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a b s t r a c t

The network topology has lately proved to be critical to the appearance of traffic
congestion, with scale-free networks being the less affected at high volumes of traffic.
Here, the congestion dynamics are investigated for a class of networks that has
experienced a resurgence of interest, the networks based on the gravitymodel. In addition,
supplementary to the standard paradigm of uniform traffic volumes between randomly
interacting node pairs, more realistic gravity traffic patterns are used to simulate the flows
in the network. Results indicate that depending on the traffic pattern, the networks have
different tolerance to congestion. Experiment simulation shows that the topologies created
on the basis of the gravitymodel suffer less fromcongestion than the random, the scale-free
or the Jackson–Rogers ones under both random and gravity traffic patterns. The congestion
level is found to be approximately correlated with the network clustering coefficient in
the case of random traffic, whereas in the case of gravity traffic such a correlation is not
a trivial one. Other basic network properties such as the average shortest path and the
diameter are seen to correlate fairlywellwith the congestion level. Further investigation on
the adjustment of the gravity model parameters indicates particular sensitivity to network
congestion. This work may have practical implications for designing traffic networks with
both reasonable budget and good performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Networks have been thoroughly investigated in the last decade with impressive research results on the universality of
various topological characteristics [1] and on the mechanisms of topology generation [1–3]. Unexpected similarities and
substantial common, but non-trivial, structural features (power-law degree distributions, high clustering coefficient, small
geodesic path lengths, etc.) among real-world networks compose the most essential findings indicating a departure from
the random networkmodels having being proposed five decades earlier [4]. The contemporary knowledge on the networks’
structure can now be used for the understanding of challenging underlying processes that take place on networks. For
example, searching, diffusion, spreading, synchronization, traffic flow interactions and other dynamical phenomena have
recently been put in the foreground.
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Traffic dynamics in complex networks have been extensively studied lately [5–22] due to their wide applications in
telecommunications and transportation and as a result of the novel discoveries on network topology. Recent works focus
on the efficiency improvement of traffic systems and bring out a relationship between controllable parameters of network
topology and traffic-flow performance. Several of them deal with routing strategies on complex networks [13–16,19,20],
some others with the capacity distribution [5,11,21], while others with the cascading failures [8,9] and the congestion on
complex networks [6,7,10,12,17,18,22].

Most of the networks examined in the previous studies are random (Erdős–Rényi or ER algorithm [4]) or scale-free
(Barabási–Albert or BA algorithm [1]) and the traffic flows are assumed to be homogeneous between randomly selected
source and destination nodes,with barely a few exceptions [17,20]. However, in real networks, especially on spatial ones, the
topology can deviate from those derived from the ER or BAmodels [23,24] and traffic is more likely to be generated/received
unevenly at some nodes than at others, according to their characteristics [25–27]. Therefore, in this paper, gravity topologies
are introduced as they have been found to share statistical properties with real-world networks while allowing for optimal
expected traffic exchange. Their ability to combine intrinsic attributes and extrinsic features in a simple spatial weighted
network model has widely established them in telecommunications and transportation [24,26–33]. Here, their behavior
under congestion is compared to the behavior of random, scale-free and Jackson–Rogers (JR) topologies. The JR topologies
are incorporated in the analysis since they can successfully reproduce all of the basic features of real-world networks [3],
including a high cliquishness which may be a congestion determinant. In addition, network congestion is studied taking
into consideration traffic flows obeying the more realistic gravity-based flow patterns, as recently observed in the related
literature [34,35].

The main purpose of this paper is to examine the relationship between the traffic flows and congestion factors in
different topologies. Traffic congestion can be improved either by developing better routing strategies or by network
restructuring [36] which is more in the focus of this paper. In this analysis a series of implications are derived from what
kind of congestion and cost level to expect for a given set of topological and traffic parameters. Thus knowledge is obtained
onwhich way to (re)design a traffic network, e.g. transportation, telecommunications or other network, in order to alleviate
congestion effects.

The paper is organized as follows. In Section 2, the networkmodels and the traffic flow types are introduced. In Section 3,
the simulation results are presented and discussed. Finally, the conclusion is given in Section 4.

2. Network types and traffic flows

2.1. Network representation

In formal terms, networks can be represented as graphs G(N, K), which are mathematical entities from Graph Theory,
defined by two sets, N and K . The first set, N , is a finite set of N elements called nodes or vertices, and K is a finite set of K
elements containing unordered pairs of different nodes called links or edges. The graph G can be described by the N × N
adjacencymatrix, A, whose entry aij is equal to 1 if there is a direct edge between nodes i and j, and 0 otherwise. In the case of
a weighted network, an additional set of values attached to the edges is characterizing the links. The matrix containing the
edgeweights could describe the traffic flows, the capacity, the cost, the length, etc. Here, the graph nodes are also considered
to have a precise position on a planar map {xi, yi}i=1,...,N and a fitness value {fi}i=1,...,N .

