i.e., one for local and one for global

detection) IDS architecture for MANETs, where each tier includes two detection engines,

respectively. The first-tier uses a local-level detection mechanism that collects local audit data

and processes them using a signature-based detection engine. If it detects a suspicious activity

but it cannot determine accurately a specific attack, a second engine is activated (also located

 9

in the first-tier) that performs anomaly detection. If both engines at the first-tier cannot

conclude whether the suspicious activity is malicious, the second-tier of the architecture is

triggered. The second-tier uses a global detection mechanism that collects audit data from the

neighboring nodes and first performs a signature-based detection and then an anomaly-based

detection, similarly to the first-tier. The second-tier also maintains a list of friends (each node

builds and maintains a list of trustful nodes), which is used to ensure that the nodes sharing

their audit data with it are trustful.

The strengths of the friend-assisted IDS architecture are:

• It provides high detection accuracy since each node contains a two-tier detection

module and each tier includes two different detection engines (i.e., one that uses

signature-based detection and another that uses anomaly-based detection) that act

complementary.

• It is not susceptible to blackmail attacks since only trustful nodes can send audit data

to the second-tier of a node (i.e., global detection). Therefore, a malicious node

cannot provide false audit data in order to mislead the IDS or falsely characterize

legitimate nodes as malicious.

The weaknesses of this architecture are:

• The use of multiple detections (i.e., two tiers each of which contains two different

detection engines) and the employment of trust management add a considerable

complexity and processing load.

• The rate of false positives and the detection accuracy of the IDS are negatively

affected by the lack of trust relationships among nodes and by nodes’ mobility. In a

network with limited trust relationships, the IDS might not find enough trustful nodes

to collect a sufficient amount of audit data to determine whether an event occurring is

legitimate or not. This also can be the result of trusted nodes that move continually.

• It imposes extra communication overhead, mainly for three reasons: (i) the second-

tier detection requires the exchange of audit data; (ii) nodes have to exchange trust

information in order to build lists of friends; and (iii) the use of signature-based

detection requires the existence of a signature distribution authority that periodically

transmits new signatures to each node.

3.4 Fork: A two pronged intrusion detection scheme for MANETs
Ramachandran et al. have proposed a cooperative IDS architecture [19], which uses

lightweight modules (agents) able to perform different detection tasks and aim at reducing

battery consumption. Each network node contains all the modules required to perform the

detection tasks and is assigned a reputation value, which increases when the node successfully

assists with intrusion detection tasks, and decreases if the node’s performance during

 10

intrusion detection is unsatisfactory. Nevertheless, the authors do not clarify under what

conditions the node’s performance is deemed unsatisfactory. The employed intrusion

detection engine relies on anomaly detection and it is installed in every node. When the

engine of a node detects a suspicious behavior, it initiates an auction scheme to select a set of

nodes that are most suitable to assist in performing intrusion detection. Nodes with the

highest amount of battery resources and reputation value are selected and specific tasks are

assigned to them. These tasks include: (i) the execution of host or network monitoring, (ii) the

decision making given a set of audit data, and (iii) the activation of defensive actions in case

that malicious behaviors have been detected. The authors neither elaborate on how nodes’

cooperation is achieved nor evaluate the communication overhead imposed by the employed

cooperation mechanism. Moreover, they did not consider node’s mobility in the performed

simulations, thus the impact of mobility on the detection accuracy, the rate of false positives

and the communication overhead cannot be determined.

The main advantage of the Fork architecture is the distribution of detection tasks among a

set of nodes, which reduces the processing load for the initiating node and conserves its

battery power. The selection of assisting nodes also considers - among other criteria - the

available battery resources thus, nodes with lower battery power are not burdened with

intrusion detection responsibilities.

On the other hand, the weaknesses of the architecture are:

• High nodes’ mobility may increase the communication overhead imposed by the IDS

architecture. A node assigned with a detection task may move away from the

initiating node thus, it has to route the results regarding its task through other nodes.

However, this extra communication overhead has not been quantified through a

simulation or analytic study.

• It is vulnerable to man in the middle attacks, since a malicious node, exploiting the

task allocation mechanism, may capture and modify intrusion detection task

messages. A malicious node might also cause blackmail attacks, by transmitting false

detection results to the node that has initiated detection tasks. Finally, a malicious

node may cause sleep deprivation attacks, by initiating fake tasks to other nodes in

order to consume their resources.

3.5 Routing anomaly detection architecture

Sun et al. [20] have proposed a cooperative IDS architecture that focuses on routing

disruption attacks. Since all the nodes of a MANET participate in routing, each one maintains

a table that contains routing information, such as routing paths to reach other nodes and the

required number of hops. Extensive changes in this table may be a symptom of malicious

behaviors that attempt to disrupt the routing process. The proposed IDS uses the following

 11

two routing features to discover malicious behaviors: (i) the percentage of changes in the

route entries (PCR), and (ii) the percentage of changes in the number of hops (PCH). PCR

represents the added/deleted route entries during a certain period of time, while PCH indicates

the change in the sum of hops of all route entries over the period of time.

In this IDS, one or several intrusion detection engines that rely on anomaly detection

are installed in every node. These engines collect and process routing information to detect

possible intrusions, using a modified Markov Chain anomaly detection method [32]. In case

that more than one detection engines are deployed in a node, alerts and reports from each

local engine are combined. Moreover, data reports and alerts from neighboring nodes are also

correlated in order to reach more accurate decisions. Based on the performed simulations, the

authors state that this IDS detects more than 90% of the routing disruption attacks, in

scenarios with relative low nodes’ mobility (i.e., nodes speed ranges from 3m/s to 5m/s).

The main advantage of this architecture is related to the increased detection accuracy

that it presents, because of the deployment of multiple detection engines at each node (i.e.,

compared to other single engine solutions). This fact also makes this IDS fault tolerant in

cases that a detection engine fails or becomes a target of an attack.

On the other hand, it presents some drawbacks:

• It cannot be used to detect all the types of possible attacks, since it monitors only for

routing attacks.

• It imposes extra communication overhead, since detection engines hosted at

neighboring nodes have to constantly exchange detection reports and alerts in order to

reach more accurate decisions.

• The detection accuracy and the ratio of false positives are negatively affected by

nodes’ mobility, as illustrated (Routing Anomaly Detection curve) in Fig. 2 and Fig.

3, respectively. This occurs for two reasons: (i) in a high mobility scenario, a node

would only notice a few falsified routing changes before changing its location; and

(ii) in such scenarios, the changes in routing tables are rapid and inconsistent. Thus,

there is not enough information for the detector to distinguish between normal

behaviors provoked by nodes’ mobility and abnormal behaviors provoked by

malicious nodes.

• It is vulnerable to blackmail attacks, since a malicious node might transmit false

detection reports or alerts in order to hinder the intrusion detection process and

falsely accuse a legitimate node(s) as malicious.

Later on, Sun et al. [21] improved the aforementioned routing anomaly IDS architecture, by

proposing the incorporation of a new intrusion detection engine with adjustable thresholds.

This addresses some of the most important drawbacks of this architecture, such as the

 12

negative impacts of nodes’ mobility on the detection accuracy and the ratio of false positives.

The technique of adjustable thresholds ensures that the periodical changes in routing

information, caused by nodes’ mobility, will remain under the detection threshold; while

malicious behaviors that are persistent will exceed the thresholds indicating the occurrence of

attacks. The authors have performed a performance analysis (i.e., based on simulations)

comparing the enhanced with the initial routing anomaly detection architecture. The enhanced

architecture preserves the advantages of the initial, and as observed in Fig. 2 and Fig. 3

(Adaptive Routing Anomaly Detection curves), it reduces the negative impact of high nodes’

mobility on the detection ratio and the rate of false positives. On the other hand, the technique

of adjustable thresholds creates new security risks. More specifically, in case that a malicious

node notices high mobility, it might act maliciously without being detected.

