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An extractor is a device that takes a distribution with low maximum probability and with a small
amount of truly random bits creates a nearly uniform distribution. Extractors have surprisingly
many uses in complexity theory.

Ronen Shaltiel takes us on a tour of extractors focusing on recent constructions including the
amazing connection to pseudorandom generators.
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Abstract

Extractors are functions which are able to “extract” random bits from arbitrary distribu-
tions which “contain” sufficient randomness. Explicit constructions of extractors have many
applications in complexity theory and combinatorics.

This manuscript is a survey of recent developments in extractors and focuses on explicit
constructions of extractors following Trevisan’s breakthrough result [Tre99].

1 Introduction

This manuscript attempts to appeal to both experts and newcomers to extractors. It is composed
of two parts. The first part gives a brief introduction to the area. More details can be found in the
excellent previous survey papers [Nis96, NTS99]. The first part also presents the current “state of
the art” in extractor constructions. The second part attempts to complement the previous survey
papers and cover more recent work on extractors. The most exciting development in recent years
is Trevisan’s construction [Tre99] which opened the door to many other constructions which are
surveyed here. The presentation attempts to focus on ideas on an intuitive level and the reader is
referred to the original papers for precise details.



1.1 The initial motivation: Weak random sources

The introduction of probabilistic algorithms and protocols revolutionized complexity theory and
cryptography. In some cases (most notably in cryptography) probabilistic protocols make it possible
to perform tasks that are impossible deterministically. In other cases probabilistic algorithms are
faster, more space efficient or simpler than known deterministic algorithms. We refer the reader
to textbooks such as [MR95, Gol98] for more details. All these algorithms and protocols expect
to be given “truly random bits” (that is a sequence of bits which are uniformly distributed and
independent of each other). A question arises: How can we obtain truly random bits? One solution
is to sample from some physical processes.1 While there are such distributions which are believed to
be “somewhat random” (a popular example are Zener Diodes which produce quantum mechanical
noise) it is unlikely that these distributions produce “truly random bits”. A natural approach is to
use a deterministic procedure called an extractor to extract truly random bits from “weak random
sources”. Here are several examples of weak random sources. All the examples are distributions
over n bit strings which intuitively “contain” k < n bits of randomness.

• A Markov-chain source: A distribution X on {0, 1}n such that X1, · · · , Xn are obtained
by taking n steps on a Markov-chain with transition matrix P = (pij) of constant size in
which for every entry k/n < pij < 1− k/n. Such sources were studied by Blum [Blu84].

• An unpredictable source: A distribution X on {0, 1}n with the property that for every
1 ≤ i ≤ n and b1, · · · , bi−1 ∈ {0, 1}

k/n ≤ Pr[Xi = 1|X1 = b1, . . . , Xi−1 = bi−1] ≤ 1− k/n

In words, every bit is slightly unpredictable given previous bits. Such sources were studied
by Santha and Vazirani [SV86]

• A bit fixing source: A distribution X on {0, 1}n on which n − k bits are fixed and the
remaining k bits are uniform and independent of each other. Such a distribution has an
“embedded” copy of the uniform distribution on k bits. Such sources were studied by Cohen
and Wigderson [CW89].

In all these examples the purpose is to design a single extractor which extracts randomness from
an arbitrary source of the prescribed type. Given an extractor, we can use such distributions when
running probabilistic algorithms and protocols. (We elaborate more on the sources in the examples
above in section 1.8.)

1.2 Preliminaries

Probability distributions: We use the notation x← X to denote sampling an element x from
a distribution X. We also use the notation x ∈R T to denote sampling an element x uniformly
from a set T . For a function f and a distribution X on its domain f(X) denotes the distribution
of sampling x from X and applying f to x. f(·) is used when X is the uniform distribution. Um is
used to denote the uniform distribution on {0, 1}m.

1The other common solution is to replace “truly random bits” by “pseudo-random bits” which are produced by
an efficient procedure called a “pseudo-random generator”. All such “pseudo-random generators” rely on unproven
assumptions. The reader is referred to [Gol98] for a manuscript on pseudo-randomness.



statistical distance: Two distribution P,Q over the same domain T are ε-close if the L1-distance
between them is bounded by 2ε, namely:

1
2
·
∑
x∈T
|P (x)−Q(x)| ≤ ε

An equivalent definition is that |P (A)−Q(A)| ≤ ε for every event A ⊆ T .
The latter formulation explains the usefulness of this notion. The two distributions are almost

indistinguishable.2

1.3 Formal definition of extractors

A general model for weak random sources (that generalizes the examples above) was given by David
Zuckerman [Zuc90, Zuc96b] who suggested to “measure” the amount of randomness a probability
distribution contains by its min-entropy.

Definition 1 (min-entropy) The min-entropy of a distribution X on {0, 1}n (denoted by H∞(x))
is defined by:

H∞(x) = minx∈{0,1}n log
1

Pr[X = x]

In other words, a distribution has min-entropy at least k if the probability of every element is
bounded by 2−k. Intuitively, such a distribution contains k random bits.

Remark 1 It is instructive to compare min-entropy with Shannon-entropy. Whereas Shannon’s en-
tropy measures the amount of randomness a distribution contains on average, min-entropy measures
the amount of randomness on the worst case. This is suitable as we don’t get multiple independent
samples from the distribution and have to do with just one sample.

Consider the goal of designing an extractor for all distributions X with H∞(X) ≥ n− 1. That
is a function E : {0, 1}n → {0, 1} such that for every distribution X on {0, 1}n the distribution
E(X) is a random bit. (Note that here we only want to extract a single random bit.) It is easy to
see that no such function E exists. This is because every such function E has a bit b such that the
set S = {x|E(x) = b} is of size at least 2n−1. It follows that the distribution X which is uniformly
distributed on X has H∞(X) ≥ n− 1 and yet E(X) is fixed to the value b.

Thus, we will need to settle for a weaker concept of extractor. We will allow the extractor to use
an additional input: A “short seed” of truly random bits. We require that for every distribution X
with sufficient min-entropy, the output distribution of the extractor is (close to) uniform. Naturally,
we want the seed to be smaller than the output of the extractor. Extractors were first defined by
Nisan and Zuckerman [NZ96].3

Definition 2 (extractor) A (k, ε)-extractor is a function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

Such that for every distribution X on {0, 1}n with H∞(X) ≥ k the distribution Ext(X,Y ) (where
Y is uniformly distributed in {0, 1}d) is ε-close to the uniform distribution on {0, 1}m.

2This should not be confused with pseudo-randomness where the distributions are indistinguishable to efficient
procedures. The distributions P and Q are statistically indistinguishable and cannot be distinguished even by non-
efficient procedures.

3Actually, the object defined in that paper is a strong extractor see section 1.10.



Naturally, we want the seed length to be as small as possible, and the output length to be as
large as possible. We have not yet addressed the question of how to obtain a short random seed
for running the extractor. This issue is addressed in section 1.6.

We use the following terminology: We refer to n as the length of the source, to k as the min-
entropy threshold and to ε as the error of the extractor. We also refer to the ratio k/n as the entropy
rate of the source X and to the ratio m/k as the fraction of randomness extracted by Ext. The
entropy loss of the extractor is the amount of randomness “lost” in the extraction process, that is
k + d−m.

1.4 What do we want to optimize?

There are five different parameters here. What do we want to achieve? The most common opti-
mization problem is the following one. When given n (the length of the source), k (the min-entropy
threshold) and ε (the required error) we want to construct an extractor with as small as possible
seed length d and as large as possible output length m. This should be achieved for all entropy-rates
and for every choice of error ε. (In actual constructions it is often impossible to optimize both seed
length and output length simultaneously, and one parameter is sacrificed in order to optimize the
other.)

1.5 Explicitness

A standard application of the probabilistic method shows that for every n, k and ε, there exists
a (k, ε)-extractor with seed length d = log(n − k) + 2 log(1/ε) + O(1) and output length m =
k + d − 2 log(1/ε) − O(1). This argument was first used by Sipser [Sip88] (for dispersers), and
also appears in [RTS00]. This extractor has optimal parameters and matches the lower bounds of
[RTS00] (see section 1.12). However, in most applications of extractors it not sufficient to prove
the existence of an extractor and what is required is explicit construction.

Definition 3 (Explicit extractor) For functions k(n), ε(n), d(n),m(n) a family Ext = {Extn}
of functions

Extn : {0, 1}n × {0, 1}d(n) → {0, 1}m(n)

is an explicit (k, ε)-extractor if Ext(x, y) can be computed in polynomial time (in n) and for every
n, Extn is a (k(n), ε(n))-extractor.