The basic statistical properties of such a network representation are referred to here; the average shortest path, the di-
ameter, the clustering coefficient, and the degree distribution. The average shortest path or average geodesic path length is
defined as the average number of steps along the shortest paths for all possible pairs of network nodes. The diameter of a
network is the length (in number of edges) of the longest shortest path between any two nodes in the network. The cluster-
ing coefficient measures the density of triangles in the network, and put simply, is the mean probability that the friend of
your friend is also your friend. It can be quantified by defining it as C =

3× number of triangles in the network
number of connected triples of vertices , where a ‘‘connected

triple’’ means a single vertex with edges running to an unordered pair of others [37]. A clear deviation from the behavior of a
random graph can be seen in the clustering property, sometimes called transitivity, and suggests that there is a heightened
number of triangles in the network—sets of three vertices each of which is connected to each of the others. The degree dis-
tribution is the probability distribution function (PDF) of the node degrees k over the whole network, where k is the number
of edges directly connected to a node. The PDF is usually well fitted with a Poisson or a power-law distribution.

2.2. Analysis of the main network types

A great variety of network formation models has been proposed in the past years, however studies in traffic dynamics
are mainly based on two simple well-knownmodels; the ER [4] for random networks and the BA [1] for scale-free networks.
The network topology has proved to be critical to the appearance of traffic congestion, with scale-free networks being the
less affected at high volumes of traffic [6,12,22]. More recently, the JR formation model [3] has been proposed, which
can successfully reproduce all of the real networks’ basic features including a high cliquishness—a possible congestion
determinant. Here, one more class of networks that has experienced a rekindling of interest, the class of networks based
on the gravity model [24,26–32], is introduced in order to be examined, additionally to the previous three network classes.
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Fig. 1. Typical networks (spatially embedded) of the same sizeN = 100, identical average degree ⟨k⟩ = 6, equal plane size and different formationmodel:
(a) random, (b) scale-free, (c) JR, (d) gravity, (e) random KK, (f) scale free KK, (g) JR KK. The node size is proportional to the fitness value.

Table 1
Basic properties of networksa with N = 100 nodes, average degree ⟨k⟩ = 6, fitness distribution factor γ = 1, spatially embedded in a two-dimensional
plane 1000 × 1000.

Network type Av. shortest path Diameter Clustering coefficient Power-law PDF exponent Av. link length

Random 2.699 5.001 0.0527 Poisson distr. 250.04
Random KK 2.699 5.001 0.0527 Poisson distr. 114.71
Scale-free 2.385 3.831 0.0893 −1.2741 249.94
Scale-free KK 2.385 3.831 0.0893 −1.2741 141.88
Jackson–Rogers 2.031 2.810 0.1093 −0.7239 514.41
Jackson–Rogers KK 2.031 2.810 0.1093 −0.7239 338.99
Gravity (φ = 1) 1.859 2.522 0.0967 −0.7251 169.71
Gravity (φ = 0) 1.848 1.905 0.0590 −1.1496 251.41
Gravity (φ = 2) 2.251 3.982 0.1922 −1.1182 100.14
Gravity (γ = 0.5, φ = 1) 1.848 1.905 0.0709 −0.6009 216.91
Gravity (γ = 1.5, φ = 1) 2.011 3.381 0.1369 −0.9502 126.14
a For the estimation of the characteristics of each network, more than 20 independent realizations are averaged.

Networks generated from the gravity model make use of the Euclidean distance between nodes during network formation,
while the ER, BA and JR models do not. As subsequent simulations make use of the Euclidean distance between nodes, a
possible bias exists favoring the gravity network models. Therefore, ER, BA and JR networks are separately considered with
random node positions and with positions assigned by the Kamada–Kawai (KK ) spring algorithm [38]. Typical networks
(spatially embedded) of all the considered formation models are illustrated in Fig. 1, with the same size N = 100, identical
average degree ⟨k⟩ = 6, and equal plane size. Their basic properties are presented in Table 1.

2.2.1. Random networks
In the G(n, p) ER random model [4], a network is created by connecting nodes randomly. Each link is included in the

network with probability p that is independent from every other link. Equivalently, all networks with n nodes and M links

have equal probability of pM (1 − p)


n
2


−M

. Here, p is like a weighting function and as it increases from 0 to 1, the model

turns more and more likely to include networks with a greater number of links. For example, in the case p = 0.5 all 2


n
2


networks on n nodes are chosen with equal probability. In this paper, the ER model is modified to be spatial in a square
plane of given size. Moreover, without loss of generality, in the case of the gravity-based traffic flow simulations every node
randomly takes a value (fitness).

2.2.2. Scale-free networks
The BAmodel [1] generates scale-free networks using a preferential attachmentmechanism. Each new node is connected

to a number of existing nodes with a probability proportional to the number of links that the existing nodes already have.
The probability that the new node j connects to node i is Pij =

ki
k , where k is the degree of the node. For compatibility

with the gravity flow simulations that follow, it is deemed necessary to assign an intrinsic attribute (fitness) on every node.
Therefore, the Bianconi–Barabási (BB) model [39] is chosen as an equivalent of the BAmodel to produce scale-free networks.
Thismodel is a variant to the BAmodel and is based on the idea of fitnesswhich varies fromnode to node, allowing each node
a different attraction of links in the network. It is assumed that the existence of fitness modifies the preferential attachment
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to compete for links. The fitness parameters of the nodesmay form a distribution ρ(η) characteristic of the studied network.
The probability for a new node j to connect to node i is Pij =

ηiki
ηk , in which η is the fitness factor and k is the degree of the

node. The BBmodel is also modified to be spatial in a square plane of given size.

