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Abstract: For suitable composite modulus n and 
suitable base a, the discrete logarithm hash func- 
tion x + ax mod n is collision free and one way if 
factoring n is hard. Further results on the rela- 
tion between the discrete logarithm problem and 
factoring are given. Some complexity theory issues 
are considered. 

1 Introduction 

A hash function is a m a p 8  (0, 1)'- (0, 1)' where s t. 
A collision for f is a pair of unequal x, y E (0, 1)* with 
f ( x )  = fk). f is collision free if finding a collision for f is 
hard, and f is one way iff is easy to compute but hard to 
invert. Hash functions that are one way and collision free 
are used in cryptography for the construction of digital 
signature schemes [4]. 

The discrete logarithm (DL) problem with modulus n 
and base a is that of solving w = ax mod n for the integer 
x when the integers a, n, w are given, and in general is a 
hard problem. (Integers will always be nonnegative). 

The main purpose of this paper is to examine the con- 
ditions under which the DL problem with a composite 
modulus can be used to obtain a hash function that is 
collision free and one way. In doing so we give results 
that deepen our understanding of the relation between 
the DL problem and factoring. These results have a 
number theoretic interest in their own right, and given 
the increasing use of the DL problem in cryptography, 
References 2 and 12, they may well turn out to have a 
cryptographic value. A second purpose is to discuss some 
complexity theory issues, to clarify what hard should 
mean in the definitions of collision free and one way 
when these terms are used in the context of cryptographic 
hash functions. These issues are important, since some 
definitions of one way given in the literature, e.g. Refer- 
ence 14, are not appropriate for hash functions used in 
signature schemes. 

Accordingly we define a DL hash function with 
modulus n and base a to be a function f: S + T given by 
f ( x )  = ax mod n, where n is a t-bit integer, a is an integer 
coprime to n, S is the set of integers <2" for some s > t, 
and T is the set of integers <2'. Binary strings may be 
used as inputs to f by viewing them as integers and 
avoiding trivial collisions by prefixing leading zeros with 
a '1'. 

Computing a DL hash function is slow compared to 
block cipher hashing [4], taFng qs) t-bit modular multi- 
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plications for an s-bit input and t-bit output, but this is 
just about practical, and no other practical hash function 
yet proposed can be proven collision free and one way. 

We use the following notation. Z ,  denotes the integers 
modulo n, and Z: the multiplicative group of those 
a E Z ,  which are coprime to n. Thus, the order of a E Z: 
is the least positive I with a' = 1 mod n. 

Our results are summarised as follows. We will shortly 
define a DL-strong integer n, and a DL-strong base a for 
n. Accepting this terminology for the moment, let f be a 
DL hash function with modulus n and base a. Then 

(a) If n is a DL-strong integer then almost all a E Z: 
are DL-strong bases for n, and the remaining ones either 
permit the easy factorisation of n or have very small 
order in Z: , when f is easy to invert. 

(b) If n is a DL-strong integer, and a is a DL-strong 
base for n, then knowledge of a collision forfpermits the 
easy factorisation of n. 

(c) If F is a hash function family whose instances are 
DL hash functions with DL-strong modulus, then pro- 
vided the set of moduli of F is hard to factor, F is colli- 
sion free, and one way in two different senses. 

(d) Almost all n for which a factor cannot be found 
easily by the Pollard p - 1 method [lo] have the pro- 
perty that for almost all a E Z: , collisions for f reveal a 
factor of n. This implies that (c) remains true even if the 
moduli of F are not DL-strong. 

Results (a) and (b) give conditions for f to be collision 
free, and are nonasymptotic in nature, in spite of the 
'almost all' in (a), because (b) throws the complexity 
theory considerations onto the factorisation problem. 

Proving that a function is one way cannot be done 
without a complexity theory setting, so this is introduced 
before proving result (c). We define a hash function 
family F and say what it means for F to be collision free 
and one way. We show that under suitable conditions 
collision free implies one way, and in fact give a lemma 
relating several conditions that can be imposed on hash 
function families which proves rather more. We define a 
hard to factor set of integers, and use our lemma to prove 
result (c). 

Result (4 fills a gap in previous knowledge, by 
showing effectively that if n is hard to factor, then the DL 
problem with modulus n is hard for almost all bases. 

The following work is related to ours. Bach [l] shows 
that for any integer n, and for at least half the members 
a E Z: , finding a collision for f permits the easy factor- 
isation of n. McCurley [SI and Shmuely [ll] consider 
the Dice-Hellman (DH) problem [5 ]  with modulus n 
and base a, which is certainly easy if the DL problem 
with the same modulus and base is easy. They show that 
if n is suitably chosen and a has odd order in Z: then the 
DH problem is hard if factoring such n is hard. However, 
at most half the members of Z: have this property. 
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Damgard [3] has considered the question of when colli- 
sion free implies one way. 