Fig. 2: The impact of nodes’ mobility on
detection accuracy

Fig. 3: The impact of nodes’ mobility on the
ratio of false positives

3.6 LIDF: Layered intrusion detection framework for ad-hoc networks

Komninos and Douligeris have proposed a cooperative IDS architecture [22], which relies on

multilayered detection to capture malicious behaviors. In this architecture, every host

maintains an intrusion detection unit, which is divided into three modules: (i) the collection,

(ii) the detection, and (iii) the alert module. The collection module is responsible for

collecting audit data from both the data link and the network layer. By monitoring these two

layers the IDS has a close view of the networking activities (i.e., nodes’ connectivity and

routing). The detection module performs anomaly-based detection on the collected audit data

in two steps, in order to conserve the host’s resources and battery. First, it processes only the

most recent local audit data. In case that these data are not sufficient to reach an accurate

decision regarding a suspicious behavior, more audit data are requested from neighboring

nodes via secure communication channels. However, the authors have not specified when do

nodes decide to request neighbors’ cooperation, and how this cooperation is achieved (i.e.,

exchange of audit data or detection results). As a result of these, the communication overhead

imposed by nodes’ cooperation cannot be determined. Finally, in case that a malicious

behavior is detected, the alert module has the responsibility to notify the neighboring nodes.

 13

The strengths of this IDS architecture are:

• Using multiple layers of detection, it is able to detect attacks at both the network and

data link layer.

• The use of secure communication channels for nodes’ cooperation defeats man in the

middle attacks.

On the other hand, the weaknesses of this architecture are:

• It focuses only on attacks that target the network and data link layer. Attacks at the

transport layer - such as a SYN flooding, where a malicious node sends a large

number of SYN packets, or a session hijacking attack, where a malicious node takes

control over a session between two nodes - will go undetected.

• Nodes’ mobility reduces the detection accuracy of the IDS and increases the ratio of

false positives, since it hinders cooperation as the nodes move away from each other.

• It is vulnerable to blackmail attacks, since a malicious node that cooperates might

transmit modified audit data in order to hinder the intrusion detection process, hide

malicious activities or falsely accuse legitimate nodes as malicious.

3.7 Strengths and weaknesses of the cooperative IDS architectures
This section summarizes the basic strengths and weaknesses of the studied cooperative IDS

architectures (see Table 2) that derive from the curried analysis and evaluation, allowing their

comparison. Regarding the strengths of the analyzed architectures, we can infer that: (i) the

majority of them employ multiple detection engines in order to provide increased detection

accuracy and detect a wide set of possible attacks; (ii) some of them attempt to minimize the

imposed processing and communication overheads through task distribution or the exchange

of detection results, instead of voluminous audit data among neighboring nodes; and (iii) a

few of them try to defeat certain attacks by employing trust or secure communication

channels. On the other hand, in regard to their weaknesses, we can deduce that: (i) in the

entire set of the studied architectures the ratio of false positives and detection accuracy are

negatively affected by high nodes’ mobility; (ii) almost all of them impose extra processing

and communication overhead (especially in cases that the underlying network presents high

nodes’ mobility); and (iii) the majority of them are vulnerable to attacks (i.e., man in the

middle, blackmail, etc.).
Table 2. Strengths and weaknesses of the cooperative IDS architectures

IDS architecture Strengths Weaknesses

Cooperative IDS
architecture based
on social network

analysis

The employed social‐based detection
engine incurs less computational
complexity than the conventional

anomaly‐based engines.

The ratio of false positives and detection accuracy are
negatively affected by high nodes’ mobility.

Audit data exchange increases the communication load
among nodes

 14

Audit data exchange creates new security risks

Multi‐layer
cooperative IDS
architecture

The multiple detection engines
employed provide increased

detection accuracy.

The employment of multiple engines at each node
increases the processing overhead.

The ratio of false positives and detection accuracy are
negatively affected by high packet loss and/or high

nodes’ mobility.

The exchange of detection results
among the neighboring nodes

achieves nodes’ cooperation with the
minimum communication overhead.

It is vulnerable to blackmail and man in the middle
attacks

Friend‐assisted IDS
architecture

The multiple detection engines
employed provide increased

detection accuracy.

The employment of multiple engines and trust
management at each node increase both the processing

and communication overhead

It defeats blackmail attacks by
employing trust.

The ratio of false positives and detection accuracy are
negatively affected by limited trust relationships
between nodes and/or high nodes’ mobility

FORK
It reduces the processing load and
conserves the battery power of
nodes through task distribution.

The communication overhead is increased under high
nodes’ mobility

It is vulnerable to blackmail, man in the middle, and
sleep deprivation attacks

Routing anomaly
detection

architecture

The multiple detection engines
employed provide increased
detection accuracy and a fault

tolerant solution

In the initially proposed architecture, the ratio of false
positives and detection accuracy are negatively affected

by high nodes’ mobility

It detects only routing attacks

It imposes extra communication overhead

It is vulnerable to blackmail attacks

LIDF

It is able to detect attacks at multiple
layers (i.e. network and data link

layers)

It does not detect attacks at the transport layer (i.e. SYN
flooding, session hijacking etc.).

The ratio of false positives and detection accuracy are
negatively affected by high nodes’ mobility

It defeats man‐in‐the‐middle attacks
using secure communication

channels
It is vulnerable to blackmail attacks

4 Hierarchical IDS architectures

In the hierarchical IDS architectures the network nodes are divided into cluster-heads and

cluster members. The latter typically run a lightweight local intrusion detection engine, while

the former run a comprehensive engine that processes raw or pre-processed audit data from

all the cluster members.

4.1 A cluster-based intrusion detection architecture with adaptive selection event
triggering

 15

The hierarchical IDS architecture, proposed by Ma and Fang [31], follows a modular

approach based on clusters. The goal is to provide a clustered structure where cluster-heads

are always hosted by nodes with the highest battery power. During network initialization,

each node reports its battery power to its neighbors. Then, the node with the highest available

battery power is elected as cluster-head. A cluster-head re-election process is triggered as

soon as one the following event occurs: (i) a new node joins the network, (ii) the elected

cluster-head leaves the network, or (iii) the battery power of the cluster-head is lower than a

predefined threshold. When a new node joins the network, it should first notify all of its

neighboring nodes. Likewise, if a cluster-head leaves the network, it broadcasts a packet to

notify its cluster-member nodes in order to initiate the cluster-head re-election procedure.

In this IDS architecture, each network node contains four different modules, described

bellow:

a. The network detection module that provides network packet monitoring within a cluster.

It is activated only when the hosting node is elected as cluster-head.

b. The local detection module that monitors the hosting node and generates local alerts if

malicious activities are detected. This module is always active at every node.

c. The resource management module that monitors the energy resources of a node acting as

cluster-head. When the battery power is lower than a predefined threshold, the module

first notifies the monitoring state manage module, and then initiates the cluster-head re-

election procedure.

d. The monitoring state manage module that manages whether the network detection module

is active (i.e., the hosting node is elected as cluster-head).

The proposed architecture presents a number of strengths including:

• The nodes with the highest battery power are elected to serve as cluster-heads.

• It supports two layers of detection (i.e., local and network) providing increased

detection accuracy.