2.2.3. Jackson–Rogers networks
The JRmodel [3] can be used to construct networks that successfully replicatemany of the empirical regularities exhibited

in real-world networks. Specifically, the model can reproduce all of the following features: (a) small shortest path length,
(b) large clustering coefficient, (c) power-law degree distribution, (d) assortativity (tendency for nodes to attach to others
that are similar in some way i.e. degree), (e) clustering inversely related to node degree. Nodes are born sequentially. When
a new node is born, it meets some of the existing nodes through two processes. First, it meetsmr nodes uniformly at random
(parent nodes). Let pr denote the probability that a new node finds a parent node attractive to link to. Second, the new node
then meets mn of those parent nodes’ immediate neighbors. The probability that the new node finds a parent’s neighbor
attractive to link to, is denoted by pn. In order for the process to be well-defined upon starting, the initial network begins on
a set of at leastmr + mn + 1 nodes, where each node has at leastmr + mn neighbors. The JRmodel is as well modified to be
spatial in a square plane of given size.

2.2.4. Gravity networks
Subsequently, the networks based on the gravity model, or the gravity networks for convenience, are generated using

the algorithm proposed in Ref. [24] that maximizes the total expected traffic of the network and thus demonstrate a great
interest to investigate their congestion dynamics. The gravity models are simple, intuitive spatial models, taking their name
from Newton’s law of gravitation and have been applied to describe the movement of people, goods, and information
between geographic regions. Their ability to allow the assignment of an intrinsic attribute, called ‘‘mass’’ or fitness to each
node and a ‘‘distance’’ representing the connection difficulty, makes them simple and easy network models to apply in a
wide range of areas, from trade [31] to transportations [26,32,33] and telecommunications as well [27–30]. Based firstly on
the estimations of the traffic flows and thereafter by connecting the node pairs with the highest expected traffic exchange,
a topology can be derived. The simplest form of the gravity model is based on the equation

Eij = MiMjf (dij) (1)

where E is the expected traffic interaction, M is the fitness of each node that measures the importance of location, e.g. its
population, and f (d) is the distance decay factor that describes the influence of space. Empirical studies have shown that
in transportation and telecommunications networks, such as highways, airlines or wide area networks, the nodes (cities)
usually have a power-law distribution of fitness (population) [24,25,40]. Hence, here, the fitnessM for node i is considered:

Mi = M0 · rank
−

1
γ

i (2)

where M0 is a constant that denotes the maximum fitness value for nodes, e.g. M0 = 1, and rank is a randomly assigned
unique integer taking values from 1 to N (regardless the node location or degree) that describes the rank of the node if all
nodes are sorted in a descending order based on their ‘‘mass’’ or fitness. Concerning γ , it is a constant, e.g. γ = 1, for which
the higher its value is, the more uniform in fitness the nodes are.

The deterrence function f encodes the locality information specific to different types of networks and in many socio-
economic systems it is well fitted by a power law:

f (dij) = d−φ

ij (3)

where φ is a constant, representing the distance sensitivity parameter. In the previous studies traffic types differentiate
between whether locality is a large factor or not; hence different φ values are chosen. For example, for Internet-related
traffic φ is set approximately 0, for transaction traffic φ = 1, for voice traffic and transportation φ = 2 and for mobile traffic
φ is greater than 2 [26,28–30].

Here, a new node j connects to node i with probability P defined by

Pij =
Eij
E

(4)

where E is estimated by the gravity equation (1).
This model is also considered in a square plane of given size.

2.2.5. Kamada–Kawai representations
It is clear from all the above characteristics that the gravity network formation makes use of distance, while the ER,

the BB and the JR models, as introduced earlier, do not rely on distance at all. Since part of the analysis in next sections
will be based on a type of traffic flow (gravity traffic) which uses distance to decide the possibility of traffic exchange, it is
natural to expect a possible bias in favor of the gravity network model. Therefore, it seems appropriate to include spatially-
dependent modifications of the ER, the BB and the JR models, in order to perform legitimate comparisons and alleviate
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potential concerns about the networks’ equity against spatial advantages. In particular, the ER, the BB and the JRmodels are
modified using the KK spring algorithm [38] with the purpose to place the nodes in a spatially ‘‘optimized’’ way, so that they
will not be at an inherent disadvantage against the gravity network model. More specifically, the KK algorithm is a well-
known force-directed algorithm usually applied for the visualization of simple undirected graphs. Using information solely
contained within the structure of a graph itself, it calculates the ‘‘optimal’’ layout by constructing a virtual physical model
and running an iterative solver to find a low-energy configuration. The approach relies on placing an ideal spring-like force
between every pair of nodes such that its length is set to the shortest path distance between the endpoints. The springs push
the nodes so their geometric distance in the layout is proportional to their path distance in the graph. The ‘‘optimal’’ layout
of vertices is the state in which the positions of the nodes induce minimal total spring energy of the system. In addition
to the aforementioned random (ER), scale-free (BB) and JR networks, the modified random KK, scale-free KK and JR KK are
included as spatially optimal redrawings of them, in a square plane of given size. However, the focus in the following analysis
is not on the evaluation of the KK spring algorithm. Actually, it is rather on the comparison among the topological classes,
as bounded by their basic statistical properties. The use of the KK spring algorithm is only chosen as a convenient method of
re-arranging the node locations without altering the validity of the underlyingmodels and the non-geographical properties.
As depicted in Table 1, the KK versions share the same structural propertieswith the classic networks, but show significantly
lower average link length.

