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a b s t r a c t

In Electronic Marketplaces (EMs), a number of unknown entities can interact to conclude purchase actions.
Interactions are, usually, between buyers and sellers. Both groups of entities (e.g., buyers, sellers) aim to
acquire items in the most profitable price. The discussed interactions are realized in the form of negoti-
ations over a number of items characteristics. In this paper, we focus on the buyer side and deal with
automated multi-issue concurrent negotiations. Such negotiations are between buyers and multiple sell-
ers having in their property specific items. Each buyer negotiates with a number of sellers trying to
achieve the most profitable value for a number of items’ characteristics. We propose an optimization
model for achieving the maximum possible utility. Our method adopts the principles of the Artificial
Bee Colony (ABC) algorithm that offers a number of advantages compared to other Swarm Intelligence
(SI) methods (e.g., Particle Swarm Optimization – PSO). The buyer, based on a number of threads, tries
to find the optimal agreement when negotiating with a group of sellers. Every agreement, realized with
a specific seller, results a utility for the buyer concluded over a weighted scheme on the items character-
istics. Each thread adopts a weights adaptation model for optimizing the utility. A set of experiments
reveal the strengths and weaknesses of the proposed model. We also report on a comparison assessment
between the proposed method and other efforts found in the respective literature.

� 2016 Published by Elsevier B.V.
1. Introduction

Electronic Marketplaces (EMs) provide virtual places where
unknown entities interact each other for exchanging items. In
EMs, we can identify three types of users: the buyers, the sellers,
and the middle entities. Buyers aim to purchase items while sellers
have a number of items in their property and try to sell them in the
most profitable price. Middle entities are mainly used for adminis-
tration purposes (e.g., payments, security issues, etc). Intelligent
Agents (IAs) could represent the discussed entities in EMs. IAs
can undertake the responsibility of buying or selling items in an
automated way. IAs can satisfy the constraints defined by their
owners while they can, possibly, learn users’ preferences, thus,
increasing their performance.

Usually, in EMs, IAs interact each other, to conclude the
exchange of items, in the form of negotiations. Negotiation is the
process where unknown entities try to agree upon the exchange
of specific items for specific returns (Raiffa, 1982). Negotiation is
a decentralized decision making process undertaken to conclude
an agreement that satisfies the requirements of two or more par-
ties. Negotiations involve a number of offers exchanged between
IAs (i.e., buyers and sellers) with the final aim of the purchase of
items. In the respective literature, one can identify bilateral (one-
to-one) or one-to-many negotiations. In the first case, a buyer nego-
tiates with a seller. In the latter case, a buyer can negotiate, concur-
rently, with a number of sellers. Additionally, the negotiation could
involve a single (e.g., price) or multiple issues (e.g., price, delivery
time, quality, etc) for each item. In negotiations, buyers and sellers
have conflicting goals. In a single issue negotiation, the buyer
wants to purchase an item in the minimum possible price while
the seller wants to sell the item in the highest possible price. Sim-
ilar behavior is adopted in multi-issue negotiations, however, the
type of a specific issue defines the attitude of the buyer/seller.
For instance, the buyer wants to have an item in the minimum
delivery time that it is not so important in the seller side.

In EMs, an item can be provided by a number of sellers, how-
ever, with different characteristics (e.g., price, delivery time). Every
buyer should decide fromwhich seller it is going to buy the desired
product. This can be achieved through the adoption of concurrent
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negotiations to increase the performance and conclude the best
possible agreement. In such a setting, the buyer concurrently nego-
tiates with a number of sellers and accordingly chooses the best
agreement among all. The buyer utilizes a number of threads in
order to negotiate with every seller. In such cases, a coordination
module (CM) is necessary that can, probably, define the strategy
for each thread. To the best of our knowledge, the majority of the
research efforts found in the literature in the concurrent negotia-
tions domain, adopt a CM that, probably, could be not efficient
when applied in real scenarios. The following list reports on the
drawbacks of the CM responsible to ‘guide’ threads during
negotiations:

� The CM consists of a single point of failure. Any malfunction in the
CM will affect the outcomes of the negotiations as threads can-
not get instructions and adopt specific strategies;

� A centralized scheme (i.e., the CM) requires an increased number of
messages. As the CM should instruct threads during negotiation,
a significant number of messages should be exchanged between
the CM and threads. This could cause bottlenecks and demand
for increased resources in the CM while, in parallel, it increases
the complexity in the CM’s decision making mechanism (related
to the strategies that each thread should follow);

� The CM should be aware, in advance, for the appropriate strategies
of any type of seller. The centralized scheme demands for a com-
plex strategy definition model that takes into consideration any
potential aspect of the sellers’ behavior. Any adaptation scheme
during the negotiation increases the load of the CM and limits
its performance.

In this paper, we examine the case where buyers negotiate con-
currently with a number of sellers. We refer to a multi-issue nego-
tiation and assume absolutely no knowledge on the entities’
characteristics. Such knowledge involves deadlines, reservation
prices, etc. Reservation price is the acceptable upper/lower limit
of price for the buyer/seller. We try to increase the performance,
in the buyer side, by adopting a methodology that makes unneces-
sary the use of a CM. The solution involves a number of self-
adapting threads that adopt Swarm Intelligence (SI) (Engelbrecht,
2007). Through the adoption of SI, threads can independently read-
just their strategies aligned with the negotiation information and
the outcome in other threads. As no CM is necessary, the
exchanged messages are minimized and, thus, the buyer saves
time and computational resources. When an agreement is achieved
by a specific thread, the remaining threads can readjust their strat-
egy, if needed, to force the respective sellers to accept lower prices.
After an agreement, each thread provides feedback to the seller for
the final agreement after a specific time interval that enables the
remaining threads to achieve lower prices. We propose a novel
approach based on the known Artificial Bee Colony (ABC) optimiza-
tion method (Karaboga, 2005). ABC could enhance the performance
of our solution. ABC can better ‘escape’ from local minima com-
pared to other SI techniques like Particle Swarm Optimization
(PSO). In the examined negotiations, IAs try to achieve the best
agreement, e.g., the agreement with the highest utility. The utility
can be defined in many ways. For instance, it can represent the
amount of money that the buyer saves (compared to an upper
value) or the seller gains (compared to the item cost).