• The cluster-head monitors the network packets exchanged thus, there is no extra

communication overhead between the cluster-head and the cluster members.

On the other hand, it also presents some weaknesses:

• Nodes elected as cluster-heads are unfairly overloaded, since they are responsible for

running both local and network detection modules.

• High nodes’ mobility may reduce the detection accuracy of the architecture and

increase the ratio of false positives, since a number of nodes may move out of the

range of a cluster-head. This limits the information that the network detection module

may use to perform detection.

 16

• The creation and maintenance of clusters and the election of cluster-heads add extra

processing and communication overhead.

• Having a few nodes responsible for intrusion detection may create points of failure, at

least locally in a cluster. If a cluster-head is attacked, crashes, or leaves the cluster or

the network without initiating the re-election procedure, only the local detection

modules will protect the nodes.

• It is vulnerable to man in the middle and blackmail attacks, since the communication

channels between the network nodes are not protected. Thus, a malicious node may

modify the transmitted messages in order to mislead the cluster-head.

• A malicious node may exploit the election procedure in order to be elected as cluster-

head (i.e., by reporting false values of battery power). Similarly, a selfish node may

avoid becoming a cluster-head.

4.2 A hierarchical IDS architecture that uses a game theoretic detection
mechanism

Otrok et al. have proposed a hierarchical approach [29] that attempts to balance the

consumption of resources (which results from intrusion detection tasks) among the nodes of a

cluster. It encourages network nodes to participate in the election of cluster-heads and tries to

prevent elected cluster-heads from misbehaving. In the proposed architecture, nodes can

operate as: (i) cluster-members, which have no intrusion detection responsibilities; (ii)

cluster-heads, which are responsible for intrusion detection within a cluster; or (iii) checkers,

which are cluster-members selected randomly to monitor the cluster-head for selfish or

malicious behavior.

During initialization, the network nodes report the power of their batteries to their

neighboring nodes. Thus, every node creates a list composed of its neighbors’ energy power.

Based on this list, each node votes the node with the highest energy power to be elected as

cluster-head. Then, the elected cluster-head deploys a detection engine that is based on a zero-

sum, non-cooperative game, where the cluster-head and a possible intruder are players. The

cluster-head monitors only the nodes that participated in the election process. Depending on

the battery power of the elected cluster-head, the election process is repeated (after a time-

period elapses) and a new cluster-head is elected. The randomly selected checkers partially

monitor the cluster-head for selfish or malicious behavior. If a checker has some indications

of a cluster-head misbehavior, it cooperates with other checkers to conclude to a decision.

Fig. 4 shows the energy levels of twenty (20) nodes that participate in a carried

simulation of the proposed architecture, at three distinct time moments (i.e., 0 sec, after 1500

sec, and after 3000 sec) [29]. At the beginning of the simulation (0 sec), eight (8) nodes have

energy power between 100% – 80% and twelve (12) nodes between 80% and 60%. After

 17

1500 seconds, three (3) of them maintain energy power between 100% – 80%, four (4)

between 80% and 60%, seven (7) between 60% and 40%, three (3) between 40% and 20%,

and three (3) bellow 20% (but none runs out of battery). After 3000 seconds, two (2) nodes

preserve energy power between 100% and 80%, two (2) of them have energy power between

80% and 60%, none (0) between 60% and 40%, two (2) between 40% and 20%, seven (7)

between 20% and 0% and seven (7) have run out of battery. Therefore, it can be deduced that

this architecture imposes unfair power consumption among the network nodes. Moreover,

since the authors have not taken into account the nodes’ mobility in the carried simulations,

we cannot determine its impact on the detection accuracy and the rate of false positives of the

architecture.

The operational strengths of this architecture are:

• The nodes with the highest battery power are elected to serve as cluster-heads.

• Misbehaving cluster-heads may be detected from the randomly selected checkers that

monitor them.

The main weaknesses of the architecture are:

• Cluster-heads/checker nodes are unfairly overloaded with intrusion detection

responsibilities.

• It creates extra processing and communication overhead due to: (i) the formation and

maintenance of clusters; and (ii) the operation of checker nodes.

• It is vulnerable to man in the middle and blackmail attacks, since the communication

channels between the network nodes are not protected. A malicious node may capture

and re-transmit modified messages in order to mislead the cluster-head.

• A cluster-head poses a single point of failure in each cluster. An attack or

malfunction of the cluster-head hinders intrusion detection at the respective cluster.

• Selfish nodes may exploit the employed election process by reporting false battery

power values in order to participate in the process, but avoid being cluster-heads.

• If a malicious node is selected as a checker, it may falsely accuse a cluster-head for

misbehaving.

 18

Fig. 4: Energy levels of a set of nodes that participate in a carried simulation of the

hierarchical IDS architecture that uses a game theoretic detection mechanism.

4.3 A clustered architecture that uses collective decision for intrusion detection

Marchang and Datta [27] have proposed two intrusion detection architectures that rely on a

voting scheme to perform intrusion detection, instead of employing an anomaly or signature-

based intrusion detection engine. The difference between the two proposed architectures is

that the first, called algorithm for detection in a clique (ADCLI), divides the network into

cliques, while the second, called algorithm for detection in a cluster (ADCLU), divides the

network into clusters. The concept of a clique is similar to that of a cluster with the difference

that each member of a clique is a neighbor with all the others members. In each cluster or

clique, where intrusion takes place independently, a monitoring node is elected using various

schemes and it is rotated periodically. Upon receiving any suspicious or modified message

from a member of its clique/cluster, the monitoring node asks the other clique/cluster

members to initiate the intrusion detection process. During this process, (see Fig. 5) the

monitoring node (i.e., node 1) sends a message to all the other clique/cluster members (node

0, 2, 3), which forward this message to their neighboring clique/cluster members. If any of the

clique/cluster member receives a modified message (or no message at all), it marks the

corresponding node that transmitted the modified message (or did not transmit anything) as

suspicious. In Fig. 5, “R” denotes the correct message created by the monitoring node, while

“W” denotes a modified or tampered message that is transmitted by a malicious node (i.e.,

node 0). Finally, there is a voting stage where every clique/cluster member notifies the

monitoring node which nodes it believes that are suspicious. The monitoring node then

decides which nodes are malicious, based on the votes received from the clique/cluster

members and a threshold value. It is worth noting that the authors have assumed that a

monitoring node can never be malicious and it is changed periodically in order to prevent

unfair use of its resources and battery depletion.

 19

Fig. 5: Clustered IDS architecture using nodes’ voting

The main advantage of these architectures is their low processing and communication

overhead. This is because both of them avoid using bandwidth or computation intensive

operations, such as sharing audit data or deploying anomaly detection algorithms. The only

traffic exchanged between the clique/cluster members are the monitoring and voting

messages of the detection process. On the other hand, both architectures present some

weaknesses, which are analyzed bellow:

• In the performed simulations, the ratio of false positives increased substantially when

packet loss reached or exceeded 9% for the ADCLI and 12% for the ADCLU,

respectively. Therefore, in an environment that is characterized by high packet loss

(e.g., due to high nodes’ mobility or the presence of selfish nodes that drop packets),

both architectures are ineffective.

• The monitoring node poses a single point of failure in the respective clique/cluster. In

case of an attack against the monitoring node or node’s failure, the intrusion detection

process is disabled.

• Any type of attack that does not modify or drop packets (such as man in the middle,

replay, flooding, session hijacking, etc) cannot be detected by these architectures.

• Malicious nodes may exploit the detection scheme by voting legitimate nodes as

malicious.