2.3. Analysis of the main traffic flow types

In the previous studies, when modeling the traffic on a given network, packets are generated at each time step with a
given rate at homogeneously randomly selected nodes and each packet is given a random destination [7,10,13]. Usually, all
the nodes are both hosts and routers and have a limited capacity of packet delivery, per time step. The capacity of packet
delivery can be constant for simplicity [13,15] or proportional to either the node’s degree or its betweenness centrality [10].
The packets are forwarded following a specified routing strategy. This could be the random walking [41], the shortest
path [9], the efficient path [15], the next-nearest-neighbor search strategy [7], the local information [13] or the integration
of local static and dynamic information [14,16]. It is also common in these models to define the network capacity measured
by a critical generating rate, first presented in Ref. [42], where a transition occurs from uncongested to congested traffic
flow [10,13–17,19,20]. The uncongested traffic flow or free-flow state corresponds to the state in which the numbers of
created and delivered packets are balanced, while the congested or jammed state corresponds to the state in which packets
accumulate on the network.

In the aforementioned traffic dynamics models, the transition to congestion is examined while increasing the generating
rate. However, the main goal of this paper is rather determining the congestion tolerance as traffic flows increase than
observing the phase transition. Furthermore, in traditional models each link is not restricted to handling at most a number
of flows. Usually, the bandwidth of the links is neglected and no maximum capacity for bearing flows is assigned on links.
Obviously, in real-world traffic networks, the capability of each link is limited and differs among links.

Thus another simple model is applied, that considers traffic flows rather than packets, similar to that introduced in
Refs. [12,18,22,43]. In that traffic model it is assumed that at each time step, unit traffic flow is generated between
any two nodes belonging to the same connected component and capacities are randomly assigned on the links. Every
origin–destination node pair i, j demandsQij traffic flows, presumably following different paths in the network. The capacity
Uij on the link (i, j) is randomly assigned in the range [20–60], which shows the maximum possible crossing flows on that
link. A case that all the link capacities are entirely equal is presented in Refs. [18,22], which cannot reflect the conditions
in real networks, however. Costs are also put as weights on the links using a special cost function, the US Bureau of Public
Roads formula [44], also used in Refs. [12,18,22,43,45]. The link cost is not a constant or a random value, but a function
of the flows with congestion effects. Units of flows, one by one, follow the shortest path routing strategy (Floyd–Warshall
algorithm) [46] in terms of travel cost, but as flows accumulate on the shortest path, time step after time step, congestion
develops on it. Then, for subsequent flows another path becomes the shortest in terms of travel cost, which again would
become congested, and so on. Since all traffic flows in each time step are to be assigned simultaneously, a game is developed
among traffic flows for the selection of the feasible paths with minimum cost.

2.3.1. User-equilibrium considerations
In order to guarantee convergence to equilibriuman iterative procedure has been employed, based on the Floyd–Warshall

algorithm, which ensures the compliance to the user-equilibrium (UE) conditions. This procedure distributes the traffic
flows in the feasible paths by treating them as individual units of traffic flows and not as a whole of demanded traffic
flow for an origin–destination pair. The traffic flow assignment for each unit requires a continuous update of the routes’
costs and identification of the congested links. This procedure can cause a UE flow assignment [47]. The UE model of traffic
assignment is actually based on the fact that flows choose their own route towards their destination so as to minimize
their travel cost and on the assumption that such a behavior on the individual level creates equilibrium at the network level.
Flows on links are said to be in equilibriumwhen no flow can improve its travel cost by unilaterally shifting to another route.
The traffic is split across available routes in such a way that it equalizes the cost across all the available routes between a
given origin–destination pair. The UE concept implies equilibriumwith traffic flows served at a certainminimum travel cost,
including the effects of packet queuing and with no need to specify any queue details.



D. Maniadakis, D. Varoutas / Physica A 405 (2014) 114–127 119

This notion of equilibrium flows is generally referred to as Wardrop’s principle [48] and it is commonly used for the
prediction of traffic patterns in transportation and Internet-like networks that are subject to congestion. With respect to
telecommunications applications, there is a rich literature summarized in Ref. [49] and references therein. For example,
Internet TCP (Transmission Control Protocol) data packet flows are controlled by a simple feedback loop informing the source
in the case of data loss as an indication of congestion. This information enables the source computers to discover and use
selfishly the available capacity, by sharing it among different flows of packets that leads to a UE flow assignment [50,51].
It has been found that in Internet-like environments Wardrop’s selfish routing achieves close to optimal average latency
[52,53]. However, the UE hypothesis should be handled with caution. There are routing scenarios that may not satisfy
common assumptions for the motivation of Wardrop equilibrium such as accurate knowledge of the network and its cost
functions.

Formally, the UE conditions of Wardrop are here defined as follows:

Qr = 0 if Cr(Q ) > πij ∀r, i, j (5)

Qr > 0 if Cr(Q ) = πij ∀r, i, j (6)
Qr

= tij ∀r, i, j (7)

where πij = min Cr(Q ) ∀i, j, r stands for the considered path, i, j denote the pair of origin and destination, Qr represents
the flow over path r , Cr(Q ) refers to the cost of path r and tij indicates the traffic demand for pair ij. The interpretation of
conditions is that all used paths connecting an origin–destination pair ij have equal and minimal costs, denoted by πij.