Example applications involve typical E-commerce models, Grid
Computing and Cloud. For instance, a concurrent negotiation
mechanism can be adopted for modeling the parallel negotiation
activities between a broker agent and multiple groups of provider
agents in Cloud (Sim, 2013). The aim is to establish multiple SLAs
for a collection of resources. The discussed model consists of a
module that manages the parallel negotiation activities for acquir-
ing different types of Cloud resources in different resource
markets. In each Cloud resource market, a broker agent establishes
an SLA by negotiating simultaneously with multiple provider
agents. The SLA is realized with the most profitable market as
derived by the outcomes of successful negotiations. At each nego-
tiation round, IAs determine whether to accept the proposed offer
or to break an existing contract and get a new one paying a penalty
fee. In this example, the broker agent plays the role of the buyer in
our model while the provider agents play the role of sellers. In
addition, our model can easily be combined with already defined
payment systems. For instance, the proposed framework could be
part of the transactions in a block chain wallet.1 Users can create
transactions and include a concurrent negotiation scheme to con-
clude purchases. Hence, our framework could be combined with
the payment platform to derive a fully automated purchase frame-
work that will facilitate end users to perform purchase actions.
The envisioned threads after concluding a successful transaction
with a specific seller could realize the payment adopting digital coins
like bit coins. This automated process will increase the performance
of the systems as the whole chain from the user request to the pay-
ment and the final conclusion of the transaction will be fully auto-
mated, thus, increasing the throughput.

The rest of the paper is organized as follows. Section 2 presents
the related work in the discussed domain while Section 3 describes
our scenario. We present our approach for concurrent multi-issue
negotiations. In Section 4, we describe our proposed algorithm
and in Section 5, we give specific experimental results. We com-
pare our model with reference models found in the literature.
Finally, in Section 6, we conclude our paper by presenting some
future extensions.
2. Related work

Over the past years, a lot of work has been performed in auto-
mated negotiations. Many researchers have proposed models deal-
ing with bilateral or concurrent negotiations (An et al., 2006; Chen
and Huang, 2009; Da-Jun and Liang-Xian, 2002; Faratin et al.,
1998; Fatima et al., 2005; Sun et al., 2007). We can group these
efforts as follows: (i) approaches based on Game Theory (GT)
(e.g., bargaining); (ii) approaches based on Machine Learning (ML)
(e.g., learning or adapting on the opponent’s strategy); (iii)
approaches based on Fuzzy Logic (FL); (iv) approaches based on
heuristic decision functions.
2.1. Negotiation models and strategies

Important role to negotiations plays the strategies of the enti-
ties as well as the interaction protocol. Usually, a specific deadline
is set for each entity. The time for which the entities participate in
a negotiation is important as it is used to exercise pressure on the
entities. Finite horizon negotiations involve the exchange of alter-
nating offers for a number of rounds (Stahl, 1972). However, one
can find approaches where infinite horizon is considered (Stahl,
1972). Negotiations are realized over a single or multiple issues.
The majority of the research efforts deal with single issue negotia-
tions. Multi-issue negotiations are widely studied in the past
(Fatima et al., 2005; Lau, 2005; Robu et al., 2005). Such negotia-
tions can be further improved by incorporating heuristics (Jonker
et al., 2004). IAs can utilize the history of the opponent’s offers to
predict her preferences or genetic algorithms for choosing the
appropriate line of actions at every negotiation round (Lau,
2005). Multi-IAs concurrent negotiations involve a number of IAs
and the proposed models deal with the behavior of the group
(Türkay and Koray, 2012; Wu et al., 2009).
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GT models usually study the bargaining game (Chatterjee and
Samuelson, 1988; Crampton, 1984; Fudenberg et al., 1987;
Jazayeriy et al., 2011; Shandholm and Vulkan, 1999). In many
efforts, the authors assume knowledge of entities’ characteristics
or their distributions. For instance, reservation prices could be
common knowledge (Crampton, 1984). Other parameters like the
deadline, strategies or the type of entities could be also common
knowledge (Chatterjee and Samuelson, 1988; Stahl, 1972). At every
round of the negotiation, entities make an offer to the opponent
and the latter entity has the opportunity to accept or reject it
and make a counter offer. Each entity has a specific strategy. The
strategy affects the offers or the response to the counter offers.
Based on the strategies, the market equilibrium can be easily
defined and analyzed. However, determining the equilibrium
assumes that entities are rational and remain at the equilibrium
path during negotiation. Unfortunately, entities can have outside
options or their behavior could be restricted (Fudenberg et al.,
1987). For instance, a seller could face an infinite number of buyers
and have the opportunity to leave the negotiation at any time
while buyers could not be capable of defining their offers but only
to accept or reject the incoming proposals. Hard and soft strategies
are already defined in the respective literature to depict the poten-
tial of an entity to be more strict or relaxed when sending offers
(Chatterjee and Samuelson, 1988). Prior probabilities for reserva-
tion prices could be common knowledge or uncertainty could be
present on both sides (Crampton, 1984). Time and information
affect the rational behavior of IAs when commitment is not possi-
ble. The players should exchange some private information before
an agreement is concluded. Pareto optimality is imperative for
negotiation algorithms to lead to an efficient solution (Jazayeriy
et al., 2011). The generation of a Pareto-optimal offer requires
information about the opponent’s importance weights.

In addition, a number of efforts deal with the definition of the
interaction protocol and functions adopted to generate the entities’
offers (Faratin et al., 1998; Fatima et al., 2005). Formal models and
a set of tactics are proposed. Specific metrics are adopted to reveal
the performance of the protocols like: i) the intrinsic benefit of the
agent, ii) the cost, and, iii) the performance of the intrinsic utility
relative to a complete knowledge interaction. The optimal strategy
of entities is studied w.r.t. an item pricing scheme. Three types of
functions are defined: linear (over time), boulware (the entity
reaches its final offer slowly) and conceder (the entity reaches its
final offer quickly). Finally, comparisons between concurrent and
sequential interactions indicate that the concurrent model outper-
forms the sequential (Nguyen and Jennings, 2003a).

2.2. Uncertainty management in negotiation models

FL is the right tool for handling uncertainty that is inherent in
dynamic environments. The negotiation strategies could be pre-
sented as fuzzy rules and simple heuristics could be employed to
learn the preferences of the opponent (Cheng et al., 2005). Heuris-
tics (Kolomvatsos et al., 2008b) and FL (Kolomvatsos et al., 2008a,
2015) could be also adopted to specify some of the negotiation
parameters like the deadline. A set of fuzzy rules (Kolomvatsos
et al., 2008a) or fuzzy constraints (Luo et al., 2003) could be defined
according to experts’ knowledge to determine a fair solution for all
parties and, thus, several options that satisfy them are identified. In
addition, fuzzy values on both sides could be adopted to incorpo-
rate the uncertainty in the definition of the entities’ offers
(Raeesy et al., 2007). Several ML models have been proposed for
predicting the opponent’s characteristics (Zuo and Sun, 2009).
Genetic algorithms provide an efficient methodology for the pre-
diction and learning of the opponent strategy (Gerding and van
Bragt, 2003; Oliver, 1997). Additionally, the use of Bayesian models
(Bui et al., 1995; Zuo and Sun, 2009; Leu et al., 2015) for learning
the opponent’s behavior increases the efficiency of the proposed
systems. The approximate predictions are based on opponent’s his-
torical offers. The proposed approaches also incorporate a counter-
offer definition algorithms which is capable of trading issues effec-
tively based on the predicted preference of the opponent. By inte-
grating the influences of the environment in a negotiation,
negotiators can be effectively adapted to any change. An example
ML algorithm adopted for learning the opponent’s behavior is rein-
forcement learning (Zeng and Sycara, 1998). Reinforcement learn-
ing helps the entities to decide if their offers will be accepted. The
aforementioned solutions have specific drawbacks when adopted
in negotiations. Learning mechanisms aim to discover the optimal
strategy as the response to the opponent’s move and not to provide
an efficient generic decision making mechanism. ML models
require increased computational effort and the use of training sam-
ples while Bayesian learning requires the knowledge of a priori
probability on the opponent type.