2 Number theory preliminaries 

For an integer n, the Euler function 4(n)  is defined to be 
the order of the group Z:, and the Carmichael function 
A(n) is defined to be the largest order that any member of 
Z: can have. For odd n they can be calculated from the 
prime factorisation of n as follows. For an odd prime p ,  
4(f) = d(f) = p e - ' ( p  - 1). In particular, if a E 2: then 
aP- l  = 1 mod p .  If P and Q are coprime and odd, then 

Icm and gcd to denote least common multiple and great- 
est common divisor.) 

The following result from Miller [9] and Bach [l] 
shows that if n is a t-bit odd integer with at least two 
distinct prime factors, then an s-bit multiple of L(n), or of 
&n), can be used to find a factor of n with probability at 
least 0.5 in at most 2s modular multiplications and one 
gcd computation of t-bit integers. 

WQ) = 4(PM(Qb and WQ) = Ia"(P), 4(Q)). (We use 

Lemma I .  (Miller-Bach) 
Let the odd integer n have at least two distinct prime 
factors, and let x # 0 be a multiple of d(n). Pick a E 2:. 
Write x = 2"z, z odd. Define zo = a' mod n, and zi = 
z:-, mod n, i = 1, 2, . . . . Let r be minimal with z ,  = 1. 
For at least half the choices of a, a'(")'' # _+ 1 mod n, and 
for these choices of a, r # 0 and gcd (z,-, - 1, n) is a 
non-trivial factor of n. 

3 DL-strong integers and bases 

Definitions: A DL-strong t-bit integer n is a product of 
odd primes p ,  q for which p - 1 = 2up1,  q - 1 = 2uq,, 
where p , ,  q ,  are odd primes, p ,  q ,  p , .  q l ,  are large and 
distinct, and U, U are small. A DL-strong base for n is an 
a E 2: whose order is a multiple of p l q , .  A strong DL 
hash function is one with DL-strong modulus and base. 
We call n DL-superstrong if p and q are congruent to 
3 mod 4, and p + 1 and q + 1 both have a large prime 
factor. 

For theorems 1 and 2 small and large can be left unde- 
fined, but the significance of these theorems can be appre- 
ciated by thinking of small as < l o 0 0  and large as >P4.  
For theorem 3 smallparge mean polynomially/ 
nonpolynomially bounded in t .  

DL-superstrong integers are widely believed to be 
hard to factor. The condition on p + 1 and q + 1 is to 
avoid factorisation by the Williams p + 1 method [13]. 

DL-strong bases for a DL-strong integer n are those 
that have very large order in 2:. The following theorem 
shows that almost all a E 2: are DL-strong bases for n, 
and those that are not either reveal the factors of n, or 
have very small order in Z,*, when the DL hash function 
with modulus n and base a is easy to invert. 

Theorem I :  Let n be a product of odd primes p,  q for 
which p - 1 = 2up,,  q - 1 = 2uq,, where p , ,  q ,  are odd 
primes, and p,  q ,  p , ,  q ,  are distinct and coprime to U, U .  

Let a E Z:, and let d = gcd (U, U ) .  Then 
(a)  The proportion of members of 2: whose order is 

not a multiple of p l q ,  IS l/p, + l / q l  - l / p , q , .  
(b) If the order of a IS not a multiple of p , q ,  then either 

one of gcd (a'" - 1, n), gcd (a'" - 1, n), gcd (ad - 1 ,  n) is a 
nontrivial factor of n, or ad = f 1 mod n. 
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Proof: c 

(a) This follows from the primary decomposition 
theorem for abelian groups [7], noting that Zt is the 
direct product of a group of order 4uu and two cyclic 
groups of orders p ,  and q l .  

(b) First, @ " p - l , q - l )  = aZY"plql/d = 1 mod n. Suppose 
the order of a is not a multiple of p , .  Then a'y"4'id = 
I mod n, and since uq,/d is coprime to p - 1 this means 
a'" = 1 mod p .  On the other hand if the order of a is a 
multiple of q ,  then a'" # 1 mod n. Thus, if the order of a 
is a multiple of q ,  but not of p ,  then gcd (a'" - 1,  n) = p,  
and likewise if the order of a is a multiple ofp, but not of 
q ,  then gcd (a'" - 1, n) = q .  If the order of a is not a 
multiple of either p 1  or q ,  then either one of gcd (a2" - 1, 
n), gcd (a'" - 1, n) is a factor of n, or else 

- a'" = 1 mod n. In the latter case a'' = 1 mod n, 
and unless ad = & 1 mod n, this means gcd (ad - 1, n) is a 
factor of n. 