The US Bureau of Public Roads cost function used is described by

Cij(Qij) = C0
ij [1 + a(Qij/Uij)

β
] (8)

where C0
ij is the uncongested travel cost from origin i to destination j,Uij is the corresponding capacity of the edge, and α

and β are positive constants. The minimum function value is the uncongested cost at Qij = 0. The initial cost on the link
(i, j) is randomly assigned in the range (0, 0.1]. The quantities α and β are model parameters, for which the values α = 0.15
and β = 4 are typically used [12,18,22,44,47].

When Qij > 0, the travel cost increases with the traffic flow. A link can accommodate traffic flows properly if its capacity
is not exceeded Qij < Uij [12,22,47], otherwise the link is considered as congested. A congested link is supposed to have
infinite cost. The cost is artificially imposed as infinite in order to inform other flows not to choose a path that includes a
congested link. However, the congested links are not removed from the network; they remain functional for the traffic flows
already assigned but are not available for additional assignments.

2.3.2. Random and gravity-based traffic exchange
Regarding the flow interaction between nodes in the network, it is common for the previous studies to homogeneously

randomly select origin and destination nodes, which is a rather simplistic than reasonable assumption, however useful
for evaluating simple networks. Nevertheless, there are limited cases, such as Refs. [17,20], where BA scale-free unweighted
networks are studied, with the probability of generating/receiving traffic proportional to the degree of the nodes. In addition
to the standard paradigm of traffic exchange, the approach followed in this paper is again based on the gravity model
perspective that allows for a realistic traffic generation for the whole network.

From amodeling viewpoint, gravity models have long been used to model flows in spatial interaction networks, in order
to estimate the level of traffic in each link of a network [34,35] on a macroscopic scale. These models focus on the intensity
of interaction between origin and destination nodes separated by a certain distance (financial or temporal cost). It has been
shown that for humanmigration, international trade, transportation or communications between cities the volume of traffic
between two population centers i and j is successfully modeled by Eq. (1). For example, in Ref. [27] it is shown that inter-
city communication intensity between two cities is proportional to the product of their sizes divided by the square of their
distance; thus it is characterized by a gravity model. Besides, in Ref. [26] both public and private transportation traffic flows
between cities obey the gravity equation. In Ref. [33] the estimation of origin–destination flows distribution also forms a
gravity model. As well, the concept of gravity laws has a long tradition in the field of economic geography. For instance,
in the multi-regional core–periphery (CP) model, the decay of the agglomeration/dispersion forces with distance (i.e. these
forces are spatially discounted) is common to be described by gravity laws, as in Ref. [54].

Here, gravity-based traffic flows are generated in each time step, in the sense that every unit traffic flow is exchanged
between node pairs, origin i and destination j, with probability P defined by Eq. (4).

3. Results and discussion

Finally, four classes of networks are considered here; the random, the scale-free, the JR and the gravity one. In addition,
three redrawings of random, scale-free and JR networks, the random KK, the scale-free KK and the JR KK are considered in
the analysis. All of them are adjusted to be spatial in a two-dimensional plane (1000 × 1000) by assigning coordinates to
each node {xi, yi}i=1,...,N and all of them include nodes that carry a fitness value {fi}i=1,...,N . The locations of the nodes in the
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Fig. 2. Fitness distribution for different fitness distribution factors.

plane are randomly chosen in every realization of the simulations. However, for the KK network versions, the node locations
are ‘‘optimally’’ chosen using the KK algorithm. The constructed networks have sizeN = 100 nodes, average degree ⟨k⟩ = 6,
and dynamic weights to describe the cost, the capacity and the traffic flows on the links. Only the nodes that consist of the
largest component are taken into account to ensure a single connected cluster of size N . While the size of the considered
networks is quite small because of computational complexity and constraints, this is a moderately sufficient size to extract
statistically significant results. Throughout the paper, for the characteristics of each network, more than 20 independent
realizations are averaged.

3.1. Quantities of interest and parameter values

The primary goal of the following simulations is to understand the influence of the topology – random, scale-free, JR
and gravity networks – on the dynamics of traffic flow. Another goal is to explore the tolerance of topologies to congestion
for different traffic flow models—the random and the gravity-based one. Thus, the simulations focus on two quantities of
interest that can characterize the network performance and the cost budget; the congestion factor, J , and the total network
cost, TNC.

The congestion factor J is defined as the percentage of congested links out of the total links, as introduced in Ref. [12]:

J =
T
S

(9)

where T is the total number of congested links and S is the total number of links in the network. Obviously, J = 0 corresponds
to uncongested traffic on the network, and J = 1 indicates the worst case of network congestion.

Total network cost is discussed in both [18,43] as total system cost but here it is modified to include the link length as a
cost parameter, which is important in the case of spatial traffic networks:

TNC =


i,j


Qij × Cij(Qij) × Lij


(10)

where Qij is the link flow on the link, Cij(Qij) is the cost of flow on the link and Lij is the length of the link on the path that
connects the two nodes i and j.