In addition, the application of prospect theory offers an efficient
model for the preferences of negotiators modeled using S-shape
value functions (Shyur and Shih, 2015). A unified agent incorporat-
ing three different types of concession tactics is developed while a
function of simulation mimicking the process of the negotiation is
provided. Discrete wavelet transformation and non-linear regres-
sion with Gaussian processes are adopted to model agents’ oppo-
nents in real-time (Chen and Weiss, 2015). In this context, utility
expectations are adaptively adjusted during negotiation. Adaptive
probabilistic behavioral learning mechanisms for managing the
opponenthavingunpredictable randombehaviors are alsoproposed
(Rajavela and Thangarathanam, 2016). To effectively learn the
opponent’s behavior over several stages of a negotiation process, a
behavioral inference engine analyzes the sequence of negotiation
offers. By modeling the negotiation process as the multi-stage
Markov decision problem, appropriate counter-offer behavioral
tactics generation based on the adaptive probabilistic decision
taken over the corresponding negotiation stage are suggested.

2.3. Negotiations in grid computing

In Grid, brokers are adopted to handle the applications for
resources (Haji et al., 2005). The resources that are capable of han-
dling submitted jobs are differentiated by the broker. Considering
that other users potentially require the same resource, probes are
used to keep a vision of any changes, securing resources before
submission and binding tasks to the resource. Users can be aware
about concurrent negotiations that conflict one another through a
conflict-Aware Negotiation Protocol for allocating Cloud resources
and services (Netto, 2011). This approach limits the chances of
having collisions with other users and facilitates users’ decisions
on the resources they want to allocate. The adopted negotiation
protocol, usually, involves offers and counter-offers (Venugopal
et al., 2008). According to this approach, a counter offer is gener-
ated as a response to an offer by modifying some of its terms
through the alternate offers mechanism. Offers are generated by
negotiation strategies aiming at long term allocations. For instance,
the basic negotiation strategy is modeled using a polynomial func-
tion allowing clients to concede faster at the beginning of negotia-
tion as compared to an exponential function (Haberland et al.,
2015b). The choice among an infinite number of tactics is deter-
mined through sophisticated mechanisms taking into account
task-specific characteristics and dynamics of Grid. Finally, adapta-
tion on the adopted strategies provides more efficiency into the
proposed negotiation mechanisms. Fuzzy control mechanisms
can easily handle the uncertainty present in such dynamic environ-
ments (Haberland et al., 2015a). Estimates regarding the speed and
the direction of the change in availability are performed by exploit-
ing the information kept by the resource allocator. Hence, the
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proposed solutions allow strategies adjustments according to
resource availability changes during negotiation.

2.4. Concurrent negotiations

The focus of our model in on automated concurrent negotiations.
Concurrent interactions, usually, have the form of one-to-many
negotiations between a buyer and multiple sellers (Sun et al.,
2007). The buyer is restricted to wait until the reception of offers
from all the threads before generating the next offer. Furthermore,
every seller can easily join and leave the negotiation dynamically.
A set of coordination schemes try to alleviate the coordination
activities in the buyer side (Rahwan et al., 2002; Nguyen and
Jennings, 2003b). Some examples are: Desperate, Patient, and Opti-
mized Patient strategies. Adaptive mechanisms have been proposed
to increase the efficiency of the concurrent negotiation models
(Narayanan and Jennings, 2005). Adaptation techniques provide a
mechanism that changes the parameters of the alternative offers
scheme (Narayanan and Jennings, 2005). In such cases, an adaptive
model could adopt Artificial Neural Networks (Oprea, 2002). In a
concurrent negotiation scheme, the CM plays the most significant
role. The CM is responsible for choosing the appropriate strategy
to be applied by each thread. It receives the status of each thread
and decides the strategy based on the parameters of each interac-
tion. Specific strategies could be adopted by the CM (Rahwan et al.,
2002), e.g., Fixed-Waiting-Time-Based and Fixed-Waiting-Ratio-
Based (An et al., 2006). Negotiation is conducted in continuous time
and IAs rely on the discussed strategies to issue an offer. Experi-
mental results suggest that the proposed mechanism achieves
more favorable outcomes than the general, one-to-many method-
ologies. The proposed approach is based on the combination of a
number of ad hoc heuristics involving a large set of parameters.
Moreover, the CM can have a view on the overall negotiation pro-
cess and manage the information related to the opponents. Based
on this information, the CM could decide the best possible time
to stop the negotiation and calculate the utility at that time
(Williams et al., 2012). An in-depth analysis and the key insights
accompanied by useful conclusions on the future extensions in
the field are presented in the 2nd International Automated Negoti-
ating Agents Competition (ANAC 2011) Baarslag et al., 2011. The
participants analyze the strategies used in negotiation scenarios
and techniques utilized by the teams. In particular, they show that
the most adaptive negotiation strategies are not necessarily the
ones that win the competition. Finally, recent efforts in the field
involve the use of the known Particle Swarm Optimization (PSO)
algorithm in concurrent negotiations (Kolomvatsos and
Hadjiefthymiades, 2014; Panagidi et al., 2014). Threads try to be
self-organized in order to reach to the best agreement.