1.6 Simulating BPP given access to a weak random source

How does the addition of a truly random seed correspond to the motivation of obtaining random bits
for probabilistic algorithms and protocols? Can we use extractors to run probabilistic algorithms
and protocols using a weak random source? The direct answer is that using an extractor whenever
an algorithm requires m truly random bits, it can be run using an extractor spending only d random
bits when given access to a weak random source. The question arises: How do we get even d << m
truly random bits? While we do not have a general answer to this question, in some cases we can
simulate probabilistic computation using a weak random source without additional random bits.
The most important case is BPP algorithms. Consider a BPP algorithm which computes a boolean
function f(w).4 Given access to a weak random source with sufficient min-entropy we compute
f(w) as follows: On an input w and an element x chosen from the weak random source, we run

4A polynomial time machine A(w, z) such that for every w, Prz[A(w, z) = f(w)] > 2/3.



z = Ext(x, y) for all y ∈ {0, 1}d and gather the answers of A on (w, z) for all seeds. It easy to
see that with high probability (over the choice of x from the weak source) the majority of these
answers agree with f(w).

This algorithm runs in time 2d times the running time of the extractor and the initial algorithm.
This serves as motivation to have as short as possible seed length d. In particular, an explicit
extractor with logarithmic seed length can be used to simulate BPP given access to a weak random
source of sufficient min-entropy.

Note that this method is not suited for interactive protocols: One cannot run the other party
on many messages before deciding which message to send.

1.7 Discussion: why min-entropy?

We have chosen to model “weak random sources” as distributions with high min-entropy. In some
sense, this is the most general choice as it is not hard to show that if randomness can be extracted
from a distribution X then X (is close) to having high min-entropy.5 Thus, it is impossible to
extract randomness from distributions which are not close to having high min-entropy. However,
we pay a price for this general choice: The need to have an additional seed of randomness. Some
restricted families of sources allow deterministic extraction and do not require an additional seed.
Before surveying these families it is important to point out that extractors (for the general definition
of distributions with high min-entropy) have many other applications. In most of these applications
the full generality of min-entropy is required (see section 1.13).

1.8 Restricted families of sources

The attempts to extract randomness from a weak random source can be traced back to von Neu-
mann [vN51] who showed how to use many independent tosses of a biassed coin (with unknown
bias), to obtain a biassed coin. Blum [Blu84] considered sources which are generated by a walk
on a Markov-chain. He showed how to deterministically extract perfect randomness from such a
source. Santha and Vazirani [SV86] showed that it is impossible to deterministically extract even a
single random bit from an unpredictable source (see section 1.1). Vazirani [Vaz87a, Vaz87b] showed
that it is possible to deterministically extract randomness from two such independent sources.
Chor and Goldreich [CG88] showed how to simulate BPP using one block-wise source, and extract
randomness from two independent block-wise sources. Cohen and Wigderson [CW89] considered
several variants of bit-fixing sources and constructed a deterministic disperser for the kind defined
in section 1.1. Mossel and Umans [MU01] construct a deterministic disperser for bit-fixing sources
with k > 3n/4 (even when an adversary gets to choose the value of the bad bits as a function of the
uniform ones). A different approach was taken by Trevisan and Vadhan [TV00] who consider what
they call “samplable sources”. These are sources of high min-entropy which can be efficiently gener-
ated from truly random bits. They construct a deterministic extractor for distributions samplable
by small circuits (assuming some complexity theoretic hardness assumption).

1.9 Dispersers

A disperser is the one-sided analogue of an extractor. The requirement that the output of the
extractor is ε-close to uniform says that for every event A ⊆ {0, 1}m, PrUm [A]−PrExt(X,Ud)(A)| ≤ ε.

5More precisely, for any probability distribution X on {0, 1}n and any function E : {0, 1}n × {0, 1}d → {0, 1}m
(even one that is tailored specifically for X), if the distribution E(X,Ud) is ε-close to the uniform distribution then
X is O(ε)-close to a distribution X ′ with H∞(X ′) ≥ m− d− 1.



In a disperser we omit the absolute value and only require that the probability assigned to A by
the output distribution of a disperser is not much smaller than that of the uniform distribution.
Dispersers were first defined by Sipser [Sip88]. The following definition is equivalent to the one in
the discussion above.

Definition 4 (disperser) A (k, ε)-disperser is a function

Dis : {0, 1}n × {0, 1}d → {0, 1}m

Such that for every distribution X on {0, 1}n with H∞(X) ≥ k the support of the distribution
Ext(X,Y ) (where Y is uniformly distributed in {0, 1}d) is of size at least (1− ε)2m.

Dispersers suffice for simulating RP algorithms (probabilistic algorithms with one-sided error) using
a weak random source.

1.10 Strong extractors

The input of an extractor contains two independent sources of randomness: the source and the seed.
In some applications it is required that the extractor’s output will be uniform even to someone who
sees the seed. A way of enforcing such a condition is to demand that even if the seed is concatenated
to the output the resulting distribution is close to uniform.

Definition 5 (Strong extractor) A (k, ε)-strong extractor is a function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

Such that for every distribution X on {0, 1}n with H∞(X) ≥ k the distribution Y ◦ Ext(X,Y )
(where Y is uniformly distributed in {0, 1}d) is ε-close to the uniform distribution on {0, 1}m.

1.11 Extractors as graphs

Extractors can also be thought of as bipartite graphs where the nodes of the left hand side are
strings of length n and the nodes on the right hand side are strings of length m. Every node x
on the left hand side is connected to all 2d nodes z for which there exists a y ∈ {0, 1}d such that
E(x, y) = z. Note that the out degree of every node on the left hand side is exponential in the seed
length. The definition of extractors guarantees that for every set S ⊆ {0, 1}n of size 2k on the left
hand side and for every set T ⊆ {0, 1}m on the right hand side the number of nodes from S to T
is close to what one expects in a random graph. More precisely:∣∣∣E(S, T )− |S||T |2d−m

∣∣∣ ≤ ε (1)

This behavior resembles that of expander graphs. An important difference is that extractors are
unbalanced bipartite graphs (by that we mean that the two sides differ in size). Another analogy
to expander graphs is that equation (1) above entails that the set S “sees” a 1− ε fraction of the
nodes in the right hand side. (Actually, the definition of dispersers suffices for this conclusion.)
This can be interpreted as “relative expansion”: The volume the set takes in the space it lives in
is expanded from 2k−n to 1− ε.

The effort spent to construct explicit extractors with small seed length can be understood as a
continuation of the effort spent to construct explicit expander graphs with small degree. It should
be noted that in contrast to expander graphs, “extractor graphs” cannot have constant degree (see
section 1.12 for lower bounds on the seed length in extractors).



1.12 Lower bounds

Radhakrishnan and Ta-Shma [RTS00] gave tight lower bounds on the seed length and output length
of extractors and dispersers (extending previous bounds by Nisan and Zuckerman [NZ96]). We say
that an extractor is non-trivial if m ≥ d + 1. In words, the extractor extracts more bits then it
receives.

Lower bounds on seed length: Every non-trivial (k, ε)-extractor with ε ≤ 1/2 has seed length
d ≥ log(n− k) + 2 log(1/ε)−O(1). An almost similar bound holds for dispersers d ≥ log(n− k) +
log(1/ε)−O(1).6.

Lower bound on entropy loss: Recall that the entropy loss of an extractor is k+d−m, that is
the amount of randomness “lost” in the extraction process. A surprising result by [RTS00] is that
every non-trivial (k, ε)-extractor cannot extract all the randomness present in its input and suffers
an entropy loss of 2 log(1/ε) − O(1). Here there’s a substantial difference between extractors and
dispersers and dispersers exhibit entropy loss of only log log(1/ε)−O(1).

It should be noted that both these lower bounds are met (except for the precise constant in the
O(1) term) by the non-explicit construction of extractors using the probabilistic method.

1.13 Applications of extractors

While simulating probabilistic algorithms given access to a weak random source was the main
motivation to extractors, they turn out to have many other applications. Some of these applications
don’t even seem to be connected to randomness and derandomization. Applications of extractors
include:

• “Randomness versus space tradeoffs” [Sip88].

• unconditional constructions of pseudo-random generators for probabilistic algorithms with
small memory [NZ96, INW94, RR99].

• Randomness efficient oblivious sampling and “deterministic amplification” of the success prob-
ability of probabilistic algorithms [Zuc97].

• Hardness of approximation results for CLIQUE [Zuc96a], some ΣP
2 problems [Uma99] and

the VC-dimension [MU01].

• Explicit constructions of depth 2 superconcentrators [WZ99], nonblocking networks and cer-
tain expander graphs with expansion properties stronger than can be obtained using the
eigenvalue method [WZ99].

• Protocols for sorting and selecting in rounds [WZ99] and leader election [Zuc97, RZ98].

• A different proof that BPP ⊆ PH [GZ97].

• Explicit constructions of error correcting codes with strong list decoding properties [TSZ01].

The reader is encouraged to look at the excellent previous survey papers [Nis96, NTS99] which
explain some of these applications. It should be noted that all these applications require explicit
constructions of extractors (for some of them dispersers suffice). In some of the applications im-
proved extractor constructions immediately translate to an in improvement in the application.

6For ε > 1/2 [RTS00] give lower bounds on dispersers of the form d = log(n− k)− log log(1/(1− ε))−O(1).