4.4 An optimal hierarchical intrusion detection architecture

Manousakis et al. [33] have proposed a hierarchical IDS architecture that uses a dynamic tree-

based structure in which detection data are aggregated upwards, from leaf nodes to

authoritative nodes at the root of the hierarchy (i.e., upper layer nodes), and the latter dispatch

directives down to the former (i.e., lower-level nodes). The objectives of this architecture are:

(i) to form a tree-based structure that is robust to network changes and enables the rapid

aggregation of detection data; and (ii) to detect attacks at a level of the hierarchy where

enough aggregated detection data are supplied to reach an accurate decision. The tree-based

structure is established and maintained using two algorithms: the initial solution generation

and the state transition mechanism. The first creates the initial tree-based structure following

 20

two steps. In the first step, a network node is randomly selected to serve as a cluster-head and

its neighbors are assigned as cluster members to the created cluster. The selected cluster-head

represents the highest level of the tree-based hierarchy. In the second step, a cluster-member

of the previously formed cluster(s) is selected as cluster-head and its neighbors that have not

been previously assigned to another cluster are assigned to it as cluster-members. The second

step is repeated until all the network nodes are members of the hierarchical structure.

The state transition mechanism reforms the created tree-based hierarchy, by doing

some permutations, in order to be robust to network changes and enable the rapid aggregation

of detection data. More specifically, it reassigns some of the branches of the tree structure

(i.e., relationships between a cluster-head and cluster members) aiming at two goals: (i) the

reformed tree should have the shorter possible height; and (ii) it is estimated that the reformed

structure will last longer than any other, considering the nodes’ location in the network

topology, the nodes’ speed, and the range of nodes’ transmission. Intrusion detection occurs

at the lowest possible level of the hierarchy, at which there are enough aggregated data that

allow for an accurate decision. If the responsible cluster-head in a cluster is not capable of

detecting an attack accurately, it forwards all the relative detection data to a higher-level

cluster-head, which in turn attempts to accurately detect the attack.

The proposed IDS architecture presents the following strengths:

• It is more robust under high nodes’ mobility, since clusters are selected with the

objective of “lasting longer”.

• It provides increased detection accuracy since it supports multiple levels of detection

(i.e., compared to other single level detection architectures). The collected data are

forwarded upwards until they reach a certain level where intrusion decision can be

achieved.

This architecture also presents some weaknesses:

• Lower level cluster-heads are unfairly overloaded, since they constantly perform

detections, while higher-level cluster-heads perform detections only in cases that a

malicious behavior cannot be resolved at a lower level.

• It adds extra processing and communication overhead in order to create and maintain

the hierarchical structure. Moreover, during permutations (i.e., state transition

mechanism) the several calculations required are performed at each iteration.

• It is vulnerable to man in the middle and blackmail attacks since the communication

channels between the network nodes are not protected. A malicious node may capture

and re-transmit modified messages in order to mislead the cluster-head.

• If a cluster-head is compromised, it may provide false administrative directives to the

lower-level nodes (i.e., false alarms) and falsely characterize legitimate nodes as

 21

malicious, imposing damage to the network. If the randomly elected node at the

highest level of the hierarchy is malicious, it can hinder intrusion detection

throughout the entire network.

• A malicious node or set of nodes may exploit the tree optimization procedure in order

to elect a malicious node as cluster-head (i.e., by reporting false parameters to the

state transmission mechanism). Similarly, a selfish node may avoid becoming a

cluster-head.

4.5 Clustered anomaly detection architecture

H. Deng et al. propose a clustered IDS architecture [24] in which only the cluster-heads carry

out intrusion detection. It focuses on detecting attacks that target the routing infrastructure of

a network and forms clusters using the “Distributed Efficient Clustering Approach” (DECA)

protocol. In this protocol, each node votes as cluster-head its neighboring node that has the

highest number of connections and residual energy. The nodes with the most votes become

cluster-heads. Cluster-heads are re-elected after a predefined period of time. Each cluster-

head employs an anomaly detection engine that monitors: (i) the propagation of protocol

specific routing packets (i.e., hello, error, request, reply, etc.), (ii) the changes in routing

tables, and (iii) the transmission of data packets. These features are monitored either

randomly by selecting a cluster member that transmits its own set of features to the cluster

head, or actively by configuring the cluster head to listen to the traffic generated in the

cluster.

The operational strengths of the clustered anomaly detection architecture can be

summarized bellow:

• Processing workload is fairly distributed among the nodes as the cluster-heads rotate

after a certain period of time.

• Considering nodes’ connectivity in cluster-heads election ensures that the elected

cluster-heads monitor large portions of network activities, facilitating IDS to reach

more accurate decisions.

The main weaknesses of this IDS architecture are:

• The employed detection engine is only capable of detecting routing attacks.

• The basic weaknesses that appear in previously analyzed hierarchical architectures

are also present: (i) cluster-heads may become points of failure; (ii) malicious or

selfish nodes that do not cooperate may hinder or mislead intrusion detection; (iii)

malicious nodes may falsely accuse other legitimate nodes as malicious; (iv)

malicious nodes may exploit the scheme of electing cluster-heads; and (v) the

employed election schemes do not take into account the processing capabilities of

nodes.

 22

4.6 Strengths and weaknesses of the hierarchical IDS architectures

This section summarizes the basic strengths and weaknesses of the studied hierarchical IDS

architectures (see Table 3) that derive from the carried analysis and evaluation, allowing their

comparison. In regard to their strengths, we can deduce that: (i) the majority of them attempts

to increase the detection accuracy (either by employing multiple layers of detection, or by

employing one cluster-head to monitor large portions of a network, or by monitoring the

elected cluster-heads); (ii) some of them focus on the fair distribution of the processing

workload among nodes (either by considering nodes battery power, or by rotating cluster-

heads); and (iii) a few of them try to eliminate the imposed processing and communication

overhead (either by employing a detection mechanism based on voting or by selecting cluster-

heads with the objective of “last longer”). On the other hand, regarding their weaknesses, it

can be realized that: (i) the entire set of the studied hierarchical IDSs is vulnerable to a variety

of attacks (i.e., man in the middle, blackmail, exploitation of the employed election scheme,

malicious nodes may hinder or mislead detection, etc.); (ii) in the majority of them cluster-

heads may become points of failure; (iii) many of them create extra processing and

communication overhead because of the creation and maintenance of clustered structures; (iv)

in some of them the elected cluster-heads are unfairly overloaded; and (v) a few of them

detect only specific types of attacks and are negatively affected by high nodes’ mobility.

Table 3. Strengths and weaknesses of the hierarchical IDS architectures

IDS architecture Strengths Weaknesses

Cluster‐based IDS
architecture with
adaptive selection
event triggering

Nodes with the highest battery
power are elected as to serve as

cluster‐heads.

Nodes elected as cluster‐heads are unfairly overloaded

The ratio of false positives and detection accuracy are
negatively affected by high nodes’ mobility

The creation and maintenance of clusters mainly
creates extra processing and communication overhead

Multiple layers of detection provide
increased detection accuracy

Cluster‐heads may become points of failure.

It is vulnerable to man in the middle and blackmail
attacks

A malicious node may exploit the election scheme to be
elected as cluster‐head

Hierarchical IDS
architecture that uses

a game theoretic
detection mechanism

Nodes with the highest battery
power are elected as to serve as

cluster‐heads.

Nodes elected as cluster‐heads or checkers are unfairly
overloaded

The creation and maintenance of clusters mainly
creates extra processing and communication overhead

It is vulnerable to man in the middle and blackmail
attacks

Cluster‐heads are also monitored
for malicious behavior

Cluster‐heads may become points of failure.