2.5. Our contribution

In this paper, we study concurrent negotiations of a buyer with
a number of sellers. The buyer decision process is based on a num-
ber of issues. The buyer utilizes a number of threads that negotiate
with specific sellers. Each thread exchanges offers with a seller
concerning a number of issues. We assume absolutely no knowl-
edge on entities’ characteristics. In contrast to other research
efforts, like (Nguyen and Jennings, 2004; Rahwan et al., 2002;
Sun et al., 2007), we do not need any CM to specify the strategy
for each thread. Hence, the buyer requires less resources for the
negotiation process. The CM consists of a conceptual single point
of failure. If the CM fails to provide the necessary instructions to
threads, the buyer cannot conclude the negotiations. Complex cal-
culations in the co CM or messaging malfunctions could cause
unnecessary delays. In the remaining efforts, the setting is a cen-
tralized approach. Many messages are required for the communi-
cation between the CM and threads while, in our case, the
number of messages is minimized. In our model, even if messages
are lost, threads could continue negotiations and reach the final
result. Let us denote with N the number of threads and with Tb
the deadline of the buyer. The centralized approach is of time com-
plexity O(N�Tb) (for messaging) while our model is of time com-
plexity O(N) (for messaging). For example, if no agreement is
concluded till Tb, the centralized approach needs 2�N�Tb messages
to be exchanged between the CM and threads. In our case, the
number of messages is zero. The differences of our work to those
found in the literature are: a) each thread acts independently
adapted to each seller strategy, b) we adopt SI for adjusting each
thread’s strategy to reach the optimal agreement. We choose to
adopt the known ABC model instead of adopting the PSO method-
ology, like (Kolomvatsos and Hadjiefthymiades, 2014; Panagidi
et al., 2013, 2014), to compare these systems and reveal their
advantages and disadvantages in a concurrent negotiation setting.
Recent research efforts reveal the increased performance of the
ABC method (compared to the PSO model) in other research fields
(e.g., clustering) (Karaboga and Ozturk, 2011). The ABC algorithm
(Karaboga, 2005) was proposed as an optimization method of mul-
tivariate continuous objective functions. It belongs to the wider
family of swarm optimization algorithms that are based on SI.
These kinds of algorithms model the collective behavior of self-
organized interacting swarms. It has been shown that ABC perfor-
mance is comparable to other population-based methods
(Goldberg, 1989; Karaboga and Akay, 2009) and has been used in
several problems (Pan et al., 2011; Szeto et al., 2011) due to its sim-
plicity and ease of implementation. The strongest advantage of ABC
algorithm is its independency on the initial values of the examined
variables.
3. Multi-issue concurrent negotiations

3.1. Negotiation setting

As mentioned, a set of threads undertakes the responsibility of
negotiating with a specific seller. Let us focus on a single interac-
tion between a thread and a seller. We model this interaction
through a finite-horizon multi-issue negotiation under incomplete
knowledge. The negotiation involves a number of alternating offers.
We take into consideration the following assumptions:

� If one of the deadlines expires and no agreement is concluded,
the negotiation ends with a conflict and zero utility for both
entities;

� At each round of the process, the entities propose a set of values
(package offer) for the examined issues (item characteristics). If
the opponent accepts the offer, the negotiation ends with an
agreement and positive utility for both;

� Each entity has absolutely no knowledge on the characteristics
of its opponent;

� Both entities reason at every round and decide whether to con-
tinue the negotiation or not by rejecting the current offer (antic-
ipating a higher utility at a later stage);

� The seller starts first and the thread follows, if the proposed
offer is rejected. If an entity is not satisfied with the proposed
offer, it has the right to reject it and issue a counter offer.

In Fig. 1, we can see the architecture of our model. At every
round, each thread sends/receives an offer (a bundle of values) to
the corresponding seller. If an agreement is true in a specific thread
then the agreement message is sent to the rest of them (the mes-
sage is received by every thread that currently participates in an
active negotiation). We consider that the remaining threads
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change their strategy to pursue a better agreement than the previ-
ous one. In addition, the remaining threads change the weights for
the utility calculation to pay more attention on specific issues and,
thus, to achieve a better utility in a possible future agreement.
3.2. Entities behavior

We consider that every seller has the same item in her property
retrieved with a specific cost that tries to sell it in the highest pos-
sible utility. Similarly, the buyer is interested in purchasing the
item that is close to her preferences. The item has a number of
characteristics (issues) that affect the final utility. These issues
are categorized as proportional (P) or inversely proportional (IP) to
the utility. When examining P issues, the higher the issue value
is, the higher the utility becomes. The opposite stands for the IP
issues. When an issue is characterized as P for the buyer, it is also
characterized as IP for the seller and vice versa. The reason is that
the buyer and the seller have conflicting and opposite goals. For
instance, the item price is characterized as IP for the buyer because,
the lower the price is, the higher the buyer’s utility becomes. On
the other hand, the item price is characterized as P for the seller
as a high price leads to high a seller’s utility.

The buyer has a specific deadline defined by her owner. The
same stands for the seller. Let us denote the buyer deadline with
Tb while the seller deadline is depicted by Ts. In each negotiation,
the seller starts first and the buyer follows, if the proposed offer
is rejected. The seller proposes an offer at odd rounds and the
buyer (i.e., her threads) makes a counter offer at even rounds. If
an entity is not satisfied by the offer, she has the right to reject it
and issue a counter offer. Every offer involves specific values for
the examined issues. This approach is defined as the package deal
(Rahwan et al., 2002; Torroni and Toni, 2001). If a deadline expires
and no agreement is present, the negotiation ends with zero utility
for both entities. Entities adopt a specific utility function (U)
defined as follows:

U ¼
Xm
i¼1

wi � vi ð1Þ

where m is the number of issues, wi and vi are issues’ weights and
values, respectively. In addition, both entities have their own strat-
egy for the calculation of offers. Each entity has her own reservation
values for every issue. We consider an interval [mini, maxi] where
the ith issue takes its values (Fatima et al., 2005; Oprea, 2002).
These values differ in the buyer as well as in the seller side. Both
entities generate their offers based on the following equations:

Oi ¼ mini þuðtÞ � ðmaxi �miniÞ ð2Þ
for the buyer and

Oi ¼ mini þ ð1�uðtÞÞ � ðmaxi �miniÞ ð3Þ
for the seller, respectively. In the above equations, Oi depicts the
next offer for issue I,mini (maxi) is the minimum (maximum) allow-
able value of issue i and u(t) is a time dependent strategy function.
Functions should ensure that 0 6 u(t) 6 1, u(0) = k and u(T) = 1 (Τ:
deadline). Function u(t) is defined as follows (Fatima et al., 2005):

uðtÞ ¼ kþ ð1� kÞ minðt;TÞ
T

� �1=w

ð4Þ

An infinite number of functions can be derived for different val-
ues of w. Finally, for every issue, we calculate the corresponding
utility (for both entities) based on the following equations:

UðviÞ ¼ vi �mini

maxi �mini
; if issue i is P ð5Þ

UðviÞ ¼
max

i
� vi

max
i

�min
i

; if issue i is IP ð6Þ

We propose a model where the buyer threads are automatically
organized to change their strategy to reach the best agreement.
Our approach is based on the known ABC algorithm. We adopt
the ABC algorithm for defining the weights adopted in the utility
function. The aim is to have a tradeoff between issues in order to
have a better agreement. When a thread concludes an agreement,
a message is sent to the rest of the threads. The remaining threads,
if necessary (if the utility of the agreement is higher than the utility
defined by the current offer), reassess weights wi aiming at high U.
If the weight of an issue, which has higher value than the corre-
sponding issue of the agreement, decreases, its proportion in the
utility will decrease too. Through this approach, we emphasize
on those issues that have value worse than the agreement realiza-
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tion. The reason is that the utility will increase depending on such
issues (the utility will be increased if we increase the weight of the
specific issue and achieve a better value in the negotiation). This
way, the thread tries to force the seller to give better offers than
the previous. U will be increased if and only if the seller will
improve those values.
4. Threads self adaptation model