1.14 Explicit constructions: state of the art

A substantial effort has been spent in recent years trying to explicitly construct optimal extractors.
Table 1 reports many such extractor constructions. For simplicity all the results in the table are
stated for constant error ε. In most cases this implies an extractor with arbitrary ε and roughly the
same parameters by the error reduction technique of [RRV99a]. (Exact details are given in section
6.2). The reader should also note that the constructions are presented in a way which optimizes
the seed length. In most cases the output length of an extractor can be increased at the cost of
increasing the seed length. (Exact details are given in section 6.1). Thus, for example, an extractor
with m = Ω(k) gives one with optimal output length m = k + d − O(1). This is achieved at the
cost of increasing the seed from d to O(d log k).

2 A brief overview of the early constructions

Before surveying more recent developments in extractor constructions we give a brief overview of
the methods and ideas initially used to construct extractors. More details can be found in the
previous survey papers [Nis96, NTS99]. (In fact, these ideas show up in some recent constructions
too).

2.1 The initial hashing-based construction

The first explicit construction appears implicitly in the work of Impagliazzo, Levin and Luby [ILL89]
and is based on Carter-Wegman universal hash functions.

Definition 6 (universal family of hash functions) A collection H of functions h : {0, 1}n →
{0, 1}` is a universal family of hash functions if for any w1 6= w2 ∈ {0, 1}n, and for any x1, x2 ∈
{0, 1}`,

Pr
h∈RH

[h(x1) = w1 ∧ h(x2) = w2] = 2−2`

There are such explicit families of size 22n for every ` ≤ n. Let H = {hy}y∈{0,1}2n be such a
family. It follows from [ILL89] that the function Ext(x, y) = y ◦ hy(x) is an (m + 2 log(1/ε), ε)-
extractor for every ε > 0. Exact details can be found (for example) in [SZ99].

While this extractor has optimal entropy loss (m = k+d−2 log(1/ε)−O(1)), it has a very large
seed length d = O(n). In fact, the seed is longer than the amount of randomness in the source,
and the only reason this makes “economic sense” is because this “investment” is returned with a
“dividend” of random bits extracted from the source.

It was noted by Srinivasan and Zuckerman [SZ99] that universal hash functions can be replaced
by “almost pairwise independent hash functions”, this can reduce the seed length to k+O(log(1/ε)),
which is still very large. The early extractor constructions worked by composing this extractor with
itself in a way that reduces the length of the seed.

2.2 Block-wise sources

One scenario in which extraction with shorter seed can be achieved is when the source distribution
X consists of two independent concatenated distributions X = (X1, X2), where both X1 and X2

contain randomness. One can run an extractor to extract random bits from X2 and use these
bits (which are independent of X1) as seed to extract randomness from X1 with another (strong)
extractor. More formally, an extractor is given by: E(x1, x2; y) = E1(x1, E2(x2, y)). The important



Table 1: Milestones in extractors constructions:
Reference min-entropy threshold seed length output length
[ILL89]∗ any k d = O(n) m = k + d−O(1)
[NZ96] k = Ω(n) d = O(log2 n) m = Ω(k)
[GW97] k > n/2 d = O(n− k) m = k + d−O(1)
[SZ99] any k d = O(k + log n) m = k + d−O(1)
[SZ99] k ≥ n1/2+δ d = O(log2 n) m = kΩ(1)

[Zuc97] k = Ω(n) d = O(log n) m = Ω(k)
[TS96] any k d = logO(1) n m = k

[NTS99]† k = nΩ(1) d = logn · log(i) n m = kΩ(1)

[Tre99] any k d = O( log2 n
log k )) m = k1−δ

[RRV99b] any k d = O(log2 n) m = Ω(k)
[ISW00] any k d = O(log n) m = k1−δ

[RSW00] any k d = O(log n · (log log n)2) m = Ω(k)
[RSW00] any k d = O(log n) m = Ω(k/ log n)
[RVW00] k > n/2 d = logO(1)(n− k) m = k + d−O(1)
[TSUZ01] k ≤ 2log1/(2+δ) n d = O(log n) m = k + d−O(1)
[TSZS01] k ≥ n1/2 d = logn+O(log(log∗ n)) m = k

n1/2 log2 n

[TSZS01] k = Ω(n) d = logn+O(log log n) m = Ω(k)
[SU01]‡ any k d = (1 + α) logn m = k

logO(1/α) n

optimal§ any k d = logn+O(1) m = k + d−O(1)

Table 2: Milestones in dispersers constructions:
Reference min-entropy threshold seed length output length
[SSZ98] k = nΩ(1) d = O(log n) m = kΩ(1)

[TS98] k = nΩ(1) d = O(log n) m = k − logO(1) n

[TSUZ01] any k d = O(log n) m = k

optimal¶ any k d = logn+O(1) m = k + d−O(1)

All the results are stated for constant error ε.

δ > 0 is an arbitrary constant and constants in O(·),Ω(·) may depend on it.

∗[ILL89] has appeared before extractors were defined.
†Here, log(i) is the i times iterated log function. i is an arbitrary constant.
‡Here 0 < α ≤ 1 is an arbitrary function of n and k.
§The existence of an optimal extractor which matches the lower bounds of [RTS97] is proved using the probabilistic

method.
¶The existence of an optimal disperser which matches the lower bounds of [RTS97] is proved using the probabilistic

method.



feature of this extractor is that we only require truly random bits to run E2. Thus, the final ex-
tractor E has a better relation between seed length and output length compared to its components.
(Though, E is not guaranteed to work on a general source).

Can this approach work when X1 and X2 are dependent? As noted implicitly in [NZ96] and
explicitly in [SZ99] it is sufficient that X1, X2 form a block-wise source.

Definition 7 (block-wise sources [CG88]) Two (possibly correlated) distributions X1, X2 form
a block-wise source with min-entropy k1, k2 if:

1. H∞(X1) ≥ k1

2. For every x1, H∞(X2|X1 = x1) ≥ k2. (Here X2|X1 = x1 is the distribution of X2 conditioned
on the event {X1 = x1}).

Intuitively X1, X2 form a block-wise source if X2 contains k2 random bits which are not con-
tained in X1. This definition can be generalized to t > 2 blocks X1, · · · , Xt. It is required that the
i’th block contains randomness even when all previous i−1 blocks are fixed. When the parameters
are chosen correctly, t extractors can be composed together requiring truly random bits only for
the first one.

To get an extractor (for general sources) one needs to give a method of transforming a general
source into a block-wise source using few random bits. The initial extractor construction by Nisan
and Zuckerman [NZ96] introduced such a method, and following work [SZ99, SSZ98, TS96, Zuc97,
TS98, NTS99] gradually improved the parameters by composing extractors with themselves in
various ways. (Some of these constructions only achieve dispersers).

Remark 2 It should be noted that the block-wise source approach is still very promising even though
by now we have other techniques to construct extractors. This is because current explicit construc-
tions cannot optimize both seed length and output length simultaneously. However, when given a
block-wise source, two extractors which optimize the two different parameters can be composed to
give one which optimizes both simultaneously. Thus, to get nearly optimal extractors it is sufficient
to transform a general source into a block source using very few random bits. More details are given
in section 4.2.

3 Trevisan’s extractor

A major breakthrough was made by Trevisan in [Tre99]. He observed that methods used to con-
struct pseudo-random generators from hard functions actually produce extractors. He went on
to construct a direct and simple extractor using the pseudo-random generator constructions of
[NW94, IW97].

3.1 Pseudo-random generators

A pseudo-random generator is a procedure which stretches a short seed of d truly random bits
into a long output of m “pseudo-random” bits. In our setup a distribution is pseudo-random if
no small circuit can distinguish it from the uniform distribution. Pseudo-random generators play
an important role in complexity theory and cryptography, the reader is referred to [Gol98] for a
monograph devoted to this subject.

Pseudo-random generators entail the existence of explicit hard functions, and thus, can only be
constructed assuming unproven assumptions. This “hardness versus randomness” paradigm was



introduced by [BM84, Yao82]. Nisan and Wigderson [NW94] initialized a sequence of such hardness
versus randomness tradeoffs in the following setup:

The Nisan-Wigderson setting: Let ` < s(`) < 2` be some integer function.
Assumption: There exists a (family of) functions f = {f`}, f` : {0, 1}` → {0, 1} such that:

1. f is computable in time 2O(`).

2. For all `, circuits of size s(`) cannot compute f`.7

Conclusion: A pseudo-random generator G : {0, 1}d → {0, 1}m which is computable in time 2O(d)

and for every circuit C of size m, |Pry∈{0,1}d [C(G(y)) = 1] − Prz∈R{0,1}m [C(z) = 1]| ≤ ε. (Here
d,m and ε are functions of `).

As in extractors the goal is to minimize the seed length of the generator and maximize its
output length. A sequence of works [NW94, BFNW93, Imp95, IW97, STV99, ISW99, ISW00,
SU01, Uma02] constructed such generators with gradually improving parameters.

An important milestone was reached by Impagliazzo and Wigderson [IW97]8. They focused on
s(l) = 2Ω(l) and gave a generator with d = O(`), m = s(`)Ω(1) and ε = 1/poly(m). (This implies
that BPP = P if the assumption above holds for s(`) = 2Omega(`)).