4 

To show that a collision for the DL hash function with 
modulus n and base a can be used to factor n, it is sui% 
cient to show that knowledge of a nonzero x with 
ax = 1 mod n permits the easy factorisation of n. For DL- 
strong moduli and bases this is guaranteed by the follow- 
ing theorem. 

Theorem 2: Let n be a t-bit product of distinct odd 
primes p ,  q for which p - 1 = 2up,  and q - 1 = 2uq,, 
where p l .  4 ,  are distinct odd primes. Let a E Z :  and 
suppose the order of a is a multiple of p , q , .  Let x # 0 
satisfy a" = 1 mod n, and suppose 4uvx is s-bit. Then 
there is an algorithm with input a, n, x that outputs the 
factors of n with probability at least 0.5 in at most 2uus 
modular multiplications and one gcd computation of 
t-bit integers. 

Proof: Since the order of a is a multiple of p , q ,  it follows 
that 4uux is a multiple of (p - 1Nq - I), which is 4(n). 
Thus a nonzero multiple y of #(n) can be found by con- 
sidering k x  for at most uu values of k, y will have at most 
s bits, and the result follows from the Miller-Bach lemma. 

i 

- 

Strong DL hash function is collision free 

5 

If Alice is a cryptographer wanting to use a DL hash 
function f to hash binary strings then she will want to 
know that if she chooses an input tof, an adversary given 
the resulting output will almost always find it hard to 
compute any corresponding input. However if Bob is a 
number theorist wanting to know whether the DL 
problem with the modulus and base off is hard he will 
want to know that if he chooses an output from f then 
it will almost always be hard to compute any corres- 
ponding input. Alice's requirements lead to the standard 
definition of one way, but Bob's lead to a different 
concept which we call output one way. It turns out that 
for the DL hash function the two concepts of one way 
coincide, and in future applications Alice may be able to 
make use of this fact. Note that Alice's adversary should 
fail for almost all inputs t o t  The definition of one way 
given by Yao [14]  would require only that failure occurs 
for a significant proportion of inputs, and that is clearly 
unacceptable iffis used as part of a signature scheme [4]. 

We will assume that Alice and Bob make their choices 
using a uniform probability distribution, and we will 
accordingly use the term nonnegligible in the following 
way. If {S,}, { Tm}, m = 1, 2, . . . , are infinite families of 

Two definitions of one way 
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finite sets, then when we say T, is a nonnegligible subset 

in, T, consists of a fraction > l/P(m) of the members of 
of S, we mean there is a polynomial P such that for each 

S,, and we will refer to this fraction as being non- 
negligible. By 'almost all' we will mean all but a negligi- 
ble fraction. 

6 Hash function families 

The following definition of a hash function family takes 
its cue from one given by Damgard [3], but differs from 
his in a number of respects. It is followed by definitions 
of six conditions ( aHf )  that can be imposed on such 
families, and a lemma relating these conditions. Algo- 
rithms may be probabalistic. 

We will use the following notation. Iff:  S + T is a 
function, and J is a subset of T, then f ~ ' ( J )  denotes the 
inverse image of J under f: For any finite set X, 1x1 
denotes the number of members of X. 

DeJinition: A hash function family F is an infinite family 
{F,} of finite sets, m = 1, 2, . . ., and two functions s, 
t :  N 4 N ,  polynomially bounded both above and below, 
with s(m) > t(m), m > m,. Here N denotes the natural 
numbers. A member of F, is a function f: S + T ,  where 
S = (0, 1}"'"), T = {O, I}'("'). We refer to f as an instance 
of F of size m. We include in the definition that IF,, ,  is 
not polynomially bounded in m, but that there are poly- 
nomial in m algorithms both to select polynomially in m 
many instances of size m, and to compute an instance of 
size m. We also impose the condition that for almost all 
instances f: S + T of size m, 1 f(S) I is not polynomially 
bounded in m. ('Almost all' outputs off would not make 
sense otherwise.) 

(a) F is collision free if there is no polynomial in m 
algorithm to find collisions for F that succeeds for a non- 
negligible proportion of instances of F of size m. 

(b) F has many collisions if almost all instances 
f: S + T of F of size m have the property that for almost 
all x E S there is a y  E S,  y # x, withf(x) = f ( y ) .  

(c) F is one way if there is no polynomial in m algo- 
rithm to invert F which for a nonnegligible proportion of 
instances f: S + T of F of size m succeeds on the images 
undtrfof a nonnegligible subset of S. 

(d) F is output one way if there is no polynomial in m 
algorithm to invert F which for a nonnegligible propor- 
tion of instances f: S + T of F of size m succeeds on a 
nonnegligible subset off(S). 