4.1. Swarm intelligence theory

The buyer has identified a set of potential sellers and she is
involved in negotiations with all of them. The aim is to buy the
item accepting an offer that maximizes her utility. For negotiating
with all the sellers together, numerous threads are spawned. For all
of them there is a common goal: the best possible agreement for
the specific set of sellers. Threads could adopt a collective behavior
to reach the common goal. By adopting the collective behavior,
threads could be beneficial from the negotiation information pre-
sent in their peers (other threads). Such information could affect
their behavior to have the best possible result. These interactions
lead to an intelligent behavior fully adapted on the information
accumulated by the negotiations underway. Based on this ratio-
nale, we adopt SI as the representative theory of collective intelli-
gence. The proposed model is (Bonaneau and Meyer, 2001):

� Robust. It is not affected by failures. Even if a thread fails to
have a successful conclusion, the rest of them can still perform
their task.

� Flexible. The model can react in environment’s changes (e.g.,
change in a seller’s strategy).

� Self-organized. Each thread can easily change its strategy with-
out complex calculations and signaling overhead between
threads and the CM.

4.2. The ABC algorithm

As mentioned, the ABC algorithm is adopted for resulting issue
weights just after every agreement is announced by a thread. The
thread concluding an agreement announces it to the remaining
threads and sends a lightweight message containing the agreement
information (i.e., values for each issue and the final utility). The
remaining threads compare their current negotiation information
with the concluded agreement and, if necessary, change the
weights of U to pursue a better agreement. The aim is to derive
weights that ‘pay attention’ in some of the issues to lead to a better
agreements (high U) in the upcoming rounds. The rationale is that
we try to find weights such as the final U is higher than the utility
gained by the latest agreement. With this approach, we emphasize
on those issues that have value ‘worse’ than the values present in
the agreement, because the utility will increase when these ‘bad’
issues will be depicted by high/low (it depends if an issue is P or
IP) values. This way, there is a dynamic change in threads’ strategy
under incomplete knowledge. Let us discuss a simple example
depicting our idea. We consider two issues being IP. These issues
are the price (p) and the delivery time (d). Both of them should
be low to have the buyer tasting a high U (for simplicity, we con-
sider values in the interval [0,1]). Let the negotiation information
for thread A be: p = 0.6, d = 0.5 and let thread B conclude an agree-
ment with p = 0.7, d = 0.5. In addition, weights for thread A are 0.3
for p and 0.7 for d while thread B adopts 0.4 for p and 0.6 for d,
respectively. The utility that the buyer tastes from the agreement
in thread B is 0.64. After the conclusion of the agreement, thread
A executes our algorithm and changes the adopted weights. If
the adapted weights are 0.7 for p and 0.3 for d, thread A will pay
more attention on p as d is already lower than the d value realized
in the agreement announced by thread B. Hence, if thread A man-
ages to conclude a new agreement with p = 0.75 (slightly better
than p realization in thread’s B agreement), the final utility will
be 0.68 (higher than the agreement’s utility).

The ABC algorithm resembles the foraging operation of honey-
bees and their swarming around the hive. The interaction is
between three types of bees: employed, onlooker and scout. The
ABC algorithm is an iterative process and requires five user param-
eters: (a) number of food sources (solutions i.e., utility function
weight values), (b) number of iterations (MCN), (c) number of
cycles before a constant solution (with no improvement) is
replaced by a new one, (d) modification rate (MR) that controls
the number of parameters to be modified and (e) scout production
period (SPP). The number of employed and onlooker bees are set
equal to the number of solutions i.e., an employed bee corresponds
for every food source. The initial solutions are randomly selected as
follows:

xij ¼ LBj þ ðUBj � LBjÞwij; j ¼ 1;2; . . . ;n and i ¼ 1;2; . . . ; SN ð7Þ
where LBj and UBj is the minimum and maximum values of dimen-
sion j, wij is a uniformly distributed random number in [0,1] and SN
is the colony size. The employed bees are sent to the initial sources,
evaluate their fitness functions and return to their hive to inform
the bees waiting on the dance area about the amount of nectar of
the examined sources. At the next step, the employed bees return
to the last known sources and chose a new source in this neighbor-
hood. A uniformly distributed random number, (0 6 Rj 6 1), is pro-
duced for each parameter xij. The parameter xij is then modified if
the random number is less than MR.

zij ¼
xij þ ðxij � xkjÞxij; if Rj < MR
xij; otherwise

�
ð8Þ

where k 2 {1, 2,. . ., SN}, with k– I, is a randomly chosen index and
xij is a uniformly distributed random number in [�1, 1]. If no
parameter is changed, one random parameter of the solution is
changed as follows:

zij ¼ xij þ ðxij � xkjÞxij; j ¼ 1;2; . . . ;n and k ¼ 1;2; . . . ; SN;k–i

ð9Þ
where xij is the current position of the employed bee, j is a uni-
formly distributed random integer in the range [1, D] (D is the num-
ber of optimization parameters) and xij is a uniformly distributed
random number in [�1, 1]. It should be noted that the deviation
from the current position xij decreases as the difference between
xij and xkj decreases. After the production of the new position, the
ABC makes a selection using Deb’s rules (Deb, 2000). Using Deb’s
rules, the new position is accepted or rejected. According to Deb’s
method, the following decision scheme is adopted:

� Any feasible solution (vli 6 0) is preferred to any infeasible solu-
tion (vlj > 0);

� Among two feasible solutions (vli 6 0, vlj 6 0), the one having a
better objective function value is preferred (fi < fj);

� Among two infeasible solutions (vli > 0, vlj > 0), the one having
smaller constraint violation is preferred (vli < vlj).

An onlooker bee, then, selects a food source xi by calculating its
probability:
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pi ¼

0:5þ 0:5 � ftiXSN
j¼1

ftj

0
BBBB@

1
CCCCA; for feasible solutions

0:5 � 1� vliXSN
j¼1

vlj

0
BBBB@

1
CCCCA; for unfeasible solutions

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð10Þ

where vli is a penalty and fti is the fitness function of source i (the
nectar information gathered by the employed bees).

fti ¼
1

1þf i
; if f i P 0

1þ jf ij; if f i < 0

(
ð11Þ

where fi is the cost value of the source i. Infeasible solutions’ prob-
abilities are in [0, 0.5] while feasible solutions’ probabilities are in
the interval (0.5, 1]. Feasible solutions are selected probabilistically
proportional to their fitness while infeasible ones are chosen inver-
sely proportional to their violation values. Similar to the employed
bees, the onlookers generate a new source using Eq. (8) which is
finally selected with a probability related to its nectar amount. If
a source cannot be further improved in a predetermined number
of cycles, it is abandoned and replaced with a new one produced
by scouts through Eq. (7). It should be mentioned that scouts are
produced at predetermined periods which are defined by the con-
trol parameter known as scout production period (SPP). At each
SPP cycle, a scout production process is performed if there is an
abandoned food source exceeding a pre-defined limit.