3.2 Extractors from pseudo-random generators

Trevisan observed that the [IW97] construction gives an extractor. (It should be noted that before
Trevisan’s paper, pseudo-random generators and extractors were considered to be very different
objects as pseudo-random generators live in the “computational realm” whereas extractors are
“information theoretic” and do not rely on unproven assumptions.)

He observed that the [IW97] construction uses the hard function f as a black box. Thus, we can
think of the function f (represented by its truth table xf ) as an additional input to the generator.
More precisely, let n = 2`, the [IW97] paper constructs a function E : {0, 1}n × {0, 1}d → {0, 1}m
such that whenever x is the truth table of a hard function f : {0, 1}l → {0, 1}, the distribution
E(x, ·) cannot be distinguished from uniform by size m circuits. We will call hardness versus
randomness tradeoffs with this property pseudo-random generator schemes. It turns out that all
known tradeoffs are pseudo-random generator schemes.

The requirement that G is computable in time 2O(l) = nO(1) gives that E is computable in
polynomial time, as the input length of E is of length about n.

The [IW97] construction proves the correctness of the generator by showing that for every
f : {0, 1}l → {0, 1}, given a circuit B of size m which distinguishes the output of E(xf , ·) from
uniform there exists a circuit C of size s which computes f . Thus, if f is hard then the generator
is pseudo-random. Trevisan noticed that this proof uses B as a black box. That is the proof
shows that for every circuit B, (not necessarily small) which distinguishes the output of E(xf , ·)
from uniform there exists a circuit C of size s, which uses B-gates9 and computes f . We call
pseudo-random generator schemes with this property pseudo-random generator schemes with black
box proof. Once again, all existing construction have this property. Trevisan showed that such
hardness versus randomness tradeoffs are extractors.

7We say that a circuit C computes f if for every input w, C(w) = f(w).
8Different constructions and proofs were later given in [STV99, SU01, Uma02].
9A circuit with B gates, for some function B, is a circuit which has gates computing the function B in addition

to the standard boolean gates.



In the following theorem T (s) = 2Θ(s log s) denotes the number of circuits of size s with constant
number of gate types.

Theorem 1 ([Tre99]) Every pseudo-random generator scheme with black box proof (and in par-
ticular the [IW97] construction) is a (log T (s) + log(1/ε), 2ε)-extractor.

Proof: Let E be a pseudo-random generator scheme with black-box proof. Let X be a distribution
on {0, 1}n such that H∞(X) ≥ log T (s)+log(1/ε). To show that E is an extractor, we need to prove
that for every event A the distributions E(X,Ud) and Um assign (roughly) the same probability to
A.

It is instructive to prove this first only for events A of the form: A = {x|B(x) = 1} where B is
a circuit of size m. These are exactly the events which cannot distinguish the output of a pseudo-
random generator from uniform. The next claim shows that with high probability an element
sampled from the source is a truth table of a hard function. It follows that with high probability
over choosing x from X, E(x, ·) is a pseudo-random generator. This implies that events A as above
cannot distinguish E(X,Ud) from uniform.

Claim 1 For x ∈ {0, 1}n, let fx : {0, 1}l → {0, 1} denote the function which truth table is x.

Pr
x←X

[fx cannot be computed by size s circuits] > 1− ε

Proof: Since H∞(X) ≥ log T (s) + log(1/ε) we have that for every x ∈ {0, 1}n, Pr[X = x] ≤
2−(log T (s)+log(1/ε)) = ε/T (s). Thus, with probability 1− ε an x such that fx isn’t computable by a
size s circuit is chosen. •

We now extend this argument to any event A. Fix some event A ⊆ {0, 1}m, we let B(x) be
a circuit (of possibly exponential size) such that B(x) = 1 if and only if x ∈ A. The crucial
observation is that the proof of claim 1 still holds when allowing circuits to use B-gates. (This
is because when B is fixed, the complexity of B does not contribute to the size of a circuit with
B-gates). •

A more careful examination of the proof above shows that we proved that for every event A,
the number of x ∈ {0, 1}n such that A distinguishes E(x, ·) from uniform is small. This was shown
by mapping every such “bad” x to a small circuit which computes fx. However, no computational
features of circuits were used in the proof. We only used the fact that there are few small circuits.
Circuits were only used as “descriptions” of the functions they compute. Any other one to one
mapping of “bad” x’s into a small set would have been sufficient. The following section states this
observation precisely.

3.3 The reconstruction proof technique

Stripping the argument of the previous section from all “computational issues”, Trevisan’s argument
gives a new technique to construct extractors. To state it we use the following theorem by Yao
[Yao82]:

Definition 8 (prediction tests) A function P : {0, 1}i−1 → {0, 1} ε-predicts a distribution Z
on {0, 1}m if Pr[P (Z1, · · · , Zi−1) = Zi] > 1/2 + ε. The distribution Z passes ε-prediction tests if
there’s no P that ε-predicts it.



Theorem 2 ([Yao82]) A distribution which passes ε/m-prediction tests is ε-close to uniform.

In order to construct extractors it is sufficient to analyze the behavior of E(x, ·) for fixed x. Note
that for every x, the distribution E(x, ·) cannot contain more than d random bits and in particular
cannot be close to uniform or unpredictable. What is required is to show that no single P predicts
too many of these distributions.

Definition 9 (bad strings) Fix some E : {0, 1}n × {0, 1}d → {0, 1}m, x ∈ {0, 1}n is ε-bad for
P : {0, 1}i−1 → {0, 1} if P ε/m-predicts the distribution E(x,Ud).

Lemma 1 A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (t+ log(m/ε), 2ε)-extractor if for every
P : {0, 1}i−1 → {0, 1} the number of x ∈ {0, 1}n which are ε-bad for P is at most 2t.

Proof: Let X be a distribution on {0, 1}n with H∞(X) ≥ t+log(m/ε). We will show that E(X,Ud)
passes 2ε/m-prediction tests. Fix some P : {0, 1}i−1 → {0, 1}. There are at most 2t “bad” x’s on
which P ε/m-predicts the distribution E(x,Ud). The total weight of these “bad” x’s according to
X is bounded by 2t · 2−(t+log(m/ε)) = ε/m. On any other x, P predicts the i’th bit with probability
at most ε/m. Thus, when x is chosen according to X, P predicts the i’th bit of E(X,Ud) with
probability at most 2ε/m. •

It will be more convenient to state this lemma in a different form. We will use a specific way
to bound the number of bad x’s. Let T be some small set. We will require that for every predictor
P , there is a mapping FP : {0, 1}n → T such that FP is one to one on x’s which are bad for P .
This indeed insures that there are few bad x’s for every P . A way to show that FP is one to one
on bad x’s is to show that it has an inverse function RP which reconstructs a bad x from FP (x).
Thus, the following lemma follow from lemma 1.

Definition 10 (reconstruction) Given a function E : {0, 1}n × {0, 1}d → {0, 1}m, a (t, ε)-
reconstruction for E is a collection of functions (FP , RP ), where for every 1 ≤ i ≤ m and every
P : {0, 1}i−1 → {0, 1}i, FP : {0, 1}n → {0, 1}t, RP : {0, 1}t → {0, 1}n and for every x ∈ {0, 1}n
which is ε-bad for P :

RP (FP (x)) = x

Corollary 1 (Reconstruction is sufficient for extractors) A function E : {0, 1}n×{0, 1}d →
{0, 1}m that has a (t, ε)-reconstruction is a (t+ log(m/ε), 2ε)-extractor

To summarize, given a function E with an (t, ε)-reconstruction we obtain an extractor with
min-entropy threshold k ≈ t. We will use this approach to describe many extractor constructions.

Remark 3 In corollary 1 it is necessary to have a reconstruction for predictors which ε/m-predict
the distribution E(x, ·) to get an extractor with error ε. This is caused by the hybrid argument in
Yao’s theorem (theorem 2). Ta-Shma, Zuckerman and Safra [TSZS01] give a way to avoid this loss
and construct extractors using reconstruction for predictors which only ε-predict E(x, · · ·). Stating
their result in a general form is somewhat complicated. The main idea is to show that given an
ε-reconstruction for E, the output distribution of E is O(ε)-close to having min-entropy Ω(m).



3.4 The connection to list-decodable error correcting codes

Consider the following function Ê : {0, 1}n̂ × {0, 1}logn̂ → {0, 1}log n̂+1, Ê(x̂, y) = y ◦ x̂y. Let’s try
to show a reconstruction for E. As the first logn bits of the output of E are truly random, we only
need to handle predictors P (y) which attempt to predict x̂y from y. Such a predictor P can be
thought of as a string p ∈ {0, 1}n̂, where py = P (y). P ε-predicts E(x, ·) if and only if the relative
Hamming distance10 between p and x̂ is smaller than 1/2 − ε. The task of the “reconstruction
function” RP is very similar to that of decoding an error correcting code: It needs to reconstruct
x̂ given a string p which is close to it. Consider the following modification: E(x, y) = Ê(x̂, y)
where x̂ is an encoding of x using an error correcting code. By the discussion above decoding the
“corrupted” p to obtain x gives an (0, ε)-reconstruction.