(e) F is quasiperiodic if for almost all instances 
f : S + T o f F o f s i z e m t h e r e i s a n r >  1 suchthatfisan 
r :  1 map from a nonnegligible subset of S ontof(S). 
(f) F preserves nonnegligibility if for almost all 

instancesf: S + T of F of size m, the inverse image under 
f of a nonnegligible subset of f ( S )  is a nonnegligible 
subset of S. 

Lemma 2 : 
(i) Collision free + many collisions 3 one way. 
(ii) One way + preserves nonnegligibility -output one 

way. 
(iii) Quasiperiodic * preserves nonnegligibility + 

many collisions. 

Proof: Let F be a hash function family, and f: S + T be 
an instance of F of size m. 

(i) Choose n E S uniformly at random and compute 
z =f(x). If F is not one way there is a polynomial in m 
algorithm to invert F which, with nonnegligible probabil- 
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ity, finds y E S with z = f ( y ) .  If also F has many collisions 
then x # y with probability at least almost 1/2, which 
means F is not collision free. A weaker result not 
requiring the many collisions property was given by 
Damgard [3]. A preprint of his paper attempted to prove 
the stronger version given here without the many colli- 
sions property, prompting Gibson [6] to give an example 
showing that this is required. 

(ii) This follows immediately from the definitions. 
(iii) Suppose there is an r > 1 such thatfis an r :  1 map 

from a nonnegligible subset X of S onto f(S). Then 
clearly the many collisions property applies to f: Now let 
J be a nonnegligible subset off@), and let I = f - ' ( J ) .  
Then 

I I l l l S l =  l I l / lX l  x I X l l l S l  

which is nonnegligible. 

7 Strong DL hash function family is one way 

DeJinition: A set D of integers is hard to factor if the 
number of m-bit members of D is not polynomially 
bounded in m, it is easy to select polynomially in m many 
m-bit members of D, but every polynomial in m factoring 
algorithm fails for almost all m-bit members of D. 

Of course we do not know whether such a set exists, 
but the set of DL-superstrong integers defined in Section 
3 is a good candidate. 

Theorem 3: Let D be a hard to factor set of DL-strong 
integers. Let s: N + N  be polynomially bounded with 
s(m) > m, where N denotes the natural numbers, and let 
F be the hash function family whose instances of size m 
are all the functions f: (0, l}s("' + (0, 1)" given by 
f(x) = a' mod n, where n is an m-bit member of D, and a 
is a DL-strong base for n. Then F is collision free, one 
way, and output one way. 

Proof: Theorem 2 shows F is collision free, it is easy to 
show it is quasiperiodic, so by Lemma 2 it is both forms 
of one way. 

Theorem 1 means we can drop the requirement that a 
be DL-strong for n. Theorem 4 implies that we can even 
drop the requirement that members of D be DL-strong ! 

8 

We sketch below generalisations of theorems l(a) and 2 
that apply to integers n with the property that for every 
prime factor p of n, p - 1 has a large prime factor. We 
show that if n has this property then for almost all a €  
Z:, collisions for a DL hash function with modulus n 

and base a reveal a factor of n. Now if n does not have 
this property a factor of n can almost certainly be found 
easily by the Pollard p - 1 method [lo]. Thus our results 
imply that if F is a hash function family of DL hash func- 
tions with a hard to factor set of moduli, then F is 
collision free and one way. 

Theorem 4 :  Let c, d be positive integers with c i d .  Let 
the odd t-bit integer n have k > 1 distinct prime factors, 
and suppose that for each prime factor p of n, p - 1 is of 
the form 2up1, where U < c, and all the prime factors of 
p1 are l d .  Then 

(a) The Carmichael function A(n) is of the form ZUP, 
where U < ck, any prime factors of U are <c, and all the 
prime factors of P are > d .  

DL hash functions with hard to factor moduli 
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(b) The proportion of members of Z: whose order is 
not a multiple of P is less than the sum of the reciprocals 
of the distinct prime factors of P. 

(c) If the order of a E Z: is a multiple of P,  x # 0 
satisfies a” = 1 mod n, and 2 U x  is s-bit, then there is an 
algorithm with input a, n, x that outputs a factor of n 
with probability 30.5 in at most 2Us modular multipli- 
cations and one gcd computation of t-bit integers. 

Proof (sketch): 
(a) This follows immediately from the way A(n) is cal- 

culated. 
(b) This follows from the decomposition of Z: into a 

direct product of cyclic groups of prime power order [7], 
noting that these orders must divide 2UP, and that 2U is 
coprime to P. 

(c) Apply the Miller-Bach lemma, noting that 2 U x  is a 
multiple of A(n). 
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