 23

A selfish node may avoid being a cluster head.

A malicious nodes operating as a checker may falsely
accuse legitimate cluster‐heads for misbehaving

Cluster‐based
architecture that a
uses collective

decision detection
mechanism

It induces relatively low processing
and communication overhead, as it

relies on a voting scheme to
perform detection.

The ratio of false positives and the detection accuracy
are negatively affected by high packet loss and/or high

nodes’ mobility

The monitoring node may become point of failure

It detects only specific types of attacks

Malicious nodes may exploit the detection scheme by
voting legitimate nodes as malicious

Optimal hierarchical
IDS architecture

It is more robust under high nodes’
mobility as cluster‐head are

selected with the objective of “last
longer”

Lower level cluster‐heads are unfairly overloaded

The creation and maintenance of clusters mainly
creates extra processing and communication overhead

It is vulnerable to man in the middle and blackmail
attacks

Multiple levels of detection provide
increased detection accuracy

Compromised cluster‐heads may falsely characterize
legitimate nodes as malicious

A malicious node or set of nodes may elect a malicious
node as cluster‐head hindering or misleading intrusion

detection

Clustered anomaly
detection architecture

Fair distribution of the processing
workload among nodes, as cluster‐

heads rotate.

It detects only routing attacks

Cluster‐heads may become points of failure

Malicious or selfish nodes that do not cooperate may
hinder or mislead intrusion detection

The elected cluster‐heads monitor
large portions of the network

activities reaching more accurate
decisions

Malicious nodes may falsely accuse other legitimate
nodes as malicious

A malicious node or set of nodes may elect a malicious
node as cluster‐head hindering or misleading intrusion

detection

The employed election schemes do not take into
account the processing capabilities of nodes

5 A comparative evaluation of the IDS architectures

This section provides a comparative evaluation of the studied IDS architectures using a set of

critical evaluation metrics, which are elaborated bellow. These metrics derive from: (i) the

deployment, architectural, and operational characteristics of MANETs; (ii) the special

requirements of intrusion detection in MANETs; and (iii) the carried analysis that reveals the

most important strengths and weaknesses of the existing IDS architectures.

5.1 Evaluation metrics

 24

MANETs retain a number of differences from traditional wireless networks. First of all,

MANET nodes can be a variety of mobile devices (such as laptops, handheld devices, or

mobile phones), which typically rely on the use of battery power and present various

computational and bandwidth capabilities. The mobile nature of these nodes creates a

dynamic network topology, in which nodes may independently join, leave, or change their

position within the network. Moreover, there is no fixed infrastructure that manages the

network nodes, routing or any other network operation, and thus, network management is

done by the nodes themselves in a cooperative fashion. The nodes that are within radio range

may communicate with each other directly (i.e., one-hop communication); or use intermediate

nodes (i.e., multi-hop communication). Ad-hoc routing protocols, such as DSR and the Ad-

Hoc On-demand Distance Vector (AODV), rely on nodes’ cooperation and trust, and thus, do

not take into account any security precautions [1][9]. In addition, the absence of access points

that connect the nodes to any centralized authority does not leave much room for a clear line

of defense or for a high level of trust between nodes. As a result, MANET nodes are

susceptible to a variety of attacks, which mainly target the transport, network, and data-link

layers of the protocol stack, since these layers are responsible for the most critical

functionality of MANETs (i.e., one-hop/multi-hop communication, routing, etc.) [1].

Since MANETs are typically formed by devices with limited processing and

communication capabilities, IDSs for MANETs should eliminate the processing and

communication overheads that they impose on the network nodes. Moreover, an IDS should

not equally overwhelm network nodes with intrusion detection responsibilities and tasks,

since the later may have a variety of available resources. Therefore, IDS architectures have to

fairly distribute the processing workload among the network nodes. Finally, as the majority of

MANET nodes are mobile, nodes’ mobility should not negatively affect the detection

accuracy and the ratio of false positives of the IDS.

Regarding security, IDSs for MANETs have to satisfy two main objectives that

derive from the definition of IDSs and the operational characteristics of MANETs: (i) detect

all possible attacks, and (ii) do not introduce new security vulnerabilities. The first objective

is more related to the employed detection engine(s) and less to the IDS architectures that we

primarily focus on this paper. The second objective stems from fact that the deployment of

new applications/protocols in a MANET should not augment the existing vulnerabilities of

the network. However, from the carried analysis and evaluation (see sections 2, 3, 4), we can

deduce that the application of the majority of existing IDS architectures for MANETs

introduce new security vulnerabilities. These are mainly associated with the employed

clustering, data exchange, task assignment, and detection mechanisms, which may be

exploited by adversaries and lead to a variety of attacks (i.e., blackmail, man in the middle,

byzantine, etc.) that either mislead or hinder intrusion detection.

 25

Based on the above, we infer the following evaluation metrics for MANET IDSs,

which we divided into two groups: the first group of metrics relates to performance and the

second to security. The performance metrics include: (i) the processing overhead imposed by

an architecture on each network node, (ii) the imposition of communication overhead on the

links that connect the network nodes, (iii) the fair distribution of the processing workload

among the network nodes and (iv) the impact of nodes’ mobility on the detection accuracy

and the ratio of false positives. The security metrics are: (i) the detection of a limited set of

possible attacks, (ii) the occurrence of points of failure, and the vulnerability of an

architecture to (iii) byzantine, (iv) man in the middle and (v) blackmail attacks. Sections 5.2

(also see Table 4) and 5.3 (also see Table 5) present the evaluation of the studied IDS

architectures with respect to the performance and security metrics, respectively. The

performance evaluation takes into account the experimental/simulation results published by

the authors of the studied IDS architectures. However, these results are used to justify the

advantages and drawbacks of the studied IDSs and not to evaluate their performance on a

common basis. Since many details of the proposed algorithms are missing, we could not

perform an experimental analysis of our own. Moreover, methods/techniques that have been

proposed to improve the performance and the provided security services of the considered

architectures are also commented.

5.2 Performance evaluation
Ιt is evident that the processing overhead, imposed by the IDS architectures to the underlying

network nodes, should be kept to a minimum. However, in almost all of the evaluated

architectures, one or more comprehensive detection engines (which are based on signature or

anomaly detection) are employed in every node, without considering the limited processing

capabilities. Exceptions are: (i) the architecture that is based on social network analysis [14];

and (ii) FORK [19] that distributes the required detection tasks in order to conserve

processing and battery resources. However, both of them impose extra communication

overhead (another limitation of MANETs), since nodes have to frequently communicate and

exchange audit data with each other. Moreover, the employed cooperation process and the

mechanism of tasks’ distribution create new security vulnerabilities. Finally, in the first

architecture the rate of false positives and the detection accuracy are negatively affected by

nodes’ mobility.

The hierarchical IDS architectures attempt to minimize the processing overhead by

employing comprehensive or multi-layer detection engines only at some key nodes (i.e.,

cluster-heads), while the remaining nodes use lightweight engines. However, the creation and

maintenance of clustered/hierarchical structures adds extra processing load to the network

nodes, which increases under conditions of relatively high nodes’ mobility. This overhead is

 26

produced by the continuous execution of the clustering functionality, due to the constant

change of cluster members within a cluster. An exception is the clustered architecture that

uses collective decisions for intrusion detection [27], which relies on a voting scheme to

perform detections, instead of an anomaly or signature-based engine. Nevertheless, the ratio

of false positives in this architecture is negatively affected by packet loss and it cannot detect

attacks that do not modify or drop packets.