A complication is that if ε < 1/4 then p is a too noisy version of x̂ and it is impossible to correct
so many errors. This leads to a weaker notion of decoding, which will be sufficient for our purposes.

Definition 11 (List decodable codes [Sud97]) A mapping Ecc : {0, 1}n → {0, 1}n̂ is an (ε, `)-
list decodable error correcting code if for every p ∈ {0, 1}n̂, the set

Lp = {x|Ecc(x) and p have relative hamming distance smaller than 1/2− ε}

is of size at most `. (We refer to the set Lp as the list of decodings of p).

In the standard notion of decoding error correcting codes, Lp is a singleton. In other words,
given a corrupted codeword p, it is possible to uniquely decode and identify the sent message. List-
decodable codes only guarantee that given the corrupted codeword p, the sent message x appears
in the list of possible decodings of p. There are explicit constructions of (ε, 1/ε2)-list decodable
codes with n̂ = n/εO(1).

List decoding suffices for our purposes as our final goal is to bound the number of “bad” x’s.
More precisely, an (ε, `)-list decodable code gives an (log `, ε)-reconstruction for the function E
above: We define FP (x) to be the index of x in the list of decodings of p. Thus, t = log |Lp|. The
function RP works by first “computing” Lp, and then using FP (x) to output x.

The construction sketched here already gives a non-trivial extractor, however it is only able to
extract one bit more than it spends.

3.5 Extractors using the Nisan-Wigderson generator

A way to extract more bits is to output the content of x̂ in many positions. We will use a
(ε/m, (m/ε)2)-list decodable codes Ecc : {0, 1}n → {0, 1}n̂. Let x̂ = Ecc(x) denote the encod-
ing of x. There are explicit constructions of such codes with n̂ = (n/ε)O(1). Consider the following
function:

E(x; y1, · · · , ym) = y1, · · · , ym ◦ x̂y1 , · · · , x̂ym

This approach produces an extractor with very long seed (y1, · · · , ym). We will fix this prob-
lem later and show how to “generate” y1, · · · , ym from a short string y. We start by giving a
reconstruction for E.

Let x ∈ {0, 1}n be an arbitrary string. Fix i and a predictor P : {0, 1}i−1 → {0, 1} which
is ε-bad for x. In other words, P ε/m-predicts E(x;Y1, · · · , Ym) (where x is fixed and Y1, · · · , Ym

10The relative Hamming distance between two strings of the same length is the fraction of indices in which they
differ.



are uniformly distributed). In order to use corollary 1, we need to show the existence of functions
FP , RP with RP (FP (x)) = x.

As Y1, · · · , Ym are independent there exists fixings y′1, · · · , y′i−1, y
′
i+1, · · · , y′m to

Y1, · · · , Yi−1, Yi+1, · · · , Ym such that P ε/m-predicts E(x, y′1, · · · , y′i−1, Yi, y
′
i+1, · · · , y′m).11 In other

words, on input
(y′1, · · · , y′i−1, y, y

′
i+1, · · · , y′m ◦ x̂y′1 , · · · , x̂y′i−1

)

P predicts x̂y correctly for a 1/2 + ε/m fraction of y’s. We let

Fp(x) = (y′1, · · · , y′i−1, y
′
i+1, · · · , y′m ◦ x̂y′1 , · · · , x̂y′i−1

)

To complete the argument we need to reconstruct x from FP (x). This is done just like in the
previous section by using P . we construct a string p ∈ {0, 1}n̂,

py = P (y′1, · · · , y′i−1, y, y
′
i+1, · · · , y′m ◦ x̂y′1 , · · · , x̂y′i−1

)

It follows that the relative Hamming distance between p and x̂ is small and we can use list-decoding
to reconstruct x. (As in the previous section we need to also “append” another short string to FP (x):
the index of x in the list Lp of decodings of p.

The Nisan-Wigderson generator: To reduce the seed length we will generate “sufficiently
independent” y1, · · · , ym from much fewer bits using the Nisan-Wigderson generator [NW94].

Definition 12 (weak design [RRV99b]) 12 A collection of sets S1, · · · , Sm ⊆ [d] is a (l, ρ)-weak
design if for every i:

1. |Si| = l.

2.
∑
j<i 2|Si∩Sj | ≤ ρ(m− 1).

Given a (log n̂, ρ)-weak design, a seed y ∈ {0, 1}d is used to compute y1, · · · , ym by yi = y|Si .
More formally:

E(x, y) = y ◦ x̂y|S1
, · · · , x̂y|Sm

Note that now we don’t include y1, · · · , ym in the output. Instead, we put y in the output. This
is because y1, · · · , ym are no longer uniformly distributed.

Theorem 3 ([Tre99]) E is a (ρm+O(log(m/ε)), O(ε))-extractor

The proof follows the argument given above and gives an (ρm+O(log(m/ε)), ε)-reconstruction
for E. Unlike the situation in the beginning of the section, Y1, · · · , Ym are dependent. Mow, it
isn’t possible to fix all the Y1, · · · , Yi−1, Yi+1, · · · , Ym and still have that Yi is uniformly distributed.
Nevertheless, we can fix the value of the `’th coordinate of y (for all ` 6∈ Si). This leaves Yi
uniformly distributed. While the remaining Yj ’s are not completely fixed, it can be shown that
they are limited to a small set of values. This follows from the properties of weak designs.

11Actually, this argument shows more than existence. A random fixing y′1, · · · , y′i−1, y
′
i+1, · · · , y′m is good with non-

negligible probability. More precisely, for an ε/2m fraction of the fixings, P ε/2m-predicts the fixed distribution. We
will make use of this observation in section 4.1.

12Nisan and Wigderson defined a slightly different object called a design, with a stronger second property saying
that for every i 6= j, 2|Si ∩ Sj | ≤ ρ. The weaker notion suffices for their argument and was introduced in [RRV99b].



More precisely, as Yi varies, the random variable Y1, · · · , Yi−1, · · · , Yi+1, · · · , Ym takes values in
a set of size ρm. This follows from the second requirement in the definition of weak designs. (Note
that for every j < i, the fixing has left only |Si ∩ Sj | indices of Yj free, and thus Yj takes only
2|Si∩Sj | different values). FP (x) is now constructed as follows: For all j < i, and for all possible
values a of Yj after the fixing, we append x̂a to FP (x). The argument can continue just as before,
as FP (x) and P uniquely define the string p.

Remark 4 What is the relation between the presentation of Trevisan’s extractor given here, and
the pseudo-random generator based extractor presented in section 3.2? The Impagliazzo-Wigderson
pseudo-random generator construction is exactly the construction presented here, except for the fact
that Ecc is a very specific error correcting code which allows “sub-linear time list-decoding”. (It
should be noted that this is not the way the construction is presented in the Impagliazzo-Wigderson
paper [IW97]. The observation that [IW97] constructs a list-decodable error correcting codes was
explicitly pointed out by Sudan, Trevisan and Vadhan [STV99] who showed that any list-decodable
code with “sub-linear time list-decoding” suffices, and gave a “sub-linear time” algorithm for list-
decoding the “low-degree extension” code). In [Tre99] (which actually appeared before [STV99])
Trevisan pointed out that the very complicated error correcting code constructed by Impagliazzo and
Wigderson (which involved the “low-degree extension” as well as two “derandomized XOR-lemmas”)
can be replaced by any list-decodable code for the purpose of constructing extractors.

3.6 Choosing the parameters

The quality of the extractor in theorem 3 depends on the quality of the weak design. It is desired
to have weak designs in which d ≥ l and ρ ≥ 1 are as small as possible.

Raz, Reingold and Vadhan [RRV99b] gave an explicit construction of (`, ρ)-weak with d =
O( log2 l

log ρ ), as well as almost matching lower bounds.
Note that in the construction ` = log n̂ = O(log(n/ε)). For simplicity, let us fix ε to be some

small constant.

Optimizing the seed length: As d = O(log2 n/ log ρ), in order to get d = O(log n) we have to
set ρ = nΩ(1). This makes t ≥ nΩ(1) (as t ≈ ρm) and gives an extractor in which m = k/nΩ(1) and
in particular the extractor only works when k = nΩ(1).

To get an extractor for k = no(1) we choose ρ = kδ
′

for some small constant δ′ > 0. This leads
to a larger seed of length O(log2 n/ log k) and output length k1−δ for some constant δ > 0. Both
these results were achieved by Trevisan in [Tre99].

By the lower bound of [RRV99b], it is impossible to get a seed of length O(log n) when k = no(1)

by improving the quality of the weak-design. Nevertheless, a more sophisticated application of the
reconstruction argument achieves this goal as we’ll see in section 4.1.

Optimizing the output length: As k ≈ t ≈ ρm, in order to get m = Ω(k) we have to set
ρ = O(1). We now have to set d = O(log2 n). This was first achieved by Raz, Reingold and Vadhan
[RRV99b] who introduced weak-designs to replace a more restricting notion which did not allow
ρ = O(1) when m is large.