4.3. Threads decision process

Threads start from the same strategy related to the generation
of offers. The adopted strategies are depicted by Eqs. (2) and (3).
If an agreement is concluded, the specific thread sends an agree-
ment message to the rest. We consider that the communication
time is negligible. The message conveys information related to
the issues under consideration and, thus, the remaining threads
can ‘see’ the utility that the buyer gains. Based on these values
and the utility gained by the agreement, the remaining threads
can readjust, if needed, their strategies. We consider that threads
after the reception of an agreement message check their current
utility (i.e., as realized till the specific round of the negotiation)
and if the current utility is smaller than the utility gained by the
recent agreement, they decide to readjust the weights adopted in
Eq. (1). The reason is that by readjusting the weights in the utility
function, they readjust the adopted strategy concerning the offers
made to the seller as threads aim to gain more utility in the future.
The ABC algorithm, as described in Section 4.2, is adopted to result
the new weights. Actually, the solutions xij are realizations of the
weights. After that, each thread continues the negotiation, how-
ever, following, a new strategy towards the utility maximization.

5. Experimental evaluation

In the previous sections, we analyzed the decision process of the
described negotiation scenario. The described model is applied in
each thread. Therefore, at every round each thread should accept
a seller’s offer if the utility of the incoming offer is higher than
the utility realized on the thread’s next offer (in the case where
the seller accepts the offer). In this section, we discuss our experi-
mental results. Our objective is to provide simulation results for
very important parameters like average agreements, the buyer’s
and the seller’s utility and the time required to conclude an agree-
ment. These metrics are studied for various thread numbers. We
can see how the number of threads affects the agreement price
and, thus, the final utility of the buyer. We compare our model
with models found in the respective literature. The comparison is
related to the final buyer’s utility, the agreement ratio (percentage
of agreements) and the time required to realize an agreement.

5.1. Performance metrics

The performance metrics adopted in our experimental evalua-
tion are:

� The agreement ratio (AG): The AG metric indicates the number
of negotiations that end with an agreement out of a number of
negotiations. Let us denote with R the total number of negotia-
tions, with B the number of negotiations where the buyer
accepts the seller’s offer and with S the number of negotiations
where the seller accepts the buyer’s offer. The following equa-
tion holds true:

AG ¼ Bþ S
R

ð12Þ

The higher the AG value is, the more agreements are concluded
and both entities gain some utility.

� Average Buyer Utility (ABU): The ABU metric indicates the util-
ity that the buyer gains from a negotiation. The utility is calcu-
lated when an agreement is present. For the ABU metric, the
following equation holds true:

ABU ¼ 1
Bþ S

XBþS

i¼1

maxiðUbÞ ð13Þ

The ABU is calculated by taking into consideration the maxi-
mum utility from the sub-set of threads that concluded an
agreement. This is natural as the buyer finally chooses the best
agreement among all the threads. We assume that when an
agreement is present in a specific thread, the buyer does not
announce the conclusion of the negotiation to the correspond-
ing seller, however, she waits for the conclusion of the entire
set of threads. We consider that this time does not affect the
final conclusion of an agreement.

� Average Seller Utility (ASU): The ASU metric is defined as the
utility gained in the seller side. With the ASU metric, we con-
sider the average utility for a number of negotiations. The dis-
cussed utility is calculated only in the case of an agreement.
The following equation stands true:

ASU ¼ 1
Bþ S

XBþS

i¼1

Us ð14Þ

� Average Rounds (AR): The AR metric is defined as the number
of rounds required to reach an agreement out of the full horizon
T = min(Tb, Ts). It is an indication of the time required and the
resources respectively to conclude a negotiation. The higher
the AR is, the more time and resources are required by a nego-
tiation. Actually, we examine the percentage of the required
rounds on T. The AR metric is defined by:

AP ¼ 1
Bþ R

XBþR
i¼1

Z � t� þ ð1� ZÞ � t#
T

ð15Þ
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where

Z ¼ 1; if the buyer accepts the seller’s offer at time t�

0; if the seller accepts the buyer’s offer at time t#

�
ð16Þ
5.2. Simulation setup

We run a number of simulations for the discussed scenario. The
simulations run in an Intel Pentium 3.2 GHz processor with 4 GB
Ram running Windows 7. A virtual EM was created, where buyer
threads are implemented as Java threads. All threads share the
same deadline. We run experiments adopting synthetic data for
different values of the buyer valuation (V) about an item. This value
affects the item price. We run 100 negotiations for NT = 50
(threads), I = 4 (issues – including price) and V 2 {10, 300}. It
should be noted that at the beginning of each experiment, we ran-
domly (uniformly) choose intervals [mini, maxi] for each side
(buyer and seller). These values are chosen in [0,100]. Moreover,
we randomly choose Tb and Ts in the interval [50,100]. The seller’s
parameters are also randomly selected in every experiment (e.g.,
the cost is randomly (uniformly) selected in the interval
(Crampton, 1984; Shandholm and Vulkan, 1999). For offers calcu-
lation, we are based on Eqs. (2) and (3). It should be noted that
with the selected intervals, we try to simulate different scenarios
related to the agreement zone (Kolomvatsos et al., 2012). The agree-
ment zone is defined as the difference between V and the seller’s
cost. The agreement zone indicates if there is plenty of room to
realize an agreement. For instance, when V is randomly selected
in An et al. (2006), Crampton (1984) and the seller’s cost is ran-
domly selected in the interval (Crampton, 1984; Shandholm and
Vulkan, 1999), we simulate a ‘narrow’ agreement zone. In this case,
we simulate a scenario where both entities (i.e., buyer threads and
the corresponding sellers) should ‘consume’ their deadlines and
accept less profitable offers to, finally, conclude an agreement
(even with limited profits for both). In addition, when limited
agreement zones are the subject, there is an increased risk of a con-
flict, especially when the agreement zone is the empty set. When V
is high (e.g., V = 300), there is plenty of room for an agreement and
both entities can pursue very profitable offers. Finally, to depict the
performance of our model in real scenarios, we, additionally, exe-
cute a set of experiments adopting real data.2 The adopted dataset
provides stock values for S&P 500 containing one record per line
where date, open, high, low and close values for each stock are
depicted. We adopt high, low and close values for representing the
issues involved in the multi-issue negotiations. A subset is adopted
for the buyer part while another is adopted for the seller part. We
envision that each stock value is the price of product with a current
value, i.e., a high value and a low value. Negotiation begins with the
low value and cannot exceed the maximum pre-defined value. At
each round, the proposed value of the IA (i.e., the buyer and the
seller) is connected with the current value of the stock. The rest
issues are calculated as we have already described.