In the following, the simulations are performed by considering a variety of fitness distributions and distance functions.
Three different power-law distributions are chosen for fitness assignment as they are very frequent in physical and social
systems. There are constructed and compared networks for γ = 0.5, γ = 1.0 (Zipfian distribution) and γ = 1.5, which are
approximately the lower, the average, and the upper limit of γ , respectively, in the case of city population distributions [40].
These fitness distributions are illustrated in Fig. 2. The behavior of J and TNC is also examined for three indicative values of
φ, namely 0, 1, and 2. The distance decay factor for these φ values is presented in Fig. 3.

3.2. Differences among network models and between traffic models

Both the standard paradigm of uniform traffic volumes between randomly interacting node pairs (random traffic) and
themore realistic gravity-based interactions (gravity traffic) are depicted in Fig. 4. It is worth noting that in all network types
the congestion factor becomes stationary for large volumes of traffic Q . It is obvious that random, scale-free and JR networks
aremore prone to suffering from congestion than gravity ones. In agreementwith other findings [12,22] scale-free networks
are equivalently – or more – susceptible to traffic congestion compared to the random ones when the total system flow Q is
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Fig. 3. The distance decay factor f (dij) for different φ values against distance dij .

Fig. 4. Congestion factor J as a function of total volume of traffic Q for random, random KK, scale-free, scale-free KK, JR, JR KK and gravity networks for both
random and gravity-based traffic patterns. Each curve corresponds to an average over 20 independent realizations of the networks with N = 100, ⟨k⟩ = 6.
It is assumed for all networks’ fitness distribution: γ = 1, for the construction of gravity networks: φ = 1, and for the gravity-based traffic flows: φ = 1.

small. The reason for this lies in the fact that in scale-free networks edges connected to hub nodes are assigned heavier flows,
which leads to the congestion on these edges easily at the beginning. However for random networks, flows assigned to each
edge are relatively even. TheKK versions of randomand scale-free networks donot showbig differences from the classic ones
neither under random traffic, nor under gravity traffic. The JR networks are found quite resistant to congestion, more than
the scale-free ones but less (or marginally less) than the gravity ones. In the meanwhile, the gravity networks can support
all volumes of traffic with considerably lower congestion factor. This may be explained by the structural properties of the
derived gravity networks; they are neither uniform, nor power-law distributed. Although gravity networks can reproduce
a scale-free behavior under particular circumstances, the spatial constraints can make the network more homogeneous
and its degree distribution deviate from the power-law form [24,26], allowing for a more distributed flow exchange. This
is additionally confirmed by the statistical properties of gravity topologies as shown in Table 1 indicating small average
shortest path, small diameter and high clustering coefficient, respectively. Apparently, the congestion degree is more severe
when the gravity-based patterns are used to simulate the flows in the network.

A similar illustration in Fig. 5 also applies for the total network cost. It is as well apparent that the gravity network
topology is more ‘‘economic’’ than the other topologies, mostly because of both small J and average link length (see Table 1).
Although, the cost of the JR KK for the random traffic scenario can well compete with the cost of the corresponding gravity
network. Thismay be due to amore even traffic distribution in the JR KK, since the JR KK is associatedwith a higher clustering
coefficient which means more alternative paths and overcoming the larger average link length. Generally, the lower values
in the average link length of KK versions are also responsible for the lower cost in the KK versions of random, scale-free
and JR networks, as opposed to the native models’ cost. Concerning the total network cost in the case of gravity traffic for
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Fig. 5. Total network cost TNC as a function of total volume of traffic Q for random, random KK, scale-free, scale-free KK, JR, JR KK and gravity
networks for both random and gravity-based traffic patterns. Each curve corresponds to an average over 20 independent realizations of the networks
with N = 100, ⟨k⟩ = 6. It is assumed for all networks’ fitness distribution: γ = 1, for the construction of gravity networks: φ = 1, and for the gravity-
based traffic flows: φ = 1.

Fig. 6. Typical networks under random traffic flows: (a) random KK topology, (b) scale-free KK topology, (c) JR KK topology, (d) gravity topology. The node
size is proportional to the fitness value and the thick edge width indicates congestion.

Fig. 7. Typical networks under gravity traffic flows: (a) random KK topology, (b) scale-free KK topology, (c) JR KK topology, (d) gravity topology. The node
size is proportional to the fitness value and the thick edge width indicates congestion.

random, scale-free and JR networks, it appears to be quite higher than under random traffic flows. However, in the case of
the gravity network the total network cost remains at the same level despite the modification in the traffic patterns. It is
clear from the above findings that the more realistic gravity-based traffic patterns induce different tolerance to congestion
in all topologies, with the gravity topologies again suffering less from congestion while retaining the lowest total network
cost (see Figs. 6 and 7).