4 Condensers

A condenser is a weakening of an extractor. Whereas an extractor outputs a distribution which is
close to uniform, a condenser is only required to output a distribution (which is close to having)
high min-entropy. Naturally, we want the entropy-rate of the output distribution to be larger than
that of the input distribution. Several variants of condensers appeared in different works. The
following definition is taken from [RSW00].

Definition 13 (condenser) A (k, k′, ε)-condenser is a function Con : {0, 1}n×{0, 1}d → {0, 1}n′,
such that for every distribution X on {0, 1}n, the distribution Con(X,Y ) (where Y is uniformly
distributed in {0, 1}d) is ε-close to a distribution X ′ with H∞(X ′) ≥ k′.

Note that an extractor is a special case of a condenser, when n′ = k′.

4.1 Using the reconstruction technique

Corollary 1 shows that a t-reconstruction gives an extractor for k slightly greater than t. As noted
in section 3.6, this is problematic when k is small (say k = no(1)) as it requires that t is also small.
Impagliazzo, Shaltiel and Wigderson [ISW99, ISW00] and later Ta-Shma, Umans and Zuckerman
[TSUZ01] used a t-reconstruction to construct extractors for k < t. The presentation here follows
the [TSUZ01] paper.

The main idea is to use the reconstruction technique to construct condensers. Let E : {0, 1}n×
{0, 1}d → {0, 1}m be the extractor construction of the previous section. In the previous section
we gave a t-reconstruction for E (with d = O(log n) and t = nδm for a small constant δ). An
examination of the proof reveals that the functions FP depends on the predictor P in a very weak
way: For every P , the existence of the function FP was shown by selecting Fv at random from
some small collection of functions {Fv}v∈{0,1}d in a way which does not depend on P . (Recall that
the function FP was determined by fixing some of the indices of the seed y. For every predictor
P , with high probability a random fixing v yields a function Fv : {0, 1}n → {0, 1}t which is “good”
for P . Here “good” means that there exists a function RP : {0, 1}t → {0, 1}n such that on every x
that is bad for P , RP (Fv(x)) = x.) We define Con(x, v) = Fv(x). We will use the reconstruction
technique to show that Con is a condenser.

Let X be a source with H∞(X) = k, for k < m ≤ t. Choosing k < m makes little sense in
extractors. How can an extractor output more random bits than present in its input? The answer is
that it cannot. Therefore, there must be a predictor P which predicts E(X,Ud)) and therefore with
high probability predicts E(x,Ud) when randomly choosing x from X. Thus, with high probability
(over choosing x from X and v from V ) RP (Fv(x)) = x which means that Fv(x) “contains all the
information of x”. This entails that Con(X,Ud) is (close to) having all the randomness of X.13

Remark 5 There’s a slight cheating in this presentation. We claimed that FP doesn’t depend on
P . However, the index of x in the list of decodings of p, which appears in FP (x), does depend on
P . Nevertheless, in this setup we can use (standard) unique decoding instead of list decoding. It
can be shown that when m >> k there exists a predictor P with success greater than 3/4. Such a
predictor defines a string p which is relatively close to x̂, and uniquely specifies x̂.

13The same argument also shows that Y ◦ Con(X,Y ) is close to having k + d random bits. Note, that there’s no
entropy loss here. All the randomness is “extracted”.



Getting an extractor The argument above only gives a condenser. Setting the parameters as
in section 3.6 gives a (k, k, ε)-condenser Con : {0, 1}n×{0, 1}O(logn) → {0, 1}kO(1)

(for constant ε >
0).14 Thus, by running the condenser on the given source, we reduces the problem of constructing
extractors for threshold k = no(1) into that of constructing extractors for threshold k = nΩ(1). In
this range, Trevisan’s extractor has short seed length. This gives an extractor with seed length
O(log n) for k = no(1) and was first achieved in [ISW00].

Using this reduction, we actually get better extractors when k is small, (say k ≤ 2log
1/3n). This

is because after running the condenser we can use extractors with d = O(log3 k) = O(log n) to
extract all the randomness from the source, without paying a penalty in the seed length, this was
achieved in [TSUZ01] improving on a weaker result by [ISW00].

One of the applications of extractors for small min-entropy threshold is a construction of very
good dispersers (for general min-entropy threshold) [TSUZ01]. These dispersers have seed length
O(log n) and entropy-loss O(log n).

4.2 Condensers achieved by attempting to construct block wise sources

In section 2.2 (see remark 2.2) we’ve seen that it is sufficient to “transform” a (general) source into
a block-wise source to construct extractors. (The quality of the constructed extractors constructed
depend on the quality of the transformation, and on the quality of the extractors used to extract
from the block-wise source.) Nisan and Zuckerman [NZ96] gave such a transformation. That is an
explicit construction of a function

T : {0, 1}n × {0, 1}u → {0, 1}n/r × {0, 1}n

which on a source X and random seed y ∈ {0, 1}u produces distributions X1, X2 which form a
block-wise source.15 The proof works by showing that for every source X with H∞(X) ≥ k:

1. X1 (is close to) containing approximately k/r random bits. (The exact bound is Ω(k/r log(n/k))).

2. The joint random variable (X1, X2) contains k random bits.

Loosely speaking, X1, X2 form a block source with min-entropy k1, k2 if X1 contains k1 random bits
and X2 contains k2 random bits which are not contained in X1. To conclude that X1, X2 form a
block source, Nisan and Zuckerman set up the parameters so that k is sufficiently larger than n/r.
By the first property of T , X1 contains approximately k/r random bits. X2 must contain k − n/r
bits which are not contained in X1 as X1 is too short to “steal” all the k bits of randomness. Note
that we want both k/r > 1 and k−n/r > 1 which forces k >

√
n and this method is not applicable

when k is small.
The following idea appeared in [SZ99, NTS99]. (For simplicity let’s set r = 2 and thus X1 is

of length n/2.) Suppose that k is small: k << n/r = n/2. We are not guaranteed that X1, X2

form a block source. Nevertheless, if they don’t, this is because X1 “stole” all the randomness of
X. Thus, X1 is more condensed than X as it contains all the randomness of X in half the length.
This suggests the following condenser construction: When given a source element x, use a short

14Actually, as t = mnδ, one only gets a condenser with n′ ≈ knδ. The condenser reported above is achieved by
running the condenser log logn times. Note that the seed lengths are exponentially decreasing, and thus the the total
length for the log logn seeds is still O(logn).

15The function T chooses n/r indices of x in a random way to give X1, and X2 = X to make sure that no
randomness is lost in this process. Intuitively, one hopes that taking a 1/r-fraction of the indices of the source gives
a source with k/r random bits.



seed to run T and get x1 and x2. Use an additional short seed to run a block-wise source extractor
on x1 and x2 to obtain z, and output (z, x1) which is of length at most n/2 + k ≈ n/2. The
rational is that if X1, X2 form a block-wise source then z is close to uniform and the output is more
condensed than the initial distribution. On the other hand, if X1 and X2 do not form a block-wise
source, then X1 “stole” all the initial randomness and the output is also more condensed. This idea
enabled [SZ99] to give an almost polynomial time simulation of RP with a weak random source of
low min-entropy threshold, and was later used in [NTS99] to construct extractors.

Intuitively, a weakness of this method, is that the condenser only condenses the initial distri-
bution by a little. (In the presentation above n′ ≈ n/2). To get a better condenser (say with
n′ = O(k)) one has to run the basic condenser many times, and use many independent seeds for T .

Reingold, Shaltiel and Wigderson [RSW00] improved the construction of Nisan and Zucker-
man, giving an explicit function T which uses a much shorter seed u, (O(log log n) instead of
O(log n)) and is able to maintain a constant fraction of the initial randomness (Ω(k) instead of
Ω(k/ log(n/k)). This allows repeated condensing at a smaller cost which translates into a better
extractor construction.

5 Extractor based on multivariate polynomial codes

In section 3.4 we observed that using the reconstruction method to construct extractors is related to
(list)-decoding error-correcting codes. It turns out that using properties of specific error-correcting
codes (based on multivariate-polynomials) can be helpful in extractors constructions.16 Ta-Shma,
Zuckerman and Safra [TSZS01] suggested this approach and gave an extremely clean and simple
extractor construction based on Reed-Muller codes.

5.1 The intuition

The reconstruction proof technique suggests the following construction: We denote

N(y) = (y + 1)(modn)

N (j)(y) denotes N successive applications of N and E : {0, 1}n × {0, 1}logn → {0, 1}m is defined
by:

E(x, y) = xy, xN(y), xN(N(y)), · · · , xN(m−1)(y)

Intuitively, this should allow a very simple reconstruction: For every predictor P : {0, 1}i−1 →
{0, 1}, let FP (x) = x1, · · · , xi−1. For every x, saying that P 1-predicts the distribution E(x, ·)
means that for every z:

P (xN−(i−1)(z), xN−(i−2)(z), · · · , xN−(1)(z)) = xz

Thus, given FP (x) we can use P to compute xi, and then use FP (x) and xi to compute xi+1, and
gradually reconstruct x at every point z. This gives a function RP such that RP (FP (x)) = x as
required.