Stand-alone IDS architectures do not incur any communication overhead, since no

cooperation between IDSs takes place. However, this characteristic limits them in terms of

detection accuracy and the type of attacks that they detect [9]. On the other hand, in both the

cooperative and the hierarchical IDS architectures nodes have to exchange alerts, audit data,

and detection results that impose extra communication overhead to the underlying network. In

the cooperative architectures, cooperation and the related overhead takes place only when a

suspicious behavior cannot be resolved as malicious using only local audit data. The

employment of multiple detection engines per node (either multi-layer detection [16] [22] or

multiple detections [18]) attempts to reduce the communication overhead, since more attacks

are identified locally. However, this approach increases the processing workload at each

node. Moreover, the exchange of detection results, instead of voluminous audit data, also

reduces the communication load among nodes [16]. On the other hand, in the hierarchical IDS

architectures the communication overhead cannot be reduced and takes place when

clustered/hierarchical structures are formed, a cluster-head is elected (or re-elected), the

cluster members move and change clusters, or a cluster-head and the cluster-members

exchange audit data.

The hierarchical architectures impose unfair workload distribution among the network

nodes, since the nodes elected as cluster-heads are overloaded with detection responsibilities.

Election schemes that consider the processing capabilities and battery power of the nodes

attempt to establish a fair distribution of detection responsibilities between nodes. Towards

this direction, the rotation of cluster-heads also tries to minimize the disparity of the workload

distribution among the nodes. On the other hand, this increases both the processing and the

communication overhead, since it entails re-elections of the cluster-heads and the conveyance

of the related detection information (i.e., audit data and detection results) from the old cluster-

heads to the newly elected.

In all the types of IDS architectures (i.e., stand-alone, cooperative, and hierarchical)

nodes’ mobility decreases the detection accuracy and increases the rate of false positives.

Mobility changes the network topology, the clusters’ structure, the routing information

maintained at each node, the created social and trusted relationships among the nodes, etc.,

influencing in that way the intrusion detection process. Moreover, a mobile node may move

away from its neighboring nodes or from a detection engine that resides in a cluster-head,

 27

making cooperation for detection purposes or thorough inspection of the node unavailable. In

order to limit the negative impacts of nodes’ mobility on intrusion detection, adjustable

thresholds have been proposed for stand-alone and cooperative IDS architectures. Moreover,

hierarchical structures robust to network changes have been proposed for hierarchical IDS

architectures. However, the later increases the processing and communication overhead to the

underlying network. Finally, both of the above mentioned solutions create new security risks,

making the respective IDS architectures vulnerable to attacks that are analyzed in the

following section.

Table 4. Performance evaluation

Issue Processing overhead Communication overhead
Unfair workload
distribution

Impacts of nodes’
mobility

Stand‐
Alone

Problem
Every node maintains

one or more
comprehensive engines

N/A N/A

Decreases the
detection accuracy

Increases the rate
of false positives

Solution /
optimization

‐ N/A N/A
Use of adjustable

thresholds

Open issues ‐ N/A N/A

Adjustable
thresholds create
new security
weaknesses

Cooperative

Problem
Every node maintains

one or more
comprehensive engines

Cooperation and exchange
of audit data among
neighboring nodes

N/A

Decreases the
detection accuracy

Increases the rate
of false positives

Solution /
optimization

Detection based on
social network analysis

Distribution of detection

tasks among nodes

Use more than one or
multi‐layer detection

engines

Exchange of detection
results instead of audit

data

N/A
Use of adjustable

thresholds

Open issues

Extra communication
overhead

New security
vulnerabilities

Social network analysis
is negatively affected by

nodes’ mobility

Multiple or multi‐layer
engines increase

processing overhead

The exchange of audit data
also imposes

communication overhead

N/A

Adjustable
thresholds create
new security
weaknesses

Hierarchical

Problem

The creation and
maintenance of

clustered / hierarchical
structures

The formation of clustered
/ hierarchical structures;

The election of cluster‐
heads

The movement of cluster
members

The exchange of audit data
between a cluster‐head
and the cluster‐members

Cluster‐heads
are unfairly
overloaded

Decreases the
detection accuracy

Increases the rate
of false positives

Increases the
processing and
communication

overhead

Solution /
optimization

Use of collective
decisions for intrusion

detection
‐

Election schemes
that consider the
processing and
battery power of

nodes

The rotation of
cluster‐heads

Use of hierarchical
structures that are
robust to network

changes

Open issues Negatively affected by Communication overhead The rotation of The hierarchical

 28

packet loss

It cannot detect attacks
that do not modify or

drop packets

remains cluster‐heads
increases the
processing and
communication

overhead

structures that are
robust to network
changes create

new security risks
and increase
further the

processing and
communication

overhead

5.3 Security evaluation
The stand-alone IDS architectures detect a limited set of attacks, since they rely only on local

audit data to resolve malicious behaviors. More specifically, the battery-based IDS [10]

detects only the attacks that cause power irregularities; while the threshold-based IDS [12]

cannot detect any coordinated attack. On the other hand, the majority of both cooperative and

hierarchical architectures are capable of detecting wider sets of possible attacks. This is

achieved by employing multiple (or multi-layer) detection engines and by enabling

cooperation between neighboring nodes. Exceptions are the routing anomaly detection

architecture [20] (cooperative) and the clustered anomaly detection architecture [24]

(hierarchical) that only detect routing attacks. Moreover, LIDF [22] (cooperative) only detects

attacks that target the network and data link layers; while the cluster architecture that uses

collective decision for intrusion detection [27] (hierarchical) only detects attacks that modify

or drop packets.

The hierarchical IDS architectures present points of failure, since they place the

responsibility of intrusion detection in a subset of elected nodes (i.e., cluster-heads). This fact

makes these nodes potential targets of attacks, and if an attack succeeds then points of failure

occur. Moreover, the hierarchical architectures are vulnerable to byzantine attacks. Such an

attack can take place during the election phase of a cluster-head, where a number of malicious

nodes attempt to elect a malicious node as cluster-head. A malicious cluster-head may hinder

intrusion detection or falsely accuse legitimate nodes as malicious. To address such events,

the game-theoretic IDS [29] uses randomly selected checker nodes to monitor the cluster-

heads for selfish/malicious behaviors. However, such an approach increases the processing

and communication load, since one or more checkers are activated in every cluster. Similarly,

the stand-alone architectures are vulnerable to byzantine attacks, since attacks against a node

by a coordinated group of attackers cannot be determined, due to the lack of cooperation.

Another security weakness that is common for both collaborative architectures (i.e.,

cooperative and hierarchical) is that they are exposed to man in the middle and blackmail

attacks. Both architectures rely on the exchange of intrusion detection information, either

between cooperating nodes or between a cluster-head and the cluster-members, in order to

perform detections. This information might be captured, modified, and retransmitted by a

 29

malicious node resulting in a man in the middle attack. This vulnerability can be avoided by

using encryption on the communication links among nodes. Nevertheless, a malicious node

may transmit false information when requested upon by a cooperating neighbor or by a

cluster-head, resulting in a blackmail attack. The friend-assisted IDS architecture [18]

counters this vulnerability by deploying a trust mechanism. This mechanism denies

cooperation between nodes that have not previously established trusted relationships.

Although this solves the problem of blackmail attacks, it is likely to have an impact on the

IDS’s detection accuracy, especially in case of a network with limited trusted relationships

among nodes. In such a scenario, an IDS might not find enough trustful nodes to collect a

sufficient amount of audit data to detect an attack.