3.3. The role of clustering coefficient

The findings indicating the superiority of gravity network formationmodelmay, though, be justified to someextent by the
model’s basic properties. As supported by Watts and Strogatz in Ref. [2], the network structure influences the functionality
of processes running over the topology, such as the speed and extent of transmission. Moreover, in the related literature,
the high clustering coefficient of gravity networks (see Table 1) has been already noticed and associated with the ability
to overcome traffic congestion. More specifically, the network model in Ref. [55], which is based on the assumption that
the benefit of a link is decreasing in the distance between two agents, is actually a form of gravity law. In that paper it is
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Fig. 8. Congestion factor J as a function of total volume of traffic Q for random, random KK, scale-free, scale-free KK, JR, JR KK and gravity networks
for gravity-based traffic flows with different values of φ. Each curve corresponds to an average over 20 independent realizations of the networks with
N = 100, ⟨k⟩ = 6. It is assumed for all networks’ fitness distribution: γ = 1 and for the construction of gravity networks: φ = 1. Curves for random,
scale-free, JR and gravity networks appear to overlap.

found that the high clustering coefficient of a co-authorship network can be explained by the suggested gravity-like concept.
Furthermore, authors in Ref. [56] discover a high clustering coefficient in world trade networks which are there artificially
constructed on the basis of gravity laws. Irrefutably, the high clustering is not a characteristic limited to the gravity networks,
but a well observed universal feature representing the cliquishness of most real-world networks, as primarily discussed in
Refs. [2,3]. Therefore, and since clustering is expected to be correlated to the congestion level, as pointed out in Ref. [12], it
is useful to consider the extent of the effect of the high clustering in the resulting congestion factor. Specifically, in Ref. [12]
networks of different clustering coefficients are generated and their congestion factor is found to be inversely correlatedwith
the clustering coefficient. Additionally, it is therewitnessed that the scale-free networks have a lesser congestion factor than
small-world networks for the same clustering coefficient.

However, the measurements in this paper do not fully confirm these outcomes, on the grounds that the present analysis
goes beyond the random traffic scenario which has been a main assumption in Ref. [12]. Indeed, as observed in Fig. 4 and
Table 1, in the case of random traffic simulations, the congestion factor is approximately inversely correlated with the
clustering coefficient; the higher the clustering coefficient, the lower the congestion factor (with the slight exception of
JR networks which have roughly the same congestion factor as gravity networks have). Nevertheless, in the case of gravity
traffic simulations, this does not hold true; for instance, even though the JRmodel and its KK version both have the highest
clustering coefficient among the networks presented in Fig. 4, the JR congestion factor under gravity traffic type appears
sufficiently higher than the gravity networks with similar clustering coefficient. It is particularly observed that under the
more realistic scenario of gravity traffic type, the gravity networks sustain an adequately lesser congestion factor than scale-
free and JR networks for approximately the same clustering coefficient (C ≈ 0.1). Moreover, this finding against correlation
between clustering coefficient and congestion level under gravity traffic type is corroborated with the gravity networks
constructed with parameter ϕ = 2. Despite the fact that they have the highest clustering coefficient (Table 1) among the
investigated gravity network cases with ϕ = 0, ϕ = 1, they yet seem to have a rather higher congestion factor than
the compared networks (see Fig. 10 later in the paper). Drawing to a conclusion, the above observations confirm that the
clustering coefficient does correlate with the congestion level, but not strictly and only for the random traffic type scenarios.
Instead, results indicate that under gravity traffic type scenarios, such a correlation is not a trivial one. Last but not least,
it is notable to mention the emergence of a low congestion level correlation with both low average shortest path and low
diameter measurements (see Table 1), with these being actually some well observed properties of real-world networks.

3.4. Dependence on distance parameter

When examining the dependence of J and TNC on the distance decay function parameter φ of the gravity traffic flows, as
seen in Figs. 8 and 9, there is no great influence generally. The locality of the gravity traffic patterns is discovered not to act
uponboth the congestion factor and the total network cost. The only exception lies in the case ofφ = 2 for random topologies
which actually results in lower J and TNC, resembling the congestion tolerance behavior of scale-free topologies. Thismay be
explained by the large locality factor that represents a tendency for higher flow interaction between geographical neighbors.
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Fig. 9. Total network cost TNC as a function of total volume of traffic Q for random, random KK, scale-free, scale-free KK, JR, JR KK and gravity networks
for gravity-based traffic flows with different values of φ. Each curve corresponds to an average over 20 independent realizations of the networks with
N = 100, ⟨k⟩ = 6. It is assumed for all networks’ fitness distribution: γ = 1 and for the construction of gravity networks: φ = 1. Curves for random,
scale-free, JR and gravity networks appear to overlap.

Fig. 10. (a) Congestion factor J as a function of total volume of trafficQ for gravity networks constructedwith different values ofφ and under gravity-based
traffic flows. (b) Total network cost TNC as a function of total volume of traffic Q for gravity networks constructed with different values of φ and under
gravity-based traffic flows. Each curve corresponds to an average over 20 independent realizations of the networks with N = 100, ⟨k⟩ = 6. It is assumed
fitness distribution: γ = 1 and for traffic flows: φ = 1.

Indeed, this behavior is not visible in the random KK, where the node locations are spatially ‘‘optimized’’. Thus, congestion is
probably limited to occur only partially at certain paths that connect geographical neighbors excluding the burden of paths
that connect geographically distant nodes.

3.5. Adjustment of the gravity model parameters

By all means, further exploring how the more optimal gravity topologies perform under the more realistic gravity traffic
patterns is of considerable importance. Under gravity-based traffic flows, the construction parameterφ of the distance decay
function is observed to be especially sensitive to traffic congestion, as seen in Fig. 10, where gravity topologies are generated
using a series of φ values. For the traffic flows the φ value is fixed to 1, but as seen earlier in Figs. 8 and 9 it does not influence
strongly the considered indices. It is found that the larger the construction parameter φ is, the higher the congestion factor
J is. This outcome is expected since a high φ represents a strong interaction between geographical neighbors due to spatial
constraints. As a result,many short links are constructed, as confirmed in Table 1,which are congested easily in the beginning



D. Maniadakis, D. Varoutas / Physica A 405 (2014) 114–127 125

Fig. 11. Typical gravity networks under gravity traffic flows: (a) gravity topology φ = 0, (b) gravity topology φ = 1, (c) gravity topology φ = 2. The node
size is proportional to the fitness value and the thick edge width indicates congestion.