This argument fails because we need to give a reconstruction for predictors P which predict the
next bit only with probability 1/2 + ε/m. Thus, the predictor is only successful on a 1/2 + ε/m-
fraction of points z, and once we reach a point z when it fails the reconstruction process cannot
continue. Ta-Shma, Zuckerman and Safra [TSZS01] used ideas from [STV99] to “error correct” the
predictor’s output and reconstruct x at every point.

16In addition to the constructions covered here, the first use of specific properties of multivariate polynomial codes
was made in [RRV99b] to reduce the error in Trevisan’s extractor.



5.2 Extractors using polynomials with two variables

q-ary extractors: We will be using multivariate polynomials over a field F of size q. It will be
more natural to construct a variant of extractors (called q-ary extractors) and then transform them
into regular extractors.

Definition 14 (q-ary extractor) Let F be a field with q elements. A (k, ε) q-ary extractor is a
function E : {0, 1}n×{0, 1}d → Fm Such that for every distribution X on {0, 1}n with H∞(X) ≥ k
the distribution Ext(X,Ud) is ε-unpredictable.

(In this setup a predictor P is a function P : F i−1 → F and P ε-predicts a distribution
Z1, · · · , Zm if Pr[P (Z1, · · · , Zi−1) = Zi] ≥ ε. A distribution is ε unpredictable if no P ε-predicts it.)

Binary list-decodable error correcting codes can be used to explicitly transform a (k, ε/m) q-ary
extractor E : {0, 1}n × {0, 1}d → Fm into a (regular) (k,O(ε)) extractor E′ : {0, 1}n × {0, 1}d′ →
{0, 1}m where d′ = d+log log q+O(log(m/ε). In other words, given a q-ary extractor for sufficiently
small ε we get a regular extractor with essentially the same parameters.

We will be using the reconstruction proof technique, which also works in this setup. In analogy
to corollary 1 it follows that if E has a (t, ε)-reconstruction then E is a (t + log(1/ε), O(ε)) q-ary
extractor.

The construction: We now present the construction of Ta-Shma, Zuckerman and Safra [TSZS01].
Let F be a field with q elements. The Reed-Muller code maps strings x ∈ {0, 1}n into `-variate
polynomials x̂ of degree h over F . This is done by using x to define the coefficients of x̂. As
an `-variate polynomial of degree h has

(h+`
`

)
coefficients, the mapping x → x̂ is one to one if(h+`

`

)
log q ≥ n. In this section we fix ` = 2 and assume that q is relatively small (say q = nO(1)),

this gives h ≈
√
n.

Consider the following function: E : {0, 1}n × F 2 → Fm.

E(x, y) = x̂(y), x̂(N(y)), x̂(N(N(y))), · · · , x̂(N (m−1)(y))

(Here N : F 2 → F 2 is given by N(a1, a2) = (a1 + 1, a2) and again N (j) denotes j successive
applications of N). We refer to N as the successor function.

The reconstruction: We will give a reconstruction for E following the outline in section 5.1.
For every x ∈ {0, 1}n, we think of a predictor P : F i−1 → F which ε-predicts E(x, ·) as if for
every z, P attempts to predict x̂(z) given N−(i−1)(z), N−(i−2)(z)), · · · , N−1(z) and succeeds for an
ε-fraction of the z’s. We call those strings “good” z’s.

We choose a random line L in F 2, and let L(1), · · · , L(q) denote the q points on that line.
As L(1), · · · , L(q) are pairwise independent, Chebichev’s inequality guarantees that the fraction of
“good” points on the line is with high probability very close to the fraction of good points in F 2.
More precisely, with probability roughly 1/q (over the choice of L) there are qε/2 “good” points on
the line.

We define FP (x) to be the evaluation of x̂ on the i − 1 lines N−1(L), · · · , N−(i−1)(L). (More
formally, FP (x) contains the evaluation of x̂ on all points N−j(L(u)) for 1 ≤ j ≤ i − 1 and
1 ≤ u ≤ h + 1. Note that it is enough to use only h + 1 < q points as x̂ restricted to a line is a
univariate polynomial of degree h and is determined by h+ 1 points.)

As in section 5.1, given FP (x) we can use P to attempt to predict the evaluation of x̂ on
L(1), · · · , L(q). The advantage of our current setup is that the polynomial x̂ restricted to L is a



low-degree univariate polynomial p. Intuitively, when given “noisy” evaluations of a low-degree
univariate polynomial it is possible to uniquely decode and find the correct polynomial. Thus,
we can now “learn” the correct evaluation of x̂ on all points on L. By applying this “decoding
step” we overcome the errors of the predictor P . We can now continue and “learn” the evaluations
of x̂ on the line N(L), (The line which consists of N(L(1)), · · · , N(L(q))). This line is by itself
uniformly distributed (Although it is uniquely determined from L) and the same argument applies.
By “learning” the evaluations of x̂ on L,N(L), N(N(L)), . . . we reconstruct x̂ at every point. Note
that x̂ uniquely specifies x. We have a small probability (roughly 1/q) of failing on each individual
line, and thus by choosing a large enough q, we can do a union bound on all these failure probabilities
and conclude that there exists a line L on which the reconstruction process never fails.

There’s a slight problem in the presentation above. In our setting the evaluations we get on L are
extremely noisy and it is (information theoretically) impossible to uniquely decode. Nevertheless,
this is solved in an analogous way to what we did in the previous section by using the list-decoding
properties of low-degree univariate polynomials. Sudan [Sud97] showed that the Reed-Solomon
code is list-decodable, which in our setting translates into saying that the answers of the predictor
P on L specify a small list of univariate polynomials p1, · · · , p` such that one of them is p. We
append the index of p in this list to FP (x). (Note that we have to append such an index for all
lines L,N(L), N(N(L)), · · ·). (Jumping ahead, in the next section it will be convenient to use a
slightly different strategy, and append to FP (x) the evaluation of x̂ on L(w) where w is a random
point on L. With high probability, p(w) 6= pj(w) for all the “incorrect” pj ’s.)

In addition to simplicity, an advantage of this construction is that the seed length is extremely
short: Not O(log n) but rather (1 + o(1)) log n. It is possible to also get m = Ω(k) (for k = Ω(n))
by combining this extractor with the transformation T of regular sources into block-wise sources
given in [RSW00] (see section 4.2).

5.3 Extractors using polynomials with many variables

The extractor of the previous section used polynomials x̂ with ` = 2 variables. Encoding an n bit
string by such a polynomial requires degree h ≈

√
n. (Recall that we had to satisfy

(h+`
`

)
log q = n).

The final reconstruction has t ≥ hm as FP (x) contains the evaluation of x̂ on m successive lines.
A t-reconstruction gives an extractor with k ≈ t. The bottom line is that the extractor we get has
m ≈ k/

√
n and in particular only works when k ≥

√
n.

A natural way to improve this extractor is to increase `: the number of variables of x̂. In
general, h (the degree of x̂) reduces to h ≈ n1/`−1 when using `-variate polynomials. We may hope
to decrease t ≥ mh and construct better extractors by increasing `.

It is important to notice that the seed y is an input to the polynomial x̂ and is of length ` log q.
Thus, when increasing ` we have to decrease q, and in particular to have seed O(log n) we must
have q = hO(1) ≈ n1/`.

A construction using polynomials with many variables was given by Shaltiel and Umans [SU01].17

The straightforward way of increasing ` in the construction of [TSZS01] actually increases t. The
following modifications are made:

An algebraic approach. What does “successive” mean when ` is large? In the previous section
N(a1, a2) is (a1 + 1, a2). The rational is that starting from a line L and taking successive steps one

17The [TSZS01] paper also has a construction for large ` which achieves weaker extractors.



covers the whole space. However, this geometric approach is problematic.18 It is replaced by an
algebraic ingredient. The vector-space F ` is viewed as the extension field of F . The multiplicative
group of this field has a generator g, and N(v) is defined to be g · v. This indeed has the essential
property that by repeatedly taking successors, we cover the whole space. N is also a linear transform
(over the vector-space) and thus lines are mapped into lines.

We can use the construction and reconstruction of the previous section with this new function
N . The argument can be carried out just the same. The difficulty, is to make the proof work when
increasing `. The main problem is that in every “prediction step” we learn the evaluation of x̂ on
one line. Each line consists of q points, and thus to learn n bits of information we must have at
least n/q predictions steps. As q ≈ n1/l, the number of prediction steps we need is huge when ` is
increased.

Curves instead of lines. Recall that every time we “learn” a new line, the probability of failure
is roughly 1/q ≈ 1/n1/`. When ` is increased, we have too many lines, and thus to many “bad
events” in the union bound.