Table 5. Security evaluation

Issue
Detection of a
limited set of

attacks

Points of
failure

Byzantine attack
Man in the middle

attack
Blackmail
attack

Stand‐alone

Problem

Detects a limited
set of attacks due
to the lack of
cooperation

N/A

Coordinated
attacks by multiple
attackers are not

detectable

N/A N/A

Solution /
optimization

‐ N/A ‐ N/A N/A

Open issues ‐ N/A ‐ N/A N/A

Cooperative

Problem
Some solutions
detect a limited
set of attacks

N/A N/A
Nodes’

communication is
susceptible to attacks

A malicious
node may

transmit false
information
upon request

Solution /
optimization

Use more than one
or multi‐layer

detection engines
N/A N/A

Encrypt
communication links

among nodes

Deploy a trust
mechanism

Open issues

Multiple or multi‐
layer engines
increase
processing
overhead

N/A N/A None

It may
decrease the
detection
accuracy

Hierarchical

Problem
Some solutions
detect a limited
set of attacks

Cluster‐heads
become
targets of
attacks

A malicious node
may be elected as

cluster‐head

Nodes’
communication is

susceptible to attacks

A malicious
node may

transmit false
information
upon request

Solution /
optimization

Use more than one
or multi‐layer

detection engines
‐

Use randomly
selected checker

nodes that
monitor cluster‐

heads for
malicious behavior

Encrypt
communication links

among nodes
‐

Open issues

Multiple or multi‐
layer engines
increase
processing
overhead

Cluster‐heads
become
targets of
attacks

The use of checker
nodes increases

the processing and
communication

overhead

None
Realization of
blackmail
attacks

 30

6 Design principles for MANET IDSs

Based on the carried evaluation and comparison, this section presents a set of features and

principles, which have to be addressed and satisfied in future research, when designing and

implementing IDSs for MANETs. It may not be feasible for an IDS to deal with all of them,

but their objective is to stimulate and drive research activities in this area.

IDSs for MANETs should consider the limited resources available in them and aim at

limiting the related processing and communication overheads. Although these limitations are

common to all the types of application/services deployed in MANETs, they become more

critical for IDSs, which require: (a) uninterrupted monitoring of nodes’ and network

activities; and (b) endless processing of audit data in order to detect malicious behaviors. A

possible solution is to assign detection responsibilities to a subset of network nodes (i.e.,

similarly to the hierarchical architectures), instead of operating an individual detection engine

at each network node. However, the creation and maintenance of the employed structure (e.g.,

clustered, tree-based, etc.) should minimize the imposed extra processing and communication

overheads. Moreover, the assigned nodes that perform detection tasks should rotate

periodically, avoiding the unfair workload distribution among nodes.

The detection engines employed in IDSs for MANETs should use sophisticated

algorithms that can detect a variety of possible attacks, avoiding the introduction of high

computational load. A single detection engine should be able to detect attacks at the three

most important layers (e.g., transport, network and data-link) of the protocol stack, since the

majority of attacks in MANETs occur at these layers [1]. If a detection engine focuses only

on one layer, then several attacks (i.e., that occur at the other layers) can go undetected.

Otherwise, the employment of multiple engines (e.g., one for each layer) is required; but this

increases the consumption of the available resources (i.e., battery, processing power, etc). The

more attacks detected locally, the less communication overhead imposed to the underlying

network. Nevertheless, if cooperation is required, then it is better to exchange detection

results, instead of voluminous audit data.

Nodes’ mobility should not negatively affect the detection accuracy and the rate of false

positives of an IDS. However, these negative effects occur in the majority of the existing

IDSs, since their architectures primarily inherited from static or mobile networks, which

differ radically from MANETs with respect to the network topology. The architecture of an

IDS for MANETs should be independent of the underlying network topology. Moreover,

frequent changes in the topology should not cause repeated and extensive changes to the

employed IDS architecture/structure, eliminating thus the execution of the required

grouping/formation functionality, as well as the exchange of the related messages. The latter

 31

interrupt the intrusion detection process, and increase the processing and communication

overhead imposed to the underlying nodes and network.

The deployment of IDSs on MANETs should not introduce new security vulnerabilities

and weaknesses. However, the assignment of detection tasks to a subset of nodes (i.e., cluster-

heads) presents points of failure, in cases that these nodes become targets of attacks, crash,

leave the network, or run out of battery. Moreover, the hierarchical/clustering and election

algorithms used may be exploited by adversaries, either hindering or misleading intrusion

detection. Similarly, the cooperation/communication among detection engines may be

captured or modified. Therefore, the IDSs for MANETs should be fault/attack tolerant, and

the nodes assigned with detection responsibilities should be robust, expendable, and

replaceable. In addition, the employed algorithms and cooperation between detection engines

should be resilient to attacks.

Finally, a proposed IDS should be evaluated and tested under realistic conditions,

which include a variety of nodes’ mobility scenarios and type of attacks, helping us to deduce

certain results about its effectiveness and accuracy. Table 6 summarizes proposed design

principles of IDS for MANETs grouped by the related MANETs characteristics.

Table 6. Proposed design principles of IDS for MANETs grouped by the related MANETs
characteristics

Characteristics of MANETs Proposed design principles

Limited available resources (processing
power, bandwidth, battery power)

Assign intrusion detection responsibilities to a subset of nodes, instead of
operating an individual detection engine at each node

The employed clustering or hierarchical algorithms should minimize the
imposed processing and communication overheads

Detection engines should not introduce high computational overhead

Avoid multiple detection engines at each node

Detect most attacks locally at a node

If required, exchange detection results instead of audit data

Diverse range of devices Fair workload distribution among nodes

Dynamic topology/node’s mobility The architecture of an IDS should be independent of the underlying network
topology

Susceptible to a variety of attacks

A single sophisticated engine should detect a wide range of possible attacks at
the tree most important protocol layers (i.e., transport, network and data link)

IDSs should be fault/attack tolerant

The nodes assigned with detection responsibilities should be robust,
expendable, and replaceable

 32

A proposed IDS should be evaluated and tested under realistic conditions

7 Conclusions

IDSs for MANETs have attracted much attention recently and thus, there are many

publications that propose new IDS solutions or improvements to the existing, focusing on

both IDS architectures and detection engines. This paper has evaluated and compared the

latest and most prominent IDS architectures for MANETs, classified as: (i) stand-alone, (ii)

cooperative, and (ii) hierarchical. Based on the carried analysis, it can be deduced that the

existing IDS architectures for MANETs present significant limitations and weaknesses. This

mainly occurs since the majority of the IDS architectures is inherited from static or mobile

networks, which differ radically from MANETs with respect to the network topology,

available resources and variety of nodes, nodes’ mobility, security vulnerabilities and possible

attacks. The studied IDS architectures were comparatively evaluated using a set of

performance and security metrics. It was concluded that all types (i.e., stand-alone,

cooperative, and hierarchical) strain the limited processing and energy power of the nodes.

Moreover, both the cooperative and the hierarchical architectures deplete the scarce

bandwidth resources of the network. The detection accuracy and the ratio of false positives of

the IDSs are negatively affected by nodes’ mobility, encountered in MANETs. In addition,

many of them are vulnerable to security attacks, which might: (i) hinder the network

operation and the intrusion detection process, (ii) mislead detection, or (iii) falsely

characterize legitimate nodes as malicious. Finally, some of the evaluated IDS architectures

cannot detect all types of attacks, since they focus only on specific types of intrusions.

References

[1] D. Djenouri, L. Khelladi, N. Badache, “A Survey of Security Issues in Mobile Ad Hoc
Networks,” IEEE Communications Surveys, Vol. 7, No. 4, Fourth Quarter 2005.