Fig. 12. (a) Congestion factor J as a function of total volume of trafficQ for gravity networks constructedwith different values of γ and under gravity-based
traffic flows. (b) Total network cost TNC as a function of total volume of traffic Q for gravity networks constructed with different values of γ and under
gravity-based traffic flows. Each curve corresponds to an average over 20 independent realizations of the networks with N = 100, ⟨k⟩ = 6. It is assumed
for network topologies: φ = 1 and for traffic flows: φ = 1.

Fig. 13. Typical gravity networks under gravity traffic flows: (a) γ = 0.5, (b) γ = 1, (c) γ = 1.5. The node size is proportional to the fitness value and the
thick edge width indicates congestion.

(see Fig. 11(c)). This finding is also in accordance with the larger average shortest path and diameter, as observed in Table 1,
meaning a longer travel path for traffic flows. Regarding the total network cost, it appears to be not rather sensitive to the
distance sensitivity parameter φ of the distance decay function. Despite the large differences in the behavior of J , there are
no great deviations in TNC. In particular, for low φ values there is an overlap on the TNC as traffic volume increases, while
for φ = 2 there is a slight differentiation, probably due to the larger number of congested edges.

Modifying the fitness distribution factor γ turns out to be particularly sensitive to traffic congestion. Here, the gravity
topologies are generated with different fitness distribution factor γ . Fig. 12 shows the relationship between the fitness
distribution factor γ and the congestion factor J . It can be noticed that a larger γ corresponds to a higher congestion factor.
A large γ actually implies amore uniform fitness distribution and therefore amore distributed andhomogeneous interaction
between almost equivalent nodes in terms of fitness (see Fig. 13(c)) provoking the construction and utilization of shorter
links. This leads to a larger average shortest path and diameter – already pointed out in Table 1 – that contribute in causing
intense congestion. On the other hand, a small γ indicates a topology with a more centralized concept consisting of a few
hubs andmany non-hubswithmany alternativemulti-hop paths (see Fig. 13(a)). Regarding the total network cost, it appears
to be relatively insensitive to traffic congestion. Again, there are no great deviations in TNC.
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Shortly, the abovementioned scenarios of varying theφ or the γ parameters provide insights for the congestion dynamics
in different assumptions of gravity-based topologies along with gravity-based traffic patterns. As a result, the congestion
level depends on the distance decay function of the gravity equation, that is to say on the spatial details. In addition, the
congestion appears to depend on the nodes’ fitness distribution factor, in other words on the nodes’ attributes details. For
example, a gravity topology connecting nodes following a fitness distribution with a low factor γ and with the presence of a
distance decay functionwith a low parameter φ is expected to be extremely tolerant to congestion. On the other hand, cases
of gravity topologies constructed over nodes of more uniform fitness distribution and of larger locality factor are anticipated
to be more prone to congestion. Lastly, the parameter φ of the distance decay function of the gravity traffic flows is found
to be almost irrelevant to the deviations of the congestion factor. Drawing to a conclusion, with regard to real-world traffic
networks, such as networks carrying Internet traffic flows which appear to obey gravity patterns, the construction of a
gravity topology with φ = 0 is optimally expected. This structure is found to be associated with the lowest congestion
factor and the minimal total network cost, as defined in the present paper.

4. Conclusions

The influence of the network topology on the congestiondynamics under different network types and traffic flowpatterns
has been addressed and discussed. The class of gravity networks, recently attracting research attention again, is investigated
and in contrast to the standard paradigm of randomly interacting node pairs, more realistic gravity traffic patterns are used
to simulate the flows in the network. It is shown that depending on the traffic pattern, the networks have different tolerance
to congestion, with the gravity traffic causing more severe congestion to all networks. Moreover, the study demonstrates
that the topologies created on the basis of the gravity model suffer less from congestion than the random, the scale-free or
the JR ones, plus at a lower cost. The congestion level is found to be approximately correlated with the network clustering
coefficient in the case of random traffic, whereas in the case of gravity traffic such a correlation is not a trivial one. Other basic
network properties such as the average shortest path and the diameter are seen to correlate fairly well with the congestion
level. Further investigation on the adjustment of the gravity model parameters indicates particular sensitivity to the traffic
congestion, whereas only minor sensitivity to the total network cost. Although the results may not generalize beyond the
UE routing scheme, they yet represent a first attempt to include gravity networks and gravity traffic flows in the network
congestion analysis. The findings of this work could be exploited by traffic network designers in order to construct cost
efficient networks with a congestion minimization functioning. Studying the underlying communicating populations and
the unevenness of their interaction may lead to a network topology based on the expected traffic exchange, i.e. gravity-like,
which subsequently may lead to low congestion effects and low total cost. In future, a more exhaustive observation of the
gravity network statistical properties would unveil the explanation for their dominance under congestion.
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