We compare our results with the results derived by another
optimization technique that adopts the Simplex method in combi-
nation with the PSO algorithm (Panagidi et al., 2013). The simula-
tion setup is as described above for both models. In addition, we
present a comparative evaluation of our model with two other
algorithms dealing with concurrent negotiations. The Conan model
is a heuristic strategy for concurrent, single-issue negotiations
(Bedour et al., 2014). IAs are autonomous during the negotiation
with the absence of a CM. While a thread negotiates with a specific
seller, the thread can commit (hold) a preferred offer for a certain
2 Historical Data for S&P 500 Stocks, available at http://pages.swcp.com/stocks
#historical%20data.
/

amount of time, unless a better offer is received. In such cases, the
thread can de-commit and pay a penalty. IAs generate offers by cal-
culating environmental and self (individual) factors. These factors
are based on local and global criteria of the negotiation like the
number of the committed offers, the number of competitors, the
deadline and the individual’s negotiation status. The second model
use IAs to concurrently negotiate with multiple, unknown oppo-
nents in real-time over multi-issues (Williams et al., 2012). The
negotiation protocol is orchestrated by a CM. Let us name this
model as the Coordinator mechanism. Each negotiation thread is
responsible for managing the negotiation with a single opponent
and uses information learnt during the interaction. In each round,
every thread provides the information of the negotiation to the CM.
The CM based on probabilistic information about the opponent
selects the information from all threads, determines the best
response across the entire set of the components and broadcasts
this information, i.e., the optimal utility U and the best time t for
each negotiation thread i, back to the threads. This information is
adopted by each negotiation thread for creating the next offer
and updating the termination time of the negotiation.
5.3. Performance results

The proposed algorithm is fast and efficient concerning the time
required to conclude an agreement and the performance related to
the utility gained by the buyer. The complexity of our algorithm, in
the worst case, is O(Tb�CS) where the CS depicts the population size
(the number of bees). We observe that the time complexity
depends not only of the deadline that the buyer and, thus, threads,
but also on the bees number that have the responsibility of per-
forming changes in the weights of the utility function. In the afore-
mentioned complexity, we consider that each bee adopts a single
cycle to produce the optimal solution. However, this cannot be effi-
cient as, with a single cycle, the solutions space is not searched
exhaustively. Hence, the final complexity of our algorithm is O(Tb-
�CS�CL) where the CL depicts the cycles that bees adopt to conclude
the optimal solution.

In Fig. 2, we can see our results for different V. V, in combination
with sellers’ cost, affects the agreement zone as already mentioned.
The ABC algorithm provides better results related to the adopted
metrics (except ABU; V > 150). The interesting is that the proposed
model performs well when V? 10. In such cases, the agreement
zone (concerning the price) is limited. The weights adaptation
scheme leads to more agreements compared to the PSO as the
solution space is optimally searched and new strategies are
adopted by threads. The ABC is not trapped in local minima and,
thus, it is able to find the optimal solution for the specific informa-
tion of the negotiation. The increased number of agreements is
accompanied by an increased ABU, especially, in limited agreement
zones. Threads change the adopted weights and, thus, dynamically
adapt their strategies to the announced agreements. This has the
potential to seek agreements that are better than the previous
and, thus, the utility that the buyer gains, is always increasing.
Concerning the ABU, the proposed model exhibits a stable behavior
with ABU � 0.8. The PSO algorithm achieves better results for high
V. However, in such cases the agreement zone is very large and,
thus, more possibilities for an agreement are present. Concerning
the AR, we see that the proposed model reaches an agreement in
lower amount of time compared with the PSO. The ABC algorithm
achieves 73% (approximately) reduction in the rounds required for
an agreement. This is natural as the ABC performs an aggressive
weights adaptation to achieve high U compared to past agree-
ments. Through the adaptation process, the focus is paid on differ-
ent issues that are judged to be lower than the issues realization in
recent agreements.

http://pages.swcp.com/stocks/#historical%20data
http://pages.swcp.com/stocks/#historical%20data


Fig. 2. Results for different V values.
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Apart from V, we also focus on the number of threads NT. We
run experiments for different NT and report on our results. We
run 100 simulations keeping V = 100, I = 4 and NT 2 {10, 20, . . .,
50}. Our aim is to identify the effect of NT in the negotiation out-
come. In Fig. 3, we observe similar results as in Fig. 2 (i.e., experi-
ments realized for different V). The ABC approach overcomes the
PSO model concerning the AG, ABU and AR. The AG and ABU
increase as NT increases as well. The ABC model leads to a 31%
(approximately) increase in the ABU value. This means that the
higher the number of threads is, the higher the utility becomes.
Through a large number of threads, the buyer has more opportuni-
ties to find the best agreement as she faces many sellers. Recall
that every new agreement is better than previous agreements real-
ized through the weights adaptation scheme. Hence, the more the
number of threads is, the more the opportunities for agreements
and increased utility, respectively. When a high number of threads
is the case, a new agreement will affect the strategy of many
threads and, thus, the buyer has the opportunity to force more sell-
ers to proceed with better offers. The result is that any new agree-
ment, statistically, will involve offers better than previous
agreements. We observe this trend in ABU results. When NT ?
50, ABU exceeds 0.8 which means that the final agreement can
approach the optimal scenario involving issues realization that
are very profitable for the buyer.

We, additionally, experiment with real data. We run 100 simu-
lations keeping V = 100, I = 4 and NT 2 {10, 20, . . ., 50}. In Fig. 4, we
see our results. The ABC outperforms the PSO and leads to
increased agreements and utility for the buyer. In these plots, we
also depict the mean (meanABC, meanPSO) and the deviation of
each model. The proposed model exhibits stability in its perfor-
mance, especially, in the case of AG and AR. The AG is high and
the AR is low meaning that the proposed model concludes a high
number of agreements in limited time. These results confirm the
efficiency of the proposed scheme and show us that the aggressive
adaptation of weights seems to be very important for the realiza-
tion of multiple agreements. The interesting is that our model
when applied on top of real data leads to lower ABU compared to
the PSO. In addition, our results on top of real data show that the
ABU is lower than the utility realized in our experiments involving
synthetic data. It should be noted that in our real dataset, the col-
lected values are realized in short intervals and, thus, significant
fluctuations in issues realization are limited. The real dataset is
depicted by a ‘stability’ in data fluctuations. Our model seems to
be the appropriate solution for a buyer when the underlying data



Fig. 3. Results for different NT values.
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are characterized by a uniform distribution where each data value
is of equal probability and the environment is very dynamic (data
change continually). Hence, the proposed model manages to per-
form better than the remaining schemes when sellers’ offers and
strategies are characterized by high fluctuations.