This is overcome by replacing lines L with degree r curves C.19 The points C(1), · · · , C(q)
are (r + 1)-wise independent and Chebichev’s inequality can be replaced by higher moment tail
inequalities in which the failure probability decreases exponentially in r. The failure probability of
each event in the union bound can be decreased by increasing r, and the union bound holds. Curves
can replace lines in the proof as the multivariate polynomial x̂ restricted to a low-degree curve is
also a low-degree univariate polynomial, and N maps low-degree curves to low-degree curves.

Interleaved reconstruction procedures. There’s an additional cost to using more prediction
steps. Recall that FP (x) contains an evaluation of x̂ at a random point on the curve for any
successive curve of C. As we need at least n/q ≈ n1−1/` such successive curves to cover the whole
space, we get that t (the range of FP ) is huge, and we haven’t gained anything.

To overcome this problem we run two “interleaved” reconstruction procedures. Each uses its
own random curve but we arrange it so that the two curves intersect at a few random points.
The two reconstruction procedures work on their own. However, when one needs the value of
the polynomial at a random point on its curve, it can use the value already calculated by the
other reconstruction procedure instead of relying on FP (x). Thus, FP (x) contains only the initial
evaluations of x̂ needed to get the two interleaved reconstruction procedures started.

More formally, let C1 be a random degree r curve chosen by choosing r+1 random values in F `

and passing a curve through them. The curve C2 is defined to be the degree r curve that coincides
with C1 in half of the r points, and coincides with N(C1) on the other half of the r points. Note
that C2 is also a random curve. We also get that C1 intersects C2 at r/2 random points, and C2

intersects N(C1) at r/2 random points. Thus, every time one of the curves is advanced, we already
know the evaluation of x̂ on (many) random points on the curve.

18When successive points are on a line, then the m output evaluations are evaluations of a low-degree univariate
polynomial. Thus, it is impossible to reduce the degree of the polynomial x̂ below m (as otherwise a predictor for
the extractor will interpolate given some prefix of the output of the extractor and will be able to predict the next
evaluations.)

19A line is a degree one polynomial L : F → F `, and an r degree curve C is a degree r polynomial C : F → F `.



6 Transformations and tradeoffs

6.1 Increasing the output length and achieving optimal entropy loss

Consider an extractor which extracts m < k bit from a source X. Intuitively, as the extractor
did not extract all the randomness there is still some randomness left in the source. Formally,
conditioned on the extractor’s output the source still contains k − m bits of randomness. This
randomness can be extracted using another extractor. (It is important to note that this extractor
should have a min-entropy threshold of k −m and not k.) These bits are independent of the ones
initially extracted. The penalty of this method is that two independent seeds are needed for the
two extractors. This method was first used by Wigderson and Zuckerman [WZ99]. (Better analysis
of this method is given in [RRV99b]).

Applying this idea gives the following tradeoffs between seed length and output length: For any
constant δ > 0, this transformation can be used to transform a (δk, ε)-extractor with m = k/r into
a (k,O(rε))-extractor with m′ = (1− δ)k at the cost of increasing the seed to d′ = O(dr) (here the
hidden constant depends on δ). Thus, an extractor with m = Ω(k) can be transformed into one
with m′ = (1− δ)k multiplying the seed length by a constant.

This method can also be used to go from m = (1−δ)k to m′ = k multiplying the seed length by
O(log k), (this step requires a family extractors with varying min-entropy threshold, as the amount
of randomness in the source vanishes during the repeated extraction process).

Using this method in conjunction with optimal entropy loss extractors for low min-entropy given
by [GW97, SZ99], Raz, Reingold and Vadhan [RRV99b] showed how to transform any extractor
with entropy loss ∆ into one with optimal entropy loss (that is m = k + d − 2 log(1/ε) − O(1))
adding O(∆ + log(1/ε) bits to the seed.

6.2 Error reduction in extractors

Raz, Reingold and Vadhan [RRV99a] gave a general way to transform extractors with large error
into extractors with smaller error. Given a (k, 1/m)-extractor Ext with seed length d and output
lengthm, for every ε′ > 0 (not necessarily a constant) they explicitly construct a (k+O(log(1/ε′), ε′)-
extractor Ext′ with seed length d′ = d+O(log(1/ε′)) and output length m′ = Ω(m)−O(log(1/ε′)).20

Note that by the lower bounds of [RTS00] any extractor with error ε′ must have d ≥ log(1/ε′) and
thus, it is sufficient to construct extractors with small seed for large to achieve a seed length with
“correct dependance” on the error.

A rough sketch of the construction: A key ingredient is the existence of explicit extractors
with “correct dependance” on the error for very large k [Zuc97] and for very small k [SZ99, GW97].
When given an extractor Ext with large error ε the main idea is to differentiate between error
caused by “bad source elements” and error caused by “bad seeds”. The contribution of “bad source
elements” to the final error can be made arbitrarily small by requiring that the source have larger
min-entropy. (Intuitively, the fraction which bad elements take in a “larger” source is smaller.) To
decrease the error caused by “bad seeds” the extractor is run with two independent seeds, thus the
probability of obtaining a “bad seed” in both attempts is about ε2. Intuitively, in one of the two
trials a distribution which is ε2-close to uniform is obtained. By concatenating the two outputs we
get a distribution of length 2m which is ε2-close to having min-entropy m. We can now use an
extractor for large k (k = n/2) to extract this randomness at the “correct dependance” on ε2. The

20Their construction also works starting from constant ε (rather than ε = 1/m) however, in that case d′ =
(d+O(log(1/ε′)))(log logn)O(1).



process described above doubles the seed length (as two independent seeds were chosen). However
by using an extractors for small k, two (sufficiently independent) seeds can be chosen from much
fewer random bits. The error can be reduced to an arbitrary ε′ by repeatedly squaring the error.

6.3 Transforming (regular) extractors into strong extractors

Reingold, Shaltiel and Wigderson [RSW00] gave an explicit transformation of (regular) extractors
into strong extractors. A (k, ε)-extractor with seed length d and output length m is explicitly
transformed into a strong extractor with seed length d′ = d + polylog(d/ε) and m = m − d −
2 log(1/ε)−O(1).

The main idea is that when given a (non-strong) extractor with m >> d, the output of the
extractor contains m − d bits which do not depend on the seed. This is because fixing the d bit
long seed can reduce the amount of randomness in the output by at most d bits. More formally,
it follows that for a large fraction of seeds y, the distribution E(X, y) contains m − d random
bits. This randomness can be extracted with a very short seed using strong extractors for high
min-entropy threshold, and is (close to) being independent from the initial seed.

6.4 Extractors using small space

When using extractors to derandomize bounded-space algorithms it is sometimes beneficial to have
extractors which are computable in small space. Hartman and Raz [HR00] showed how to construct
weak designs in Logspace. It follows that Trevisan’s extractor (as well as its later modifications)
can be computed in Logspace.

Bar-Yossef, Reingold, Shaltiel and Trevisan [BYRST02] showed that extractors cannot be com-
puted online in space significantly smaller than their output length. In contrast, they constructed
dispersers which beat this lower bound.

7 Extractors for high min-entropy

The lower bounds of [RTS00] (see section 1.12) allow a very short seed when k is large. The seed
length in the lower bound is d ≥ log(n−k) whereas all the constructions we’ve seen have d ≥ log n.
We use D to denote n− k, the entropy deficiency of the source. Goldreich and Wigderson [GW97]
used random walks on explicit expander graphs to get an expander with seed length O(D+log(1/ε))
and optimal entropy loss. Reingold, Vadhan and Wigderson [RVW00] construct an extractor with
seed length d = polylog(D/ε). The idea is to split the source into two parts: X1 which contains
the first n − 2D indices of X, and X2 which contains the remaining 2D indices. It follows that
X1, X2 form a block-wise source with min-entropy n − 3D,D. The reasoning is similar to that
done in section 4.2: X1 must contain n− 3D random bits (even if it suffers the D bit deficiency),
and is too short to steal all the randomness from X2. Randomness can be extracted from X1, X2

by extracting D random bits from X2 and then using these as seed to the Goldreich-Wigderson
extractor which is run on X1.

Using this approach loses gives an entropy loss of D. The main contribution of [RVW00] is a
way to perform this argument without suffering this loss.



8 Open problems

The most interesting open problem is to construct optimal extractors. The next milestone to achieve
seems to be achieving seed length d = O(log n) and output length m = Ω(k) for all thresholds k.
(This has already been achieved for k ≤ 2log1−o(1) n by [TSUZ01] and for k = Ω(n) by [Zuc97]).
Concrete directions are:

• Construct a transformation which uses O(log n) random bits to transform general sources
into block wise sources where the first block contains Ω(k) random bits (see remark 2).

• Actually, using [RSW00] it is sufficient to construct a function B : {0, 1}n×{0, 1}O(log logn) →
{0, 1}n/ logn such that for every X with H∞(X) ≥ k B(X, ·) is 1/2 log n-close to containing
Ω(k) random bits. (To see that this suffices, requires a more careful examination of [RSW00]
than the one given in section 4.2).

• Reduce t in the reconstruction of the multivariate-polynomials extractors. In particular, can
we do better than t ≈ mh?
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