[2] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion Detection in Wireless Ad Hoc Networks,"
IEEE Wireless Communications, Vol. 11, Issue 1, pp. 48-60, February 2004.

[3] T. Anantvalee, J. Wu, “A Survey on Intrusion Detection in Mobile Ad Hoc Networks,”
Wireless/Mobile Network Security, Springer, Chapter 7, pp. 170 - 196, 2006.

[4] P. Brutch, C. Ko, "Challenges in Intrusion Detection for Wireless Ad-hoc Networks,"
Symposium on Applications and the Internet Workshops (SAINT'03 Workshops), pp. 368,
2003.

[5] B. Sun, L. Osborne, X. Yang, S. Guizani, “Intrusion Detection Techniques in Mobile Ad Hoc
and Wireless Sensor Networks,” IEEE Wireless Communications, vol. 14, issue 5, pp. 56-63,
Oct. 2007.

[6] M. A. Azer, S. M. El-Kassas, and M. S. El-Soudani, “A Survey on Anomaly Detection Methods
for Ad hoc Networks,” Ubiquitous Computing and Communication Journal, vol. 2, issue 3, pp.
67–76, 2005.

 33

[7] Y. Li, and J. Wei, “Guidelines on Selecting Intrusion Detection Methods in MANET”, The 21st
Annual Conference for Information Systems Educators (ISECON), Rhode Island, USA, 4-7
November, 2004.

[8] S. Mandala, A. Ngadi, A.H. Abdullah “A Survey on MANETs Intrusion Detection,”
International Journal of Computer Science and Security, vol. 2 issue: 1, pp. 1-11, August, 2007.

[9] S. Sen and J. A. Clark, "Intrusion Detection in Mobile Ad Hoc Networks". In: Guide to
Wireless Ad Hoc Networks, S. Misra, I. Woungang, S.C. Misra (Eds.), Springer, 2009.

[10] G.A. Jacoby, N.J. Davis, "Mobile Host-Based intrusion Detection and Attack Identification,"
IEEE Wireless Communications, vol. 14, issue 4, pp. 53-60, August 2007.

[11] SANS Inst., “The Twenty Most Critical Internet Security Vulnerabilities,”
http://www.sans.org/top20/, last accessed Jan. 04, 2010.

[12] K. Nadkarni, A. Mishra, "A Novel Intrusion Detection Approach for Wireless Ad Hoc
Networks," IEEE Wireless Communications and Networking Conference (WCNC. 2004), vol.
2, pp. 831 – 836, March 2004.

[13] The Network Simulator (ns-2), http://www.isi.edu/nsnam/ns/, last accessed Jan. 04, 2010.
[14] W. Wang, H. Man, Y. Liu, “A Framework for Intrusion Detection Systems by Social Network

Analysis Methods in Ad Hoc Networks.” Wiley Security and Communication Networks, vol. 2,
issue 6, pp. 669 – 685, April, 2009.

[15] A. Lauf, R. A. Peters, W. H. Robinson, "A Distributed Intrusion Detection System for
Resource-Constrained Devices in Ad Hoc Networks". Elsevier Journal of Ad Hoc Networks,
vol. 8, issue 3, pp. 253-266, May 2010.

[16] S. Bose, S. Bharathimurugan, A. Kannan, “Multi-Layer Integrated Anomaly Intrusion Detection
System for Mobile Ad Hoc Networks,” IEEE ICSCN 2007, MIT Campus, Anna University,
Chennai, India, pp.360-365, February 2007.

[17] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a Library for Parallel Simulation of Large-
Scale Wireless Networks,” Proceedings of the 12th Workshop on Parallel and Distributed
Simulations (PADS ’98), Banff, Canada, pp. 154-161, May, 1998.

[18] S.A. Razak, S.M. Furnell, N.L. Clarke, P.J. Brooke, “Friend-assisted intrusion detection and
response mechanisms for mobile ad hoc networks,“ Elsevier Ad Hoc Networks, vol. 6, issue 7,
pp. 1151 – 1167, September 2008.

[19] C. Ramachandran, S. Misra, M. Obaidat, “FORK: A novel two-pronged strategy for an agent-
based intrusion detection scheme in ad-hoc networks,” Elsevier Computer Communications,
vol. 31, issue 16, Performance Evaluation of Communication Networks (SPECTS 2007), pp.
3855-3869, October 2008.

[20] B. Sun, K. Wu, U. W. Pooch, "Routing anomaly detection in mobile ad hoc networks," IEEE
International Conference on Computer Communications and Networks (ICCCN’03), pp. 25-31,
2003.

[21] B. Sun, K. Wu, Y. Xiao, R. Wang, “Integration of mobility and intrusion detection for wireless
ad hoc networks,” Wiley International Journal of Communication Systems, vol. 20, issue 6, pp.
695 – 721, June 2007.

[22] N. Komninos, C. Douligeris, “LIDF: Layered intrusion detection framework for ad-hoc
networks,” Elsevier Ad Hoc Networks, vol. 7, issue 1, pp. 171 – 182, January 2009.

[23] O. Kachirski and R. Guha, “Effective Intrusion Detection Using Multiple Sensors in Wireless
Ad Hoc Networks," Proceedings of the 36th Annual Hawaii International Conference on System
Sciences (HICSS'03), January 2003.

[24] H. Deng, R. Xu, J. Li, F. Zhang, R. Levy, W. Lee, “Agent-based cooperative anomaly detection
for wireless ad hoc networks,” Proceedings of the 12th Conference on Parallel and Distributed
Systems, pp. 613-620, 2006.

[25] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan, “A cluster-based approach for
routing in dynamic networks,” ACM SIGCOMM Computer Communication Review, vol. 27,
no. 2, pp. 49-65, April 1997.

 34

[26] J. Li, M. Yu and R. Levy, “A distributed efficient clustering approach for ad hoc and sensor
networks,” Proceedings of the International Conference on Mobile Ad-Hoc and Sensor
Networks, 2005.

[27] N. Marchang, R. Datta, "Collaborative techniques for intrusion detection in mobile ad hoc
networks," Elsevier Ad Hoc Networks, vol. 6, issue 4, pp. 508 – 523, June 2008.

[28] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balupari, C-Y.
Tseng, T. Bowen, K. Levitt, J. Rowe, “A general cooperative intrusion detection architecture for
MANETs,” Proceedings of the third IEEE International Workshop on Information Assurance,
pp. 57 – 70, 2005.

[29] H. Otrok, N. Mohammed, L. Wang, M. Debbabi, P. Bhattacharya, “A game-theoretic intrusion
detection model for mobile ad hoc networks,” Elsevier Computer Communications vol. 31,
issue 4, pp. 708-721, March 2008.

[30] D. B. Roy, R. Chaki, N. Chaki, “BHIDS: a new, cluster based algorithm for black-hole IDS,”
Wiley Security and Communication Networks, available online: September 21, 2009.

[31] Chuan-xiang Ma, Ze-ming Fang, "A novel intrusion detection architecture based on adaptive
selection event triggering for mobile ad-hoc networks," IEEE Second International Symposium
on Intelligent Information Technology and Security Informatics, pp.198-201, January 2009.

[32] S. Jha, K. Tan, and R. Maxion, “Markov chains, classifiers, and intrusion detection,”
Proceedings of 14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova
Scotia, Canada, pp. 206-219, 2001.

[33] K. Manousakis, D. Sterne, N. Ivanic, G. Lawler, A. McAuley, “A stochastic approximation
approach for improving intrusion detection data fusion structures,” IEEE Military
Communications Conference (MILCOM 2008), San Diego, CA, pp. 1-7, November 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