Let us now proceed to a comparison between the proposed
model and the PSO model adopting simple statistical metrics. We
report on the performance of the discussed models concerning
their mean (l) and standard deviation (r) while we perform a t-
test to present the difference in their results. In Table 1, we present
our results for the entire set of the adopted metrics. We observe
that the proposed models is more stable than the PSO for the AG,
ABU and ASU while PSO performs better concerning the ASU. The
mean value of the ABC related to the AG is higher than the PSO
while our model also outperforms the PSO concerning the AR. Con-
cerning the ABU, we observe a similar behavior for both models.

The t-test is concluded for both, the synthetic and the real data-
set. The critical values for the confidence intervals of 90%, 95% and
99% are 1.310, 1.697 and 2.457, respectively. These values stand for
the experiments involving the synthetic dataset and different V.
Our t-values are 0.211, 0.031, 0.200 and 0.346 for AG, ABU, ASU,
and AR, respectively. We see that these results do not depict a
significant difference in the performance of the examined models
that could cause a violation of the critical values. In addition, we
perform the t-test for the synthetic and the real datasets and for
different NT. The critical values are 1.476, 2.015 and 3.365 for the
confidence intervals of 90%, 95% and 99%, respectively. Our results,
for the synthetic dataset, are 1.256, 2.032, 0.519 and 1.447 for AG,
ABU, ASU and AR, respectively. The observed results for the real
dataset are 0.997, 0.865, 0.439 and 27.224 for AG, ABU, ASU and
AR, respectively. We observe a significant difference in the perfor-
mance of the models concerning the AG, ABU and AR depending on
the dataset. Recall that the synthetic dataset is generated by incor-
porating random (we adopt a uniform distribution) values for the
examined issues and, thus, it is characterized by fluctuations on
the retrieved values. On the other hand, the real dataset is charac-
terized by stability due to the fact that one cannot observe any high
fluctuations in consecutive stock prices. Our model performs better
when the dataset is not ‘stable’. We observe that critical values are
violated for: (i) the ABU metric (synthetic dataset) having the AG
and AR t-test results close to the critical value (for the same data-
set); (ii) the AR metric (real dataset). This means that the proposed
model outperforms the PSO model concerning the time required to
conclude an agreement while having the remaining metrics at high



Fig. 4. Results for different NT values (real data).

Table 1
Mean and standard deviation of performance metrics.

AG ABU ASU AR

l ABC 0.99 0.80 0.38 0.14
PSO 0.94 0.80 0.44 0.32

r ABC 0.03 0.02 0.05 0.16
PSO 0.05 0.11 0.09 0.15
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levels. Such a result is considered as very profitable for the buyer as
with the adoption of the ABC algorithm and the weights adaptation
scheme, the buyer can efficiently face multiple and diverse sellers.

We also compare our model with two multi-issue negotiation
models found in the literature (i.e., the Conan and the Coordinator
models). In Fig. 5, we present our results (realized on top of syn-
thetic data). We observe that for high V, the examined models
exhibit similar performance with the PSO performing better than
the remaining models for the ABU and ASU metrics. The ABC per-
forms well concerning the AG metric even for low V. The same
behavior is observed for Conan, however, Conan is unstable for
V > 50. Conan and Coordinator models perform well concerning
the AR metric, however, both models exhibit worse performance
related to the AG and the ABU metrics (for the majority of the
agreement zones realized by different V). In general, the proposed
model behaves well and exhibits the best performance for a high
set of experimental scenarios while, at the same time, it avoids
any disadvantage of the typical centralized systems as already ana-
lyzed above. Hence, it can be the appropriate solution when the
environment is characterized by dynamic changes in the underly-
ing data and strategies as depicted by the sellers’ behavior.

Finally, we report on the communication cost of the proposed
scheme. The communication cost depends on the number of the
required messages to conclude a set of negotiations. The required
messages are of two types: messages exchanged between buyer
and sellers threads (XM) and messages related to the announce-
ment of agreements in the active threads (GM). We run 100 nego-
tiations for NT = 50, I = 4, V = 200 and get the average XM, GM.



Fig. 5. Comparison results with baseline models.
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Concerning the interaction messages, we get XM = 20.50 (in aver-
age). This means that the interaction between two threads
(buyer–seller) requires in average 21 messages through which val-
ues for the examined issues are exchanged before the negotiation
concludes (no matter the result). Concerning the agreement mes-
sages, we get GM = 2.40. This means that, in average, the agreement
messages are sent to two active threads that continue the dis-
cussed interactions. It should be noted that the aforementioned
values concern results for messages per thread. In general, in every
negotiation, the exchanged messages (in average) are 463.92 and
75.58 for XM and GM, respectively. We observe that the communi-
cation cost, for a high number of threads (NT ? 50), mainly
depends on the messages required by the interaction between
buyer – seller and not on the messages exchanged to transfer the
agreements information to the active threads. In any case,
we could reduce the number of the ‘agreement’ messages if we
consider the announcement of agreements only to a subset of
threads according to pre-defined criteria (some nodes could be
selected to continue negotiations while others will be stopped).
This way, we can reduce the cost for messaging and increase the
performance of the algorithm as threads should devote limited
resources for communication. However, this approach is left for
future work.
6. Conclusions

In this paper, we focus on concurrent negotiations and propose
a model for defining weight values in the calculation process of the
utility function. We focus on the buyer side and deal with a sce-
nario where the buyer adopts a number of threads for negotiating
with a group of sellers. We describe our method for optimizing
utility values when an agreement is concluded in a negotiation.
The corresponding thread announces the agreement and the rest
of them, through the proposed model, try to find the weights that
maximize the utility in the upcoming rounds.

Based on the knowledge gained from recent research activities,
this paper tries to make one step towards the application of auto-
mated negotiations to real world problems. In this context, a
dynamic approach was followed where each thread acts indepen-
dently, being adapted to each seller strategy. To adjust each
thread’s strategy and reach the optimal deal, the Artificial Bee Col-
ony (ABC) algorithm is used, exploiting its strength to better
‘escape’ from local minima (maxima) independently of the initial
values of the examined variables. Moreover, the use of a coordina-
tor specifying the strategy for each thread is avoided to minimize
the number of the required resources and the exchanged messages.
The coordinator consists of a conceptual single point of failure. If
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the coordinator fails to provide the necessary instructions to
threads, threads cannot conclude the negotiations. Complex calcu-
lations in the coordinator or messaging malfunction cause unnec-
essary delays. In case of a centralized approach, many messages
are required for the communication between the coordinator and
threads. Assuming N threads and a deadline of Tb, this approach
shows a time complexity of O(N�Tb).

A large number of experiments show that the proposed solution
achieves better performance than other research efforts in the
field. The buyer utility remains at high levels while the number
of agreements reaches 100%. Future work involves the definition
of relevant function for weights adaptation in the seller side. More-
over, concerning ABC, a combination of the proposed technique
with other intelligent models, like fuzzy logic based mechanisms,
could increase the efficiency of the proposed framework